We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.
ECE-374-B: Lecture 12 - Backtracking and memorization

Instructor: Nickvash Kani
February 28, 2023

University of Illinois at Urbana-Champaign
Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work? (Hint) Write a recurrence to analyze the algorithm’s running time if we choose a list of size k.
Given an array $A = [0, ..., n-1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

The smallest element of rank 10 would be 11. But how do we figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)
Review linear time selection

Given an array $A = [0, ..., n - 1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

4 3 15 7 1 17 9 10 14 13 8 18 11 2 12 16 6 19 5 20

The smallest element of rank 10 would be 11. But how do we figure that out

Do median of medians.....

Call **Median-of-Medians**(A, 10)

First thing we need to do is find the pivot!
Review linear time selection

Given an array $A = [0, ..., n - 1]$ of n numbers and an index i, where $0 \leq i \leq n - 1$, find the i^{th} smallest element of A.

For instance, assume $n = 20$ and $i = 10$.

```
4 3 15 7 1 17 9 10 14 13 8 18 11 2 12 16 6 19 5 20
```

The smallest element of rank 10 would be 11. But how do we figure that out?

Do median of medians.....

Call **Median-of-Medians**(A, 10)

First thing we need to do is find the pivot!
Review linear time selection

First we reorganize:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>17</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Still need the pivot. Find median of medians.
Review linear time selection

First we reorganize:

<table>
<thead>
<tr>
<th>4</th>
<th>17</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Then we sort each column:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Review linear time selection

First we reorganize:

<table>
<thead>
<tr>
<th>4</th>
<th>17</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Then we sort each column:

<table>
<thead>
<tr>
<th>1</th>
<th>9</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Still need the pivot. Find median of medians
Review linear time selection

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

- Call Median-of-Medians([4,13,11,16], floor(len/2) = 2)
- Can sort this in linear time.
- Get back 13.
- 13 is our new pivot!
Review linear time selection

- Call $\text{Median-of-Medians}([4,13,11,16], \text{floor}(\text{len}/2) = 2)$
- Can sort this in linear time.
- Get back 13.
- **13** is our new pivot!
Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into two.

We know the following:

- $\text{len}(A_{Lower}) = 12$
- $\text{len}(A_{Upper}) = 7$
- Want $k = 10$
Back to our original array! Use the pivot (=13) to break it up into two.

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 12 \)
- \(\text{len}(A_{\text{Upper}}) = 7 \)
- Want \(k = 10 \)

Call \(\text{Median-of-Medians}(A_{\text{Lower}}, 10) \)
Review linear time selection

Then we do this again:

| 4 | 3 | 7 | 1 | 9 | 10 | 8 | 11 | 2 | 12 | 6 | 5 |

First we reorganize:

| 4 | 3 | 7 | 1 | 9 | 10 | 8 | 11 | 2 | 12 | 6 | 5 |

Then we sort each column:

| 1 | 2 | 3 | 8 | 5 | 4 | 10 | 6 | 11 | 9 | 12 |
Review linear time selection

Then we do this again:

```
4 3 7 1 9 10 8 11 2 12 6 5
```

First we reorganize:

```
<table>
<thead>
<tr>
<th>4 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3  8</td>
</tr>
<tr>
<td>7 11</td>
</tr>
<tr>
<td>1  2</td>
</tr>
<tr>
<td>9 12</td>
</tr>
</tbody>
</table>
```
Review linear time selection

Then we do this again:

First we reorganize:

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>7</th>
<th>1</th>
<th>9</th>
<th>10</th>
<th>8</th>
<th>11</th>
<th>2</th>
<th>12</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
</table>

Then we sort each column:

<table>
<thead>
<tr>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
Review linear time selection

- Call Median-of-Medians([4, 10, 6], floor(n/2) = 10)
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!
Review linear time selection

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

- Call **Median-of-Medians**([4,10,6], \(\text{floor}(n/2) = 10\))
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!
Review linear time selection

Back to our original array! Use the pivot (\(=6\)) to break it up into two (well three).

\[
\begin{array}{cccccccccccc}
4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
4 & 3 & 1 & 2 & 5 & & 6 & & 7 & 9 & 10 & 8 & 11 & 12 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 5\)
- \(\text{len}(A_{\text{Upper}}) = 6\)
- Want \(k = 10\) (pivot is of rank 6)
Back to our original array! Use the pivot (\(=6\)) to break it up into two (well three).

\[
\begin{array}{cccccccccc}
4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 5\)
- \(\text{len}(A_{\text{Upper}}) = 6\)
- Want \(k = 10\) (pivot is of rank 6)

Call \(\text{Median-of-Medians}(A_{\text{Upper}}, 10 - 6 = 4)\)
Review linear time selection

Then we do this again:

| 7 | 9 | 10 | 8 | 11 | 12 |

First we reorganize:

Then we sort each column:
Review linear time selection

Then we do this again:

| 7 | 9 | 10 | 8 | 11 | 12 |

First we reorganize:

<table>
<thead>
<tr>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>
Review linear time selection

Then we do this again:

\[
\begin{bmatrix}
7 & 9 & 10 & 8 & 11 & 12
\end{bmatrix}
\]

First we reorganize:

\[
\begin{array}
| 7 | & | 9 | & | 10 | & | 8 | & | 11 | & | 12 |
\end{array}
\]

Then we sort each column:

\[
\begin{array}
| 7 | & | 8 | & | 9 | & | 10 | & | 11 |
\end{array}
\]
Call Median-of-Medians([9,12], floor(len/2) = 1)

Can sort this in linear time.

Get back 12.

12 is our new pivot!
Review linear time selection

- Call **Median-of-Medians**([9,12], floor(len/2) = 1)
- Can sort this in linear time.
- Get back 12.
- **12** is our new pivot!
Back to our original array! Use the pivot (=6) to break it up into two (well three).

We know the following:

- len(A_{Lower}) = 5
- len(A_{Upper}) = 0
- Want $k = 4$ (pivot is of rank 5)
Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into two (well three).

\[
\begin{array}{cccccc}
7 & 9 & 10 & 8 & 11 & 12 \\
\end{array}
\]

We know the following:

- \(\text{len}(A_{\text{Lower}}) = 5 \)
- \(\text{len}(A_{\text{Upper}}) = 0 \)
- Want \(k = 4 \) (pivot is of rank 5)

Call \textbf{Median-of-Medians}(A_{\text{Lower}}, 4)
Review linear time selection

Final Step!

\[
\begin{array}{ccccc}
7 & 9 & 10 & 8 & 11 \\
\end{array}
\]

Can sort in linear time!

\[
\begin{array}{ccccc}
7 & 8 & 9 & 10 & 11 \\
\end{array}
\]

Return \(Sorted(A[4]) = 11 \)
Median of medians time analysis

Median-of-medians(A, i):

```python
sublists = [A[j:j+5] for j ∈ range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist ∈ sublists]

// Base Case
if len (A) ≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians) ≤ 5
    pivot = sorted (medians)[len (medians)/2]
else
    pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j ∈A if j < pivot]
high = [j for j ∈A if j > pivot]

k = len (low)
if i < k
    return Median-of-medians (low, i)
elseif i > k
    return Median-of-medians (low, i-k-1)
elsereturn pivot
```

$T(n) = T(15n) + T(710n) + cn$
Median of medians time analysis

\[
T(n) = T\left(\frac{1}{5}n\right) + T\left(\frac{7}{10}n\right) + cn
\]
We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work?

\[T(n) = T\left(\frac{1}{3}n\right) + T\left(\frac{4}{6}n\right) + cn \]
Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work?

\[T(n) = T\left(\frac{1}{3}n\right) + T\left(\frac{4}{6}n\right) + cn \]

What about \(k = 7 \)?
Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work?

\[T(n) = T\left(\frac{1}{3}n\right) + T\left(\frac{4}{6}n\right) + cn \]

What about \(k = 7? \)

\[T(n) = T\left(\frac{1}{7}n\right) + T\left(\frac{10}{14}n\right) + cn \]
On different techniques for recursive algorithms
Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction

- Problem instance of size n is reduced to one or more instances of size $n - 1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases.
Recursion in Algorithm Design

- **Tail Recursion**: Problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. **Examples**: Interval scheduling, MST algorithms....

- **Divide and Conquer**: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem. **Examples**: Closest pair, median selection, quick sort.

- **Backtracking**: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.

- **Dynamic Programming**: Problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memorization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.
Search trees and backtracking
The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?
The queens problem
Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?
The eight queens puzzle

Problem published in 1848, solved in 1850.
Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
Introducing concept of state tree

What if we attempt to find all the possible permutations and then check?
Let’s be a bit smarter and recognize that:

- Queens can’t be on the same row, column or diagonal
- Can have n queens max.
Search tree for 5 queens
Recursive search over an implicit tree, where we “backtrack” if certain possibilities do not work.
```cpp
void generate_permutations(int * permut, int row, int n) {
    if (row == n) {
        print_board(permut, n);
        return;
    }
    for (int val = 1; val <= n; val++)
        if (isValid(permut, row, val)) {
            permut[row] = val;
            generate_permutations(permut, row + 1, n);
        }
}
generate_permutations(permut, 0, 8);
```
Quick note: *n* queens - number of solutions

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Solutions</th>
<th>Number of Unique Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>341</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>1,787</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>9,233</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>45,752</td>
</tr>
<tr>
<td>15</td>
<td>2,279,184</td>
<td>285,053</td>
</tr>
</tbody>
</table>
Longest Increasing Sub-sequence
Definition
Sequence: an ordered list \(a_1, a_2, \ldots, a_n \). Length of a sequence is number of elements in the list.

Definition
\(a_{i_1}, \ldots, a_{i_k} \) is a subsequence of \(a_1, \ldots, a_n \) if
\[1 \leq i_1 < i_2 < \ldots < i_k \leq n. \]

Definition
A sequence is increasing if \(a_1 < a_2 < \ldots < a_n \). It is non-decreasing if \(a_1 \leq a_2 \leq \ldots \leq a_n \). Similarly decreasing and non-increasing.
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 9.
Longest Increasing Subsequence Problem

Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

- Example
 - Sequence: 6, 3, 5, 2, 7, 8, 1
 - Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
 - Longest increasing subsequence: 3, 5, 7, 8
Input A sequence of numbers a_1, a_2, \ldots, a_n

Goal Find an increasing subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8
Assume a_1, a_2, \ldots, a_n is contained in an array A

$$\text{algLISNaive}(A[1..n]) :$$

$$\begin{align*}
 max &= 0 \\
 \text{for each subsequence } B \text{ of } A \text{ do} \\
 &\quad \text{if } B \text{ is increasing and } |B| > max \text{ then} \\
 &\quad \quad \quad max = |B|
\end{align*}$$

Output max
Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

```python
algLISNaive(A[1..n]):
    max = 0
    for each subsequence $B$ of $A$ do
        if $B$ is increasing and $|B| > max$ then
            max = $|B|
    Output max
```

Running time:
Naive Enumeration

Assume a_1, a_2, \ldots, a_n is contained in an array A

$$\text{algLISNaive}(A[1..n]):$$

1. $max = 0$
2. For each subsequence B of A do
 1. If B is increasing and $|B| > max$ then
 1. $max = |B|$

Output max

Running time: $O(n2^n)$.

2^n subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.
Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

- Case 1: Does not contain A[n] in which case LIS(A[1..n]) = LIS(A[1..(n − 1)])

- Case 2: contains A[n] in which case LIS(A[1..n]) is
Can we find a recursive algorithm for \textbf{LIS}?

\textbf{LIS}(A[1..n]):

- **Case 1:** Does not contain $A[n]$ in which case $\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n-1)])$

- **Case 2:** contains $A[n]$ in which case $\text{LIS}(A[1..n])$ is not so clear.
Can we find a recursive algorithm for LIS?

\[
\text{LIS}(A[1..n]):
\]

- **Case 1:** Does not contain \(A[n]\) in which case \(\text{LIS}(A[1..n]) = \text{LIS}(A[1..(n-1)])\)
- **Case 2:** contains \(A[n]\) in which case \(\text{LIS}(A[1..n])\) is not so clear.

Observation

For second case we want to find a subsequence in \(A[1..(n-1)]\) that is restricted to numbers less than \(A[n]\). This suggests that a more general problem is \(\text{LIS_smaller}(A[1..n], x)\) which gives the longest increasing subsequence in \(A\) where each number in the sequence is less than \(x\).
Example

Sequence: $A[1..5] = 5, 9, 7, 8, 1$

\[
\begin{align*}
ss &= [] \\
x &= \text{inf}
\end{align*}
\]

\[
\begin{align*}
ss &= [] \\
x &= \text{inf}
\end{align*}
\]

\[
\begin{align*}
ss &= [] \\
x &= \text{inf}
\end{align*}
\]

\[
\begin{align*}
ss &= [7] \\
x &= 7
\end{align*}
\]

\[
\begin{align*}
ss &= [8] \\
x &= 8
\end{align*}
\]

\[
\begin{align*}
ss &= [78] \\
x &= 7
\end{align*}
\]
Recursive Approach

\textbf{LIS_smaller}(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

\begin{algorithm}
\begin{algorithmic}
\Function{LIS_smaller}{A[1..n], x}
\If{\text{$n = 0$}}
\State return 0
\EndIf
\State $m = \text{LIS_smaller}(A[1..(n-1)], x)$
\If{\text{$A[n] < x$}}
\State $m = \max(m, 1 + \text{LIS_smaller}(A[1..(n-1)], A[n]))$
\EndIf
\State \textbf{Output} m
\EndFunction
\end{algorithmic}
\end{algorithm}

\textbf{LIS}(A[1..n]) : \begin{align*}
\text{return } \text{LIS_smaller}(A[1..n], \infty)\end{align*}
Running time analysis
Running time of LIS([1..n])

```python
LIS_smaller(A[1..n], x):
    if (n = 0) then return 0
    m = LIS_smaller(A[1..(n - 1)], x)
    if (A[n] < x) then
        m = max(m, 1 + LIS_smaller(A[1..(n - 1)], A[n]))
    Output m

LIS(A[1..n]):
    return LIS_smaller(A[1..n], ∞)
```
Lemma

LIS_smaller runs in $O(2^n)$ time.
Lemma
\texttt{LIS_smaller} runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.
Lemma

LIS_smaller runs in $O(2^n)$ time.

Improvement: From $O(n2^n)$ to $O(2^n)$.

....one can do much better using memorization!