


Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm'’s running time if we choose a
list of size k.
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Median of medians time analysis

yi
Median-of-medians(A, i): ‘ L"" ,
subljsts = [A[j:j+5] for j erange(0®, len(A), 5)] 7.9
T&’) ‘.T[Vg>:[ }bﬁ)sorted (sublist)[len (sublist)/2] for sublist esublists] /g Ca
// Base“Case A)o Lw)

if len (A) < 5 return sorted (a)[i]

// Find median of medians

if len (medians) < 5 I/‘ &
pivot = sorted (medians)[len (medians)/2] fﬂﬁk ﬂ%

else w . .
pivot = Median-of-medians (medians, len/2) (r /{ pw@'\'

// Partitioning Step s/w

low = [j for j €A if j < pivot]

7/0\/\' high = [j for j €A if j > pivot] 9(”’5 \
1§
61 ' k = len (low) ﬁ

if 1 <k @
return Median-of-medians (low, 1) 's
elseif i > k Z a

4

\f return Median-of-medians (g i-k-1)

V‘ else h:jk
return pivot
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Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j erange(0®, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist esublists]

// Base Case e —m —

if len (A) < 5 returnsorted (a)[i] n o / \
// Find median of medians /, ;

if len (medians) < 5 7 . /l\ o~
pivot = sorted (medians)[len (medians)/2¥p Lol - 7 5 (>4
else
pivot = Median-of-medians (medians, len/2) \ / \
// Partitioning Step /h n_ - - /D A /_ ’_{aﬁ
low = [j for j €A if j < pivot] (% “—/% 9 b4

high = [j for j €A if j > pivot]

k = len (low)

if 1 <k

return Median-of-medians (low, 1) P
elseif 1 > k

return Median-of-medians (low, i-k-1) (
else
return pivot [

T(n) = T(%n) +T(Ln) +cn J = 26 ’
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Brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

T(n) = T(%n) + T(%n) +en

What about kR = 77



On different techniques for recursive
algorithms



Recursion

Reduction: Reduce one problem to another

Recursion _
A special case of reduction

- reduce problem to a smaller instance of itself

- self-reduction

- Problem instance of size n is reduced to one or more instances of size n — 1
or less.

- For termination, problem instances of small size are solved by some other
method as base cases.




Recursion in Algorithm Design

+ Tail Recursion: problem reduced to a single recursive call after some work. Easy to
convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

- Divide and Conquer: Problem reduced to multiple independent sub-problems that
are solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

- Backtracking: Refinement of brute force search. Build solution incrementally by
Invoking recursion to try all possibilities for the decision in each step.

- Dynamic Programming: problem reduced to multiple (typically) dependent or
overlapping sub-problems. Use memorization to avoid recomputation of common
solutions leading to iterative bottom-up algorithm.




Search trees and backtracking




The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?
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The queens problem

W
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Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations? o [ 64?)




The eight queens puzzle

Problem published in 1848, solved in 1850.
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The eight queens puzzle

Problem published in 1848, solved in 1850.
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Q: How to solve problem for general n?
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Introducing concept of state tree
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Search tree for 5 queens

Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal
- Can have n queens max.

1



Search tree for 5 queens
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Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if certain possibilities
do not work.
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n queens C++ code

vold generate permutations( int * permut, iInt row, int n)

if (row==n){
print_board( permut, n);
y return;

for (int val =1; val <= n; val++)
it (isValid( permut, row, val ) ) {
permut[ row ] = val,
) generate permutations( permut, row + 1, n);
}

generate_permutations( permut, 0O, 8 );
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Quick note: n queens - number of solutions

N | Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053
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Sudoku
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Solved Sudoku

Unsolved Sudoku
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Variable Sized Sudoku
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Naive Enumeration

21 |s] [1] |9
8 2| |3 6 algSudokuNaive(S[0..n —1,0..n —1]):

3 6 / for possible value (X) in empty space do
12 ! 6 15 if Sudokuvalid? == True then

5 7 return X

9 3 8
2 8 4 7 return NULL

11 9] [7] |6
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Naive Enumeration

21 |s] [1] |9
8 2| |3 6 algSudokuNaive(S[0..n —1,0..n —1]):

3 6 / for possible value (X) in empty space do
12 ! 6 15 if Sudokuvalid? == True then

5 7 return X

9 3 8
2 8 4 7 return NULL

11 9] [7] |6

Running time:
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Naive Enumeration

20 |5 |1 [9] [w=
8 2| |3 6 algSudokuNaive(S[0..n —1,0..n —1]):

3 6 / for possible value (X) in empty space do
—+ L 6 5 if Sudokuvalid? == True then

> . return X

9 3 8
2 8 4 7 return NULL

11 o] [7] |6

1, \L
Running time: O((n%ﬁ%.
n’ time to check all rows/columns/squares contain values 1 through n

9 possibilities per square for n? squares
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Better Enumeration

Initialize Bitmap (BM) to contain only
values available for each square

5 z 3 5 algSudoku-smaller(S[0..n —1,0..n —1], BM[0..n—1,0..n —1]):
(%) > 3 a for each empty space X do
for each possible value x for X according to BM do
3 6 / )
] s S-new = S(Assign X = x)
BM-new = Modify BM removing x from same
514 119
row/column/square
E ! if no more empty squares
0 3 8 return X
2 8 4 / else
] 0 / 6 algSudoku-smaller(S, BM)

return NULL
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Better Enumeration
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Better Enumeration

Initialize Bitmap (BM) to contain only
values available for each square

5 z 3 5 algSudoku-smaller(S[0..n —1,0..n —1], BM[0..n—1,0..n —1]):
3 > 3 a for each empty space X do
for each possible value x for X according to BM do
3 6 / )
] s S-new = S(Assign X = x)
BM-new = Modify BM removing x from same
514 119
row/column/square
E ! if no more empty squares
0 3 8 return X
2 8 4 / else
] 0 / 6 algSudoku-smaller(S, BM)

return NULL

C
Running time: O(Cﬁg.

C e 19
9 possibilities per square for n? squares



Longest Increasing Sub-sequence




Sequences

Definition ‘ ‘
Sequence: an ordered list a1, ay, ..., a,. Length of a sequence is number of

elements in the list.

Definition . o |
a,...,Qj, 1sasubsequence of as,...,ap F1T<h < <...<Ilp <N

Definition o ‘ o
A sequence is Increasing if a; < a, < ... < ap. It 1s non-decreasing If

a1 < ap; <...<ap Similarly decreasing and non-increasing.
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Sequences - Example...

Example
- Sequence: 6,3,5,2,7,8,1,9
- Subsequence of above sequence: 5, 2,1
- Increasing sequence: 3,5,9,17, 54
- Decreasing sequence: 34,21,7,5,1

- Increasing subsequence of the first sequence: 2,7, 9.

21



Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay,...,an

Goal Find an increasing subsequence a;,, @;,, ..., a; of maximum length

22



Longest Increasing Subsequence Problem

Input A sequence of numbers aq,ay,...,an
Goal Find an increasing subsequence a;,, @;,, ..., a; of maximum length
Example

- Sequence: 6, 3,5, 2,7 8,1
- Increasing subsequences: 6,7 8 and 3,5,7 8 and 2, 7 etc

- Longest increasing subsequence: 3,5, 7, 8
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Naive Enumeration

Assume aj, 4y, ..., ap 1S contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

O ([ chede - # &7 pcegiomms)
Qr\

23



Naive Recursion Enumeration - State Tree

wa O o O O o O O v v o O I e [ N s = R o

G I P I P P P o 1 P P S 2 P o o o PO
0 || ss=16] || ss=8] || ss=16.3] | ss=[5] |[ss=16.5] || ss=[3.5] ||ss=[6.3.5)|| ss=[2] || ss=[6.2] |[ ss=[3.2] |[ss=1[6:3.2]|| ss=[5.2] ||ss =[6.5.2)||ss =[3.5.2]||ss=[6.3.5.2] || ss=[7] || ss=[6.7) || ss=[3.7) [|ss=1[6.3.7)| ss=1[5.7] [|s5 =657 |[s5 = [3.5.7||s5 = 6.3.5.7] |[ s5 = [2.7] || 55 = [6.2.7)||s5 = [3.2.7] [ 55 = [6.3.2.7) | |55 = [5.2.7] |55 = [6.5.2.7] || s5 = [3.5.2.7] || s5 = [6.3.5.2.7]

- This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
- How many leafs are there for the full [6,3,5,2,7 8, 1] sequence

- What Is the running time?

oc2"r)
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Naive Enumeration

Assume aj, 4y, ..., ap 1S contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:
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Naive Enumeration

Assume aj, 4y, ..., ap 1S contained in an array A

algLISNaive(A[1..n]):
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2").
2" subsequences of a sequence of length n and O(n) time to check if a given
sequence Is increasing.
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

26



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n — 1)])

- Case 2: contains A[n] in which case LIS(A[1..n]) is
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n — 1)])

- Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation _ ' _
For second case we want to find a subsequence in A[1..(n — 1)] that is restricted to

numbers less than A|n]. This suggests that a more general problem is

LIS_smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x.

26



Example

Sequence: A[0..6] =6,3,5,2,7,8,1

A=1635278"1

ss=)
X = inf
A=1[6,3,5278] A=1[6,3,5278]
ss=] ss=[1]
X = inf x=1
[
A=16,3527 A=1[6,3,527 A=16,3527
ss=|] ss = [8] ss=[1]
X = inf X=8 x=1
_ e [
A=1[6,3,52] A=1[6,3,52] A=1[6,352 A=1[6,352 A=1[6,3,5,2
ss=]] ss=[7] ss = [8] ss=[7,8] ss=[1]
X = inf x=17 x=38 x=7 x=1
[
A=1[6,35] A=1[6,35] A=1[6,3,5] A=1[6,3,5] A=1[6,3,5] A=1[6,35] A=16,3.5] A=1[6.35 A=16,35]
ss=] ss=[2 ss=1[7] ss=[2,7] ss=[8] ss=[2,8] ss=[7,8] ss=1[2,7,8] ss=[1]
X = inf X =2 X=7 X=2 X =8 X =2 x=7 X=2 x=1
[ [ [ [
A=1[6,3 A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3]
ss=] ss=[5] ss=[2 ss=[7] ss=[57] ss=1[27] ss=[8] ss = [5,8] ss=[2,8] ss=[7,8] ss=[5,7,8] ss=1[2,7,8] ss=[1]
X = inf 5 X=2 x=7 x=5 x=2 X=8 x=5 xX=2 x=7 X=5 x=2 x=1
[ [ [ [ [
A=[6] A=1[6]|[A=16] A=[6] A=6] A=[6] = [6] A=[6] A=[6] A=[6] A=[6] A=6] [6] A=6] A=6] [6] A=[6] A=[6] A=[6] A=[6] A=6]
ss=1] ss=[3]|[ss=[5]||ss=[3.5]| [ss=12 ss=17] ss=[3,7]||ss=1[57]||ss=[3.5.7]| |ss=[2.7] ss = 8] ss=[3,8]| [ss=[5.8]| |ss=[3.5.8]||ss = [2.8] ss=[7,8] 5s=3,7,8]|[ss=[578]||ss=[3,57.8] || ss=[2,7.8] ss=[1]
X = inf X=3 x=5 X=3 xX=2 x=7 x=3 X=5 X =3 X=2 8 X =3 Xx=5 X =3 X=2 x=7 =3 X =5 X =3 X=2 x=1
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
A=l A=0 ) A=T]A=T]| A=l A=l A= A= A=l A=l A=l A=l A=D A=1D A=l A=l A= A= A= A= i A=l A= A=l A=
s=||ss=[6]|[ss = [3]|[ss=[5]|[ss=[3.5]| |ss=1[2]| [ss=[7]|ss=1[67]]|]ss=[37]||ss=[57]|ss=1[3.57||ss=[27]||ss = [8]||ss = [6,8] ||ss = [3,8] || s5 = [3,5.8] || ss = [3.5.8] | | ss = [2.8] | | 55 = [7.8] || 55 = [6.7,8] || 55 = [3,7.8] || 55 = [5.7.8] |[ 55 = [3.5,7.8] || 55 = [2,7,8] ss=[1]
x=inf|[ x=6 xX=3 X=5 x=3 xX=2 x=17 X=6 X=3 X=5 x=3 X = X=8 X=6 x=3 X=3 x=3 xX=2 x=7 X=6 = X=5 x=3 x=2 x=1
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Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with
all numbers in subsequence less than x

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n — 1)],x)
if (A[n] <x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))
Output m

LIS(A[1..n]) :
return LIS_smaller(A[1..n], c0)

28



Running time analysis




Running time of LIS([1..n])

LIS_smaller(A[1..n],x) :
if (n=0) then returno
m = LIS_smaller(A[1..(n — 1)],x)
if (A[n] < x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)],A[n]))
Output m

LIS(A[1..n]) :
re —smaller(A[1..n], c0)

“ S
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Running time of LIS([1..n])

Lemma . .
LIS_smaller runs in O(2") time.
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Running time of LIS([1..n])

Lemma . .
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

30



Running time of LIS([1..n])

Lemma . .
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

...one can do much better using memorization!

30



