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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time if we choose a
list of size k.
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Median of medians time analysis
Median-of-medians(A, i):

sublists = [A[j:j+5] for j 2range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist 2sublists]

// Base Case
if len (A)  5 return sorted (a)[i]

// Find median of medians
if len (medians)  5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j 2A if j < pivot]
high = [j for j 2A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

T(n) = T( 15n) + T( 710n) + cn
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Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

T(n) = T( 13n) + T(46n) + cn

What about k = 7?

T(n) = T( 17n) + T(1014n) + cn
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On different techniques for recursive
algorithms



Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

• reduce problem to a smaller instance of itself
• self-reduction

• Problem instance of size n is reduced to one or more instances of size n� 1
or less.

• For termination, problem instances of small size are solved by some other
method as base cases.
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Recursion in Algorithm Design

• Tail Recursion: problem reduced to a single recursive call after some work. Easy to
convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

• Divide and Conquer: Problem reduced to multiple independent sub-problems that
are solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

• Backtracking: Refinement of brute force search. Build solution incrementally by
invoking recursion to try all possibilities for the decision in each step.

• Dynamic Programming: problem reduced to multiple (typically) dependent or
overlapping sub-problems. Use memorization to avoid recomputation of common
solutions leading to iterative bottom-up algorithm.
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Search trees and backtracking



The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?
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The queens problem
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The queens problem
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The queens problem
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The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
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Introducing concept of state tree

What if we attempt to find all the possible permutations and then check?
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Search tree for 5 queens

Let’s be a bit smarter and recognize that:

• Queens can’t be on the same row, column or diagonal
• Can have n queens max.
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Search tree for 5 queens

s

1 2 3 4 5

13 14 15

135

1352

13524

142

1425

14253

152

24 25

241

2413

24135

251 253

2514 2531

25314

31 35

314

3142

31425

352

3524

35241

41 42

413 415

4135

41352

4152
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4253

42531

51 52 53

514 524

5241

52413

531
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53142
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Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if certain possibilities
do not work.
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n queens C++ code

void   generate_permutations( int  * permut, int  row, int  n )
{
    if  ( row == n ) {
        print_board( permut, n );
        return;
    }

    for  ( int  val = 1; val <= n; val++ ) 
        if  ( isValid( permut, row, val ) ) {
            permut[ row ] = val;
            generate_permutations( permut, row + 1, n );
        }
}

generate_permutations( permut, 0, 8 );
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Quick note: n queens - number of solutions

N Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053
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Sudoku



Sudoku problem

2 5 1 9
8 2 3 6
3 6 7

1 6
5 4 1 9

2 7
9 3 8

2 8 4 7
1 9 7 6
Unsolved Sudoku

2 5 1 9
8 2 3 6
3 6 7

1 6
5 4 1 9

2 7
9 3 8

2 8 4 7
1 9 7 6
Solved Sudoku

4 6 7 3 8
5 7 9 1 4

1 9 4 8 2 5
9 7 3 8 5 2 4

3 7 2 6 8
6 8 1 4 9 5 3
7 4 6 2 5 1
6 5 1 9 3

3 8 5 4 2
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Variable Sized Sudoku
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Naive Enumeration
2 5 1 9

8 2 3 6
3 6 7

1 6
5 4 1 9

2 7
9 3 8

2 8 4 7
1 9 7 6

algSudokuNaive(S[0..n� 1, 0..n� 1]):
for possible value (X) in empty space do

if SudokuValid? == True then
return X

return NULL

Running time: O(n29n2).
n2 time to check all rows/columns/squares contain values 1 through n

9 possibilities per square for n2 squares
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Better Enumeration

2 5 1 9
8 2 3 6
3 6 7

1 6
5 4 1 9

2 7
9 3 8

2 8 4 7
1 9 7 6

Initialize Bitmap (BM) to contain only
values available for each square

algSudoku-smaller(S[0..n� 1, 0..n� 1], BM[0..n� 1, 0..n� 1]):
for each empty space X do

for each possible value x for X according to BM do
S-new = S(Assign X = x)
BM-new = Modify BM removing x from same

row/column/square
if no more empty squares

return X
else

algSudoku-smaller(S, BM)

return NULL

Running time: O(9n2).
9 possibilities per square for n2 squares
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Longest Increasing Sub-sequence



Sequences

Definition
Sequence: an ordered list a1,a2, . . . ,an. Length of a sequence is number of
elements in the list.

Definition
ai1 , . . . ,aik is a subsequence of a1, . . . ,an if 1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1  a2  . . .  an. Similarly decreasing and non-increasing.
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Sequences - Example...

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1, 9
• Subsequence of above sequence: 5, 2, 1
• Increasing sequence: 3, 5, 9, 17, 54
• Decreasing sequence: 34, 21, 7, 5, 1
• Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1,a2, . . . ,an
Goal Find an increasing subsequence ai1 ,ai2 , . . . ,aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1,a2, . . . ,an
Goal Find an increasing subsequence ai1 ,ai2 , . . . ,aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Naive Enumeration

Assume a1,a2, . . . ,an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

23
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Naive Recursion Enumeration - State Tree
A = [6, 3, 5, 2, 7]

ss = []

A = [6, 3, 5, 2]
ss = [7]

A = [6, 3, 5]
ss = [2, 7]

A = [6, 3]
ss = [5, 2, 7]

A = [6]
ss = [3, 5, 2, 7]

A = []
ss = [6, 3, 5, 2, 7]

A = []
ss = [3, 5, 2, 7]

A = [6]
ss = [5, 2, 7]

A = []
ss = [6, 5, 2, 7]

A = []
ss = [5, 2, 7]

A = [6, 3]
ss = [2, 7]

A = [6]
ss = [3, 2, 7]

A = []
ss = [6, 3, 2, 7]

A = []
ss = [3, 2, 7]

A = [6]
ss = [2, 7]

A = []
ss = [6, 2, 7]

A = []
ss = [2, 7]

A = [6, 3, 5]
ss = [7]

A = [6, 3]
ss = [5, 7]

A = [6]
ss = [3, 5, 7]

A = []
ss = [6, 3, 5, 7]

A = []
ss = [3, 5, 7]

A = [6]
ss = [5, 7]

A = []
ss = [6, 5, 7]

A = []
ss = [5, 7]

A = [6, 3]
ss = [7]

A = [6]
ss = [3, 7]

A = []
ss = [6, 3, 7]

A = []
ss = [3, 7]

A = [6]
ss = [7]

A = []
ss = [6, 7]

A = []
ss = [7]

A = [6, 3, 5, 2]
ss = []

A = [6, 3, 5]
ss = [2]

A = [6, 3]
ss = [5, 2]

A = [6]
ss = [3, 5, 2]

A = []
ss = [6, 3, 5, 2]

A = []
ss = [3, 5, 2]

A = [6]
ss = [5, 2]

A = []
ss = [6, 5, 2]

A = []
ss = [5, 2]

A = [6, 3]
ss = [2]

A = [6]
ss = [3, 2]

A = []
ss = [6, 3, 2]

A = []
ss = [3, 2]

A = [6]
ss = [2]

A = []
ss = [6, 2]

A = []
ss = [2]

A = [6, 3, 5]
ss = []

A = [6, 3]
ss = [5]

A = [6]
ss = [3, 5]

A = []
ss = [6, 3, 5]

A = []
ss = [3, 5]

A = [6]
ss = [5]

A = []
ss = [6, 5]

A = []
ss = [5]

A = [6, 3]
ss = []

A = [6]
ss = [3]

A = []
ss = [6, 3]

A = []
ss = [3]

A = [6]
ss = []

A = []
ss = [6]

A = []
ss = []

• This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
• How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
• What is the running time?
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Naive Enumeration

Assume a1,a2, . . . ,an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time:

O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given
sequence is increasing.
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n� 1)])

• Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n� 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.
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Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1
A = [6, 3, 5, 2, 7, 8, 1]

ss = []
x = inf

A = [6, 3, 5, 2, 7, 8]
ss = [1]
x = 1

A = [6, 3, 5, 2, 7]
ss = [1]
x = 1

A = [6, 3, 5, 2]
ss = [1]
x = 1

A = [6, 3, 5]
ss = [1]
x = 1

A = [6, 3]
ss = [1]
x = 1

A = [6]
ss = [1]
x = 1

A = []
ss = [1]
x = 1

A = [6, 3, 5, 2, 7, 8]
ss = []
x = inf

A = [6, 3, 5, 2, 7]
ss = [8]
x = 8

A = [6, 3, 5, 2]
ss = [7, 8]
x = 7

A = [6, 3, 5]
ss = [2, 7, 8]

x = 2

A = [6, 3]
ss = [2, 7, 8]

x = 2

A = [6]
ss = [2, 7, 8]

x = 2

A = []
ss = [2, 7, 8]

x = 2

A = [6, 3, 5]
ss = [7, 8]
x = 7

A = [6, 3]
ss = [5, 7, 8]

x = 5

A = [6]
ss = [3, 5, 7, 8]

x = 3

A = []
ss = [3, 5, 7, 8]

x = 3

A = [6]
ss = [5, 7, 8]

x = 5

A = []
ss = [5, 7, 8]

x = 5

A = [6, 3]
ss = [7, 8]
x = 7

A = [6]
ss = [3, 7, 8]

x = 3

A = []
ss = [3, 7, 8]

x = 3

A = [6]
ss = [7, 8]
x = 7

A = []
ss = [6, 7, 8]

x = 6

A = []
ss = [7, 8]
x = 7

A = [6, 3, 5, 2]
ss = [8]
x = 8

A = [6, 3, 5]
ss = [2, 8]
x = 2

A = [6, 3]
ss = [2, 8]
x = 2

A = [6]
ss = [2, 8]
x = 2

A = []
ss = [2, 8]
x = 2

A = [6, 3, 5]
ss = [8]
x = 8

A = [6, 3]
ss = [5, 8]
x = 5

A = [6]
ss = [3, 5, 8]

x = 3

A = []
ss = [3, 5, 8]

x = 3

A = [6]
ss = [5, 8]
x = 5

A = []
ss = [3, 5, 8]

x = 3

A = [6, 3]
ss = [8]
x = 8

A = [6]
ss = [3, 8]
x = 3

A = []
ss = [3, 8]
x = 3

A = [6]
ss = [8]
x = 8

A = []
ss = [6, 8]
x = 6

A = []
ss = [8]
x = 8

A = [6, 3, 5, 2, 7]
ss = []
x = inf

A = [6, 3, 5, 2]
ss = [7]
x = 7

A = [6, 3, 5]
ss = [2, 7]
x = 2

A = [6, 3]
ss = [2, 7]
x = 2

A = [6]
ss = [2, 7]
x = 2

A = []
ss = [2, 7]
x = 2

A = [6, 3, 5]
ss = [7]
x = 7

A = [6, 3]
ss = [5, 7]
x = 5

A = [6]
ss = [3, 5, 7]

x = 3

A = []
ss = [3, 5, 7]

x = 3

A = [6]
ss = [5, 7]
x = 5

A = []
ss = [5, 7]
x = 5

A = [6, 3]
ss = [7]
x = 7

A = [6]
ss = [3, 7]
x = 3

A = []
ss = [3, 7]
x = 3

A = [6]
ss = [7]
x = 7

A = []
ss = [6, 7]
x = 6

A = []
ss = [7]
x = 7

A = [6, 3, 5, 2]
ss = []
x = inf

A = [6, 3, 5]
ss = [2]
x = 2

A = [6, 3]
ss = [2]
x = 2

A = [6]
ss = [2]
x = 2

A = []
ss = [2]
x = 2

A = [6, 3, 5]
ss = []
x = inf

A = [6, 3]
ss = [5]
x = 5

A = [6]
ss = [3, 5]
x = 3

A = []
ss = [3, 5]
x = 3

A = [6]
ss = [5]
x = 5

A = []
ss = [5]
x = 5

A = [6, 3]
ss = []
x = inf

A = [6]
ss = [3]
x = 3

A = []
ss = [3]
x = 3

A = [6]
ss = []
x = inf

A = []
ss = [6]
x = 6

A = []
ss = []
x = inf

27



Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with
all numbers in subsequence less than x

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n� 1)], x)
if (A[n] < x) then

m = max(m, 1+ LIS_smaller(A[1..(n� 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],•)

28



Running time analysis



Running time of LIS([1..n])

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n� 1)], x)
if (A[n] < x) then

m = max(m, 1+ LIS_smaller(A[1..(n� 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],•)

29
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Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).

....one can do much better using memorization!
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