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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time
if we choose a list of size k.
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Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time
if we choose a list of size k.
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Review linear time selection

Given an array A = [0, ..., n − 1] of n numbers and an index i ,
where 0 ≤ i ≤ n − 1, find the ith smallest element of A.

For instance, assume n = 20 and i = 10.

4 3 15 7 1 17 9 10 14 13 8 18 11 2 12 16 6 19 5 20

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!
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Review linear time selection

First we reorganize:

4 17 8 16

3 9 18 6

15 10 11 19

7 14 2 5

1 13 12 20

Then we sort each column:

1 9 2 5

3 10 8 6

4 13 11 16

7 14 12 19

15 17 18 20

Still need the pivot. Find median of medians
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Review linear time selection

1 9 2 5

3 10 8 6

4 13 11 16

7 14 12 19

15 17 18 20

• Call Median-of-
Medians([4,13,11,16],
floor(len/2) = 2)

• Can sort this in linear time.
• Get back 13.
• 13 is our new pivot!
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Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into
two.

4 3 15 7 1 17 9 10 14 13 8 18 11 2 12 16 6 19 5 20

4 3 7 1 9 10 8 11 2 12 6 5 13 15 17 14 18 16 19 20

We know the following:

• len(ALower ) = 12
• len(AUpper ) = 7
• Want k = 10

Call Median-of-Medians(ALower , 10)
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Back to our original array! Use the pivot (=13) to break it up into
two.
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Review linear time selection

Then we do this again:

4 3 7 1 9 10 8 11 2 12 6 5

First we reorganize:

4 10

3 8 6

7 11 5

1 2

9 12

Then we sort each column:

1 2

3 8 5

4 10 6

7 11

9 12
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Review linear time selection

Then we do this again:

4 3 7 1 9 10 8 11 2 12 6 5
First we reorganize:

4 10

3 8 6

7 11 5

1 2
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Review linear time selection

1 2

3 8 5

4 10 6

7 11

9 12

• Call Median-of-Medians([4,10,6],
floor(n/2) = 10)

• Can sort this in linear time.
• Get back 6.
• 6 is our new pivot!
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Review linear time selection

1 2

3 8 5

4 10 6

7 11

9 12

• Call Median-of-Medians([4,10,6],
floor(n/2) = 10)

• Can sort this in linear time.
• Get back 6.
• 6 is our new pivot!
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Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

4 3 7 1 9 10 8 11 2 12 6 5

4 3 1 2 5 6 7 9 10 8 11 12

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 6
• Want k = 10 (pivot is of rank 6)

Call Median-of-Medians(AUpper , 10 − 6 = 4)
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Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

4 3 7 1 9 10 8 11 2 12 6 5

4 3 1 2 5 6 7 9 10 8 11 12

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 6
• Want k = 10 (pivot is of rank 6)

Call Median-of-Medians(AUpper , 10 − 6 = 4) 9



Review linear time selection

Then we do this again:

7 9 10 8 11 12

First we reorganize:

7

9

10 12

8

11

Then we sort each column:

7

8

9 12

10

11
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Review linear time selection

Then we do this again:

7 9 10 8 11 12
First we reorganize:

7

9

10 12

8

11

Then we sort each column:

7

8

9 12

10

11
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Review linear time selection

Then we do this again:

7 9 10 8 11 12
First we reorganize:

7

9

10 12

8

11

Then we sort each column:

7

8

9 12
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Review linear time selection

7

8

9 12

10

11

• Call Median-of-Medians([9,12], floor(len/2) = 1)
• Can sort this in linear time.
• Get back 12.
• 12 is our new pivot!
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Review linear time selection

7

8

9 12

10

11

• Call Median-of-Medians([9,12], floor(len/2) = 1)
• Can sort this in linear time.
• Get back 12.
• 12 is our new pivot!
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Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7 9 10 8 11 12

7 9 10 8 11 12

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 0
• Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(ALower , 4)
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Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

7 9 10 8 11 12

7 9 10 8 11 12

We know the following:

• len(ALower ) = 5
• len(AUpper ) = 0
• Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(ALower , 4) 12



Review linear time selection

Final Step!

7 9 10 8 11

Can sort in linear time!

7 8 9 10 11

Return Sorted(A[4]) = 11
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Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j ∈range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist ∈sublists]

// Base Case
if len (A) ≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians) ≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j ∈A if j < pivot]
high = [j for j ∈A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

T (n) = T (
1
5n) + T (

7
10n) + cn

14



Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j ∈range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist ∈sublists]

// Base Case
if len (A) ≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians) ≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j ∈A if j < pivot]
high = [j for j ∈A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

T (n) = T (
1
5n) + T (

7
10n) + cn

14



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?
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On different techniques for recursive
algorithms



Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

• reduce problem to a smaller instance of itself
• self-reduction

• Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

• For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

• Tail Recursion: problem reduced to a single recursive call after some
work. Easy to convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

• Divide and Conquer: Problem reduced to multiple independent
sub-problems that are solved separately. Conquer step puts together
solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

• Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

• Dynamic Programming: problem reduced to multiple (typically)
dependent or overlapping sub-problems. Use memorization to avoid
recomputation of common solutions leading to iterative bottom-up
algorithm.

17



Search trees and backtracking



The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?
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The queens problem
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The queens problem
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The queens problem
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The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many
permutations?
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
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The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n?
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Introducing concept of state tree

What if we attempt to find all the possible permutations and then
check?
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Search tree for 5 queens

Let’s be a bit smarter and recognize that:

• Queens can’t be on the same row, column or diagonal
• Can have n queens max.
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Search tree for 5 queens

s

1 2 3 4 5

13 14 15

135

1352

13524

142

1425

14253

152

24 25

241

2413

24135

251 253

2514 2531

25314

31 35

314

3142

31425

352

3524

35241

41 42

413 415

4135

41352

4152

425

4253

42531

51 52 53

514 524

5241

52413

531

5314

53142
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Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if
certain possibilities do not work.
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n queens C++ code

void   generate_permutations( int  * permut, int  row, int  n )
{
    if  ( row == n ) {
        print_board( permut, n );
        return;
    }

    for  ( int  val = 1; val <= n; val++ ) 
        if  ( isValid( permut, row, val ) ) {
            permut[ row ] = val;
            generate_permutations( permut, row + 1, n );
        }
}

generate_permutations( permut, 0, 8 );
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Quick note: n queens - number of solutions

N Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053
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Longest Increasing Sub-sequence



Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1 , . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing
if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.
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Sequences - Example...

Example

• Sequence: 6, 3, 5, 2, 7, 8, 1, 9
• Subsequence of above sequence: 5, 2, 1
• Increasing sequence: 3, 5, 9, 17, 54
• Decreasing sequence: 34, 21, 7, 5, 1
• Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1 , ai2 , . . . , aik of
maximum length

Example

• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1 , ai2 , . . . , aik of
maximum length

Example

• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Naive Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.
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Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LIS(A[1..(n − 1)])
• Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS_smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x.
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Example

Sequence: A[1..5] = 5, 9, 7, 8, 1

ss = []

x = inf

ss = []

x = inf

ss = []

x = inf

ss = []

x = inf

ss = [7]
x = 7

ss = [8]
x = 8

ss = [8]
x = 8

ss = [78]
x = 7

ss = [1]
x = 1

32



Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS_smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],∞)
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Running time analysis



Running time of LIS([1..n])

LIS_smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS_smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS_smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],∞)
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Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2n) time.

Improvement: From O(n2n) to O(2n).

....one can do much better using memorization!
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