We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?
ECE-374-B: Lecture 10 - Recursion, Sorting and Recurrences

Instructor: Nickvash Kani
February 17, 2022

University of Illinois at Urbana-Champaign
Pre-lecture brain teaser

We talked a lot about languages representing problems. Consider the problem of adding two numbers. What language class does it belong to?
Pre-lecture brain teaser

Let's say we are adding two unary numbers.

\[3 + 4 = 7 \rightarrow 111 + 1111 = 1111111 \] (1)

Seems like we can make a PDA that considers...
Pre-lecture brain teaser

What if we wanted to add two binary numbers?

\[3 + 4 = 7 \rightarrow 11 + 100 = 111 \] \hspace{1cm} (2)

At least context-sensitive because we can build a finite Turing machine which takes in the encoding

\[
\begin{array}{ccccccccc}
\text{\textgreater} & 1 & 1 & + & 1 & 0 & 0 & = & 1 & 1 & 1 & 1 & \text{\textless} \\
\text{\textless} & \text{\textgreater} & q_1
\end{array}
\]
What if we wanted add two binary numbers?

$$3 + 4 = 7 \rightarrow 11 + 100 = 111$$ (3)

Computes value on left hand side
What if we wanted add two binary numbers?

\[3 + 4 = 7 \rightarrow 11 + 100 = 111\]

(4)

And compares it to the value on the right..
New Course Section: Introductory algorithms
Brief intro to the RAM model
• Algorithm solves a specific problem.
• Steps/instructions of an algorithm are simple/primitive and can be executed mechanically.
• Algorithm has a finite description; same description for all instances of the problem
• Algorithm implicitly may have state/memory

A computer is a device that

• implements the primitive instructions
• allows for an automated implementation of the entire algorithm by keeping track of state
Models of Computation vs Computers

- Model of Computation: an idealized mathematical construct that describes the primitive instructions and other details
- Computer: an actual physical device that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?
Models of Computation vs Computers

- Model of Computation: an *idealized mathematical construct* that describes the primitive instructions and other details
- Computer: an actual *physical device* that implements a very specific model of computation

In this course: design algorithms in a high-level model of computation.

Question: What model of computation will we use to design algorithms?

The standard programming model that you are used to in programming languages such as Java/C++. We have already seen the Turing Machine model.
Unit-Cost RAM Model

Informal description:

- Basic data type is an integer number
- Numbers in input fit in a word
- Arithmetic/comparison operations on words take constant time
- Arrays allow random access (constant time to access $A[i]$)
- Pointer based data structures via storing addresses in a word
Example

Sorting: input is an array of n numbers

- input size is n (ignore the bits in each number),
- comparing two numbers takes $O(1)$ time,
- random access to array elements,
- addition of indices takes constant time,
- basic arithmetic operations take constant time,
- reading/writing one word from/to memory takes constant time.

We will usually do not allow (or be careful about allowing):

- bitwise operations (and, or, xor, shift, etc).
- floor function.
- limit word size (usually assume unbounded word size).
What is an algorithmic problem?
An algorithmic problem is simply to compute a function $f : \Sigma^* \rightarrow \Sigma^*$ over strings of a finite alphabet.

Algorithm \mathcal{A} solves f if for all input strings w, \mathcal{A} outputs $f(w)$.
We will broadly see three types of problems.

- **Decision Problem**: Is the input a YES or NO input?
 Example: Given graph G, nodes s, t, is there a path from s to t in G?
 Example: Given a CFG grammar G and string w, is $w \in L(G)$?

- **Search Problem**: Find a solution if input is a YES input.
 Example: Given graph G, nodes s, t, find an s-t path.

- **Optimization Problem**: Find a best solution among all solutions for the input.
 Example: Given graph G, nodes s, t, find a shortest s-t path.
Analysis of Algorithms

Given a problem P and an algorithm \mathcal{A} for P we want to know:

- Does \mathcal{A} correctly solve problem P?
- What is the asymptotic worst-case running time of \mathcal{A}?
- What is the asymptotic worst-case space used by \mathcal{A}.

Asymptotic running-time analysis: \mathcal{A} runs in $O(f(n))$ time if:

“for all n and for all inputs I of size n, \mathcal{A} on input I terminates after $O(f(n))$ primitive steps.”
Algorithmic Techniques

- Reduction to known problem/algorithm
- Recursion, divide-and-conquer, dynamic programming
- Graph algorithms to use as basic reductions
- Greedy

Some advanced techniques not covered in this class:

- Combinatorial optimization
- Linear and Convex Programming, more generally continuous optimization method
- Advanced data structure
- Randomization
- Many specialized areas
Reductions
Reduction

Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a **black box**
Reduction

Reducing problem A to problem B:

• Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.
Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.
Reducing problem A to problem B:

- Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until it turns blue, and then shoot it with the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for hunting red elephants.
Problem Given an array A of n integers, are there any duplicates in A?
UNIQUENESS: Distinct Elements Problem

Problem Given an array \(A \) of \(n \) integers, are there any duplicates in \(A \)?

Naive algorithm:

```
DistinctElements(A[1..n])
    for i = 1 to n - 1 do
        for j = i + 1 to n do
            if (A[i] = A[j])
                return YES
        return NO
```
Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for $i = 1$ to $n - 1$ do
        for $j = i + 1$ to $n$ do
                return YES
        return NO
```

Running time:
UNIQUENESS: Distinct Elements Problem

Problem Given an array A of n integers, are there any duplicates in A?

Naive algorithm:

```
DistinctElements(A[1..n])
    for i = 1 to n - 1 do
        for j = i + 1 to n do
            if (A[i] = A[j])
                return YES
            return NO
```

Running time: $O(n^2)$
DistinctElements(A[1..n])

Sort A

for i = 1 to n - 1 do
 if (A[i] = A[i + 1]) then
 return YES
 end if
end for

return NO

Running time: \(O(n)\) plus time to sort an array of \(n\) numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be "sorted". Can also consider hashing but outside scope of current course.
Reduction to Sorting

DistinctElements(A[1..n])

Sort A

for i = 1 to n − 1 do
 if (A[i] = A[i + 1]) then
 return YES

return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box
Reduction to Sorting

DistinctElements(A[1..n])
 Sort A
 for i = 1 to n – 1 do
 if (A[i] = A[i + 1]) then
 return YES
 return NO

Running time: $O(n)$ plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be “sorted”. Can also consider hashing but outside scope of current course.
Two sides of Reductions

Suppose problem A reduces to problem B

- **Positive direction**: Algorithm for B implies an algorithm for A
- **Negative direction**: Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

- An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
- If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
Two sides of Reductions

Suppose problem A reduces to problem B

- **Positive direction**: Algorithm for B implies an algorithm for A
- **Negative direction**: Suppose there is no “efficient” algorithm for A then it implies no efficient algorithm for B (technical condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in $O(n)$ time

- An $O(n \log n)$ time algorithm for Sorting implies an $O(n \log n)$ time algorithm for Distinct Elements problem.
- If there is no $o(n \log n)$ time algorithm for Distinct Elements problem then there is no $o(n \log n)$ time algorithm for Sorting.
Recursion as self reductions
Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
Recursion

Reduction: reduce one problem to another

Recursion: a special case of reduction

- reduce problem to a **smaller** instance of itself
- self-reduction

- Problem instance of size n is reduced to **one or more** instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as **base cases**
Recursion

- Recursion is a very powerful and fundamental technique
- Basis for several other methods
 - Divide and conquer
 - Dynamic programming
 - Enumeration and branch and bound etc
 - Some classes of greedy algorithms
- Makes proof of correctness easy (via induction)
- Recurrences arise in analysis
Move stack of n disks from peg 0 to peg 2, one disk at a time. **Rule:** cannot put a larger disk on a smaller disk. **Question:** what is a strategy and how many moves does it take?
Algorithms Lecture 1: Recursion

STOP!! That's ite We're donee We've successfully reduced the nqdisk Tower of Hanoi problem to a simpler one.

Let's label the needles 0p, 1p, and 2p. The Tower of Hanoi algorithm; ignore everything but the bottom disk.
Recursive Algorithm

\[
\text{Hanoi}(n, \text{src}, \text{dest}, \text{tmp}):
\text{if } (n > 0) \text{ then}
\quad \text{Hanoi}(n-1, \text{src}, \text{tmp}, \text{dest})
\quad \text{Move disk } n \text{ from src to dest}
\quad \text{Hanoi}(n-1, \text{tmp}, \text{dest}, \text{src})
\]

\[
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n-1) + 1 & \text{if } n > 1
\end{cases}
\]
Recursive Algorithm

\[
\text{Hanoi}(n, \text{src, dest, tmp}): \\
\text{if } (n > 0) \text{ then} \\
\quad \text{Hanoi}(n-1, \text{src, tmp, dest}) \\
\quad \text{Move disk } n \text{ from src to dest} \\
\quad \text{Hanoi}(n-1, \text{tmp, dest, src})
\]

\[T(n): \text{time to move } n \text{ disks via recursive strategy}\]
Recursive Algorithm

Hanoi(n, src, dest, tmp):
 if (n > 0) then
 Hanoi(n − 1, src, tmp, dest)
 Move disk n from src to dest
 Hanoi(n − 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

\[T(n) = 2T(n - 1) + 1 \quad n > 1 \quad \text{and } T(1) = 1 \]
\[T(n) = 2T(n - 1) + 1 \]
\[= 2^2T(n - 2) + 2 + 1 \]
\[= \ldots \]
\[= 2^i T(n - i) + 2^{i-1} + 2^{i-2} + \ldots + 1 \]
\[= \ldots \]
\[= 2^{n-1} T(1) + 2^{n-2} + \ldots + 1 \]
\[= 2^{n-1} + 2^{n-2} + \ldots + 1 \]
\[= (2^n - 1)/(2 - 1) = 2^n - 1 \]
Merge Sort
Input Given an array of \(n \) elements

Goal Rearrange them in ascending order
1. **Input:** Array \(A[1 \ldots n] \)
MergeSort

1. **Input**: Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$
MergeSort

1. **Input**: Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m + 1 \ldots n]$
MergeSort

1. **Input:** Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m + 1 \ldots n]$

4. Merge the sorted arrays
1. **Input:** Array $A[1 \ldots n]$

2. Divide into subarrays $A[1 \ldots m]$ and $A[m + 1 \ldots n]$, where $m = \lfloor n/2 \rfloor$

3. Recursively **MergeSort** $A[1 \ldots m]$ and $A[m + 1 \ldots n]$

4. Merge the sorted arrays
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

$A R A G L O R H I M S T$
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

\[
\begin{align*}
\text{A G L O R} & \quad \text{H I M S T} \\
\text{A G} & \quad \\
\end{align*}
\]
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

```
A G L O R
H I M S T
A G H
```
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

\[
\begin{align*}
A & \ G & \ L & \ O & \ R & \ H & \ I & \ M & \ S & \ T \\
A & \ G & \ H & \ I
\end{align*}
\]
Merging Sorted Arrays

• Use a new array C to store the merged array
• Scan A and B from left-to-right, storing elements in C in order

\[\text{A G L O R H I M S T} \quad \text{A G H I L M O R S T}\]
Merging Sorted Arrays

- Use a new array C to store the merged array
- Scan A and B from left-to-right, storing elements in C in order

\[
\begin{align*}
A & \quad G & \quad L & \quad O & \quad R & \quad H & \quad I & \quad M & \quad S & \quad T \\
A & \quad G & \quad H & \quad I & \quad L & \quad M & \quad O & \quad R & \quad S & \quad T \\
\end{align*}
\]

- Merge two arrays using only constantly more extra space (in-place merge sort): doable but complicated and typically impractical.
Algorithms Lecture: Recursion

M(\text{A}[1 \ldots n]):
if \(n > 1 \)
\[m \leftarrow \lfloor n/2 \rfloor \]
M(\text{A}[1 \ldots m])
M(\text{A}[m + 1 \ldots n])
M(\text{A}[1 \ldots n], m)

T(n) = T(dn/2e) + T(bn/2c) + O(n).

Formal Code

\begin{align*}
\text{M} & \text{ERGE}(\text{A}[1 \ldots n], m): \\
& \text{i} \leftarrow 1; \text{j} \leftarrow m + 1 \\
& \text{for k} \leftarrow 1 \text{ to } n \\
& \quad \text{if } j > n \\
& \quad \quad \text{B}[k] \leftarrow \text{A}[i]; \text{i} \leftarrow \text{i} + 1 \\
& \quad \text{else if } i > m \\
& \quad \quad \text{B}[k] \leftarrow \text{A}[j]; \text{j} \leftarrow \text{j} + 1 \\
& \quad \text{else if } \text{A}[i] < \text{A}[j] \\
& \quad \quad \text{B}[k] \leftarrow \text{A}[i]; \text{i} \leftarrow \text{i} + 1 \\
& \quad \text{else} \\
& \quad \quad \text{B}[k] \leftarrow \text{A}[j]; \text{j} \leftarrow \text{j} + 1 \\
& \text{for k} \leftarrow 1 \text{ to } n \\
& \quad \text{A}[k] \leftarrow \text{B}[k]
\end{align*}
Running time analysis of merge-sort: Recursion tree method
Recursion tree

MergeSort(A[1..16])
Recursion tree

MergeSort(A[1..16])

MergeSort(A[1..8])

MergeSort(A[9..16])
Recursion tree
Recursion tree: subproblem sizes

MergeSort(A[1..16])

16
Recursion tree: subproblem sizes
Recursion tree: subproblem sizes

```
MergeSort(A[1..16])
  MergeSort(A[1..8])
  MergeSort(A[9..16])
  MS(1..4)
  MS(5..8)
  MS(9..12)
  MS(13..16)
```

```
16
  8
    4
    4
    4
    4
```
Recursion tree: subproblem sizes

MergeSort(A[1..16])
MergeSort(A[1..8]) MergeSort(A[9..16])
MS(1..4) MS(5..8) MS(9..12) MS(13..16)
MS(1..2) MS(3..4) MS(5..6) MS(7..8) MS(9..10) MS(11..12) MS(13..14) MS(15..16)
Recursion tree: subproblem sizes
Recursion tree: Total work?
Running Time

\[T(n) : \text{time for merge sort to sort an } n \text{ element array} \]
Running Time

$T(n)$: time for merge sort to sort an n element array

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn$$
Running Time

\(T(n) \): time for merge sort to sort an \(n \) element array

\[
T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + cn
\]

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want to know \(f(n) \) such that \(T(n) = \Theta(f(n)) \).

- \(T(n) = O(f(n)) \) - upper bound
- \(T(n) = \Omega(f(n)) \) - lower bound
Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- **Recursion tree method** — imagine the computation as a tree
- **Guess and verify** — useful for proving upper and lower bounds even if not tight bounds
Solving Recurrences: Some Techniques

- Know some basic math: geometric series, logarithms, exponentials, elementary calculus
- Expand the recurrence and spot a pattern and use simple math
- Recursion tree method — imagine the computation as a tree
- Guess and verify — useful for proving upper and lower bounds even if not tight bounds

Albert Einstein: “Everything should be made as simple as possible, but not simpler.”

Know where to be loose in analysis and where to be tight. Comes with practice, practice, practice!
Recursion Trees: MergeSort: \(n \) is a power of \(2 \)

- Unroll the recurrence.

\[
T(n) = 2T(n/2) + cn
\]
Recursion Trees: MergeSort: \(n \) is a power of 2

- Unroll the recurrence.
 \[
 T(n) = 2T(n/2) + cn
 \]

- Identify a pattern.
Recursion Trees: MergeSort: \(n \) is a power of 2

- Unroll the recurrence.
 \[T(n) = 2T\left(\frac{n}{2}\right) + cn \]
- Identify a pattern. At the \(i \)-level total work is \(cn \).
Recursion Trees: MergeSort: n is a power of 2

- Unroll the recurrence.
 \[T(n) = 2T(n/2) + cn \]
- Identify a pattern. At the ith level, the total work is cn.
- Sum over all levels.
Recursion Trees: MergeSort: \(n \) is a power of 2

- Unroll the recurrence.
 \[
 T(n) = 2T(n/2) + cn
 \]
- Identify a pattern. At the \(i \)th level total work is \(cn \).
- Sum over all levels. The number of levels is \(\log n \). So total is \(cn \log n = O(n \log n) \).
Work in each node
Recursion Trees

Work in each node
Recursion Trees

\[
\log n \left\{ \begin{array}{c}
 \frac{cn}{2} + \frac{cn}{2} = cn \\
 \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} = cn \\
 \vdots \\
 \vdots = cn
\end{array} \right.
\]
Recursion Trees

\[\log n \]

\[= \frac{cn}{2} + \frac{cn}{2} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \frac{cn}{4} + \cdots \]

\[= cn \log n = O(n \log n) \]
Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can we do better by splitting into more than 2 arrays? Say k arrays of size n/k each?
Binary Search
Input Sorted array A of n numbers and number x

Goal Is x in A?

```python
def BinarySearch(A, a, b, x):
    if (b - a) < 0:
        return 'NO'
    mid = A[⌊(a + b) / 2⌋]
    if (x == mid):
        return 'YES'
    elif (x < mid):
        return BinarySearch(A, a, ⌊(a + b) / 2⌋ - 1, x)
    else:
        return BinarySearch(A, ⌊(a + b) / 2⌋ + 1, b, x)
```

Analysis:

$T(n) = T(\lfloor n / 2 \rfloor) + O(1)$.

$T(n) = O(\log n)$.

Observation:
After k steps, size of array left is $n / 2^k$.
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

```python
def BinarySearch(A[a..b], x):
    if (b - a < 0) return NO
    mid = A[⌊(a + b)/2⌋]
    if (x = mid) return YES
    if (x < mid)
        return BinarySearch(A[a..⌊(a + b)/2⌋ - 1], x)
    else
        return BinarySearch(A[⌊(a + b)/2⌋ + 1..b], x)
```

Analysis:
$T(n) = T(⌊n/2⌋) + O(1)$.
$T(n) = O(\log n)$.

Observation:
After k steps, size of array left is $n/2^k$.
Binary Search in Sorted Arrays

Input Sorted array A of n numbers and number x

Goal Is x in A?

```python
BinarySearch (A[a..b], x):
    if (b - a < 0) return NO
    mid = A[⌊(a + b)/2⌋]
    if (x = mid) return YES
    if (x < mid)
        return BinarySearch (A[a..⌊(a + b)/2⌋ - 1], x)
    else
        return BinarySearch (A[⌊(a + b)/2⌋ + 1..b], x)
```

Analysis: $T(n) = T(⌊n/2⌋) + O(1)$. $T(n) = O(\log n)$.

Observation: After k steps, size of array left is $n/2^k$