

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm'’s running time
if we choose a list of size k.

ECE-374-B: Lecture 12 - Backtracking and

memorization

Instructor: Nickvash Kani
February 28, 2023

University of lllinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm'’s running time
if we choose a list of size k.

Review linear time selection

Given an array A= [0, ...,n — 1] of n numbers and an index i,
where 0 < i < n— 1, find the it" smallest element of A.

For instance, assume n = 20 and i = 10.
[4]3]15]7]1]17]9]10]14]13]8]18]11]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we

figure that out
Do median of medians.....

Call Median-of-Medians(A, 10)

Review linear time selection

Given an array A= [0, ...,n — 1] of n numbers and an index i,
where 0 < i < n— 1, find the it" smallest element of A.

For instance, assume n = 20 and i = 10.

[4]3]15]7]1]17]9]10]14]13]8]18]11]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

Given an array A= [0, ...,n — 1] of n numbers and an index i,
where 0 < i < n— 1, find the it" smallest element of A.

For instance, assume n = 20 and i = 10.

[4]3]15]7]1]17]9]10]14]13]8]18]11]2]12]16]6]19]5]20]

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Review linear time selection

First we reorganize:

4 17 8 16

3 9 18 6

15 [10 | 11 | 19

Review linear time selection

First we reorganize: Then we sort each column:
4 17 8 16 1 9 2 5
3 9 18 6 3 10 8 6
15 [10 | 11 | 19 4 13 |11 | 16
7 14 2 5 7 14 | 12 | 19
1 13 12 | 20 15 | 17 | 18 | 20

Review linear time selection

First we reorganize: Then we sort each column:
4 17 8 16 1 9 2 5
3 9 18 6 3 10 8 6
15 [10 | 11 | 19 4 13 |11 | 16
7 14 2 5 7 14 | 12 | 19
1 13 12 | 20 15 | 17 | 18 | 20

Still need the pivot. Find median of medians

Review linear time selection

15 | 17 | 18 | 20

Review linear time selection

= Call Median-of-
Medians([4,13,11,16],
floor(len/2) = 2)

= Can sort this in linear time.

7 14 |12 | 19 = Get back 13.

. : -
15 117 11s | 20 13 is our new pivot!

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into
two.

[4]3]15]7]1]1r]9]10]14]15] 8]18]11]2]12]16] 6 [19]5 [20]

[4]3]7]1]9]10]8]11]2]12]6]5] [15]17[14]18]16]19]20]

We know the following:

v len(Arower) = 12

» len(Aypper) =7
= Want k=10

Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into

two.

[4]3]15]7]1]1r]9]10]14]15] 8]18]11]2]12]16] 6 [19]5 [20]

[4]3]7]1]9]10]8]11]2]12]6]5] [15]17[14]18]16]19]20]

We know the following:

v len(Arower) = 12
» len(Aypper) =7
= Want k=10

Call Median-of-Medians(Aower: 10) 6

Review linear time selection

Then we do this again:

4131711791018 (11|2|12|6 |5

Review linear time selection

Then we do this again:

4131711791018 (11|2|12|6 |5

First we reorganize:

4 10
3 8 6
7 11 5
1 2
9 12
7

Review linear time selection

Then we do this again:

4131711791018 (11|2|12|6 |5

First we reorganize: Then we sort each column:
4 10 1 2
3 8 6 3 8 5
7 11 5 4 10 6
1 2 7 11
9 12 9 12
7

Review linear time selection

1 2
3 8 5
4 10 6
7 11
9 12

Review linear time selection

1 2
3 38 5 = Call Median-of-Medians([4,10,6],
floor(n/2) = 10)
4 10 6 = Can sort this in linear time.
7 11 = Get back 6.
= 6 is our new pivot!
9 12

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

(4]3]7]1]9]10]8]11]2]12]6]5]

[4]3[1]2]5] [6] [7]9]w0]8]11]12]

We know the following:

" Ien(ALower) =5
L] Ien(AUppe,) =6
= Want k = 10 (pivot is of rank 6)

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

(4]3]7]1]9]10]8]11]2]12]6]5]

[4]3[1]2]5] [6] [7]9]w0]8]11]12]

We know the following:

" Ien(ALower) =5
L] Ien(AUppe,) =6
= Want k = 10 (pivot is of rank 6)

Call Median-of-Medians(Agypper, 10 — 6 = 4) 9

Review linear time selection

Then we do this again:

7191108 11|12

10

Review linear time selection

Then we do this again:

7191108 11|12

First we reorganize:

7

10 | 12

11

10

Review linear time selection

Then we do this again:

7191108 11|12

First we reorganize: Then we sort each column:
7 7
9 8
10 | 12 9 12
8 10
11 11
10

Review linear time selection

10

11

11

Review linear time selection

7
8 _ .
= Call Median-of-Medians([9,12], floor(len/2) = 1)
9 12 = Can sort this in linear time.
= Get back 12.
10 . .
= 12 is our new pivot!
11

11

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

719(10|8|11|12

We know the following:

" Ien(ALower) =5

= len(Aypper) = 0
= Want k = 4 (pivot is of rank 5)

12

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into

two (well three).

719(10|8|11|12

We know the following:

" Ien(ALower) =5

= len(Aypper) = 0
= Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(Apower, 4) 12

Review linear time selection

Final Step!

7191]10] 8 |11

Can sort in linear time!

718]19]10(11

Return Sorted(A[4]) = 11

13

Median of medians time analysis

Median-of-medians (A, i):
sublists = [A[j:j+5] for j €range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist €sublists]

// Base Case
if len (A) < 5 return sorted (a)[i]

// Find median of medians
if len (medians) < 5

pivot = sorted (medians) [len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j €A if j > pivot]

k = len (low)
ifi<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

14

Median of medians time analysis

Median-of-medians (A, i):
sublists = [A[j:j+5] for j €range(0, len(A), 5)]
medians = [sorted (sublist)[len (sublist)/2] for sublist €sublists]

// Base Case
if len (A) < 5 return sorted (a)[i]

// Find median of medians
if len (medians) < 5

pivot = sorted (medians) [len (medians)/2]
else

pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j €A if j > pivot]

k = len (low)
ifi<k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

) =) 2 e - @i

10 14

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

15

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

1 4
-n

T(n) = T(gn) + T(6)+ cn

15

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

1 4
-n

T(n) = T(gn) + T(6)+ cn

What about kK = 77

15

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

1 4
-n

T(n) = T(gn) + T(6)+ cn
What about kK = 77
1 10
T(n) = T(?n) + T(ﬁn) +cn

15

On different techniques for recursive
algorithms

Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

= reduce problem to a smaller instance of itself

= self-reduction

= Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

= For termination, problem instances of small size are solved by
some other method as base cases.

16

Recursion in Algorithm Design

= Tail Recursion: problem reduced to a single recursive call after some

work. Easy to convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

= Divide and Conquer: Problem reduced to multiple independent

sub-problems that are solved separately. Conquer step puts together
solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

= Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

= Dynamic Programming: problem reduced to multiple (typically)

dependent or overlapping sub-problems. Use memorization to avoid

recomputation of common solutions leading to iterative bottom-up

algorithm.

17

Search trees and backtracking

The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

18

The queens problem

19

The queens problem

19

The queens problem

iy

19

The queens problem

W

19

The queens problem

W

19

The queens problem

W

19

The queens problem

19

The queens problem

iy

Wy

Wy

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many
permutations?

19

The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

i

i

20

The eight queens puzzle

Problem published in 1848, solved in 1850.

iy

i

i

i

Wy

Q: How to solve problem for general n?

20

Introducing concept of state tree

What if we attempt to find all the possible permutations and then
check?

21

Search tree for 5 queens

Let's be a bit smarter and recognize that:

= Queens can't be on the same row, column or diagonal

= Can have n queens max.

22

Search tree for 5 queens

23

Backtracking: Informal definition

Recursive search over an implicit tree, where we "backtrack” if
certain possibilities do not work.

24

n queens C++ code

vold generate_permutations(int * permut, int row, Int n)

if (row==n){
print_board(permut, n);
return;

for (int val =1; val <= n; val++)
if (isValid(permut, row, val)) {
permut[row] = val;
generate_permutations(permut, row + 1, n);

}

generate_permutations(permut, 0, 8);

25

Quick note: n queens - number of solutions

N | Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053

26

Longest Increasing Sub-sequence

Sequences

Definition
Sequence: an ordered list ay, az, ..., an. Length of a sequence is

number of elements in the list.

Definition

aj,,...,aj, is a subsequence of ay, ..., a, if
1<ih<b<...<i<n.

Definition

A sequence is increasing if a; < a» < ... < a,. It is non-decreasing
if a1 < ap <...< a,. Similarly decreasing and non-increasing.

27

Sequences - Example...

Example
= Sequence: 6,3,5,2,7,8,1,9
= Subsequence of above sequence: 5,2, 1
= Increasing sequence: 3,5,9,17,54
= Decreasing sequence: 34,21,7,5,1

= Increasing subsequence of the first sequence: 2,7,9.

28

Longest Increasing Subsequence Problem

Input A sequence of numbers ag, ap, ..., a,

Goal Find an increasing subsequence aj,, aj,, . . ., aj, of

maximum length

29

Longest Increasing Subsequence Problem

Input A sequence of numbers ag, ap, ..., a,

Goal Find an increasing subsequence aj,, aj,, . . ., aj, of

maximum length

Example
= Sequence: 6, 3,5,2,7,8,1
= Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

= Longest increasing subsequence: 3, 5, 7, 8

29

Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[1..n]) :
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

30

Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[1..n]) :
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time:

30

Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[1..n]) :
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2").
2" subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.

30

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]):

31

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]):
= Case 1: Does not contain A[n] in which case LIS(A[l..n]) =

LIS(A[L..(n —1)])
» Case 2: contains A[n] in which case LIS(A[1..n]) is

31

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]):
= Case 1: Does not contain A[n] in which case LIS(A[l..n]) =

LIS(A[L..(n — 1)])
= Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.

31

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]):
= Case 1: Does not contain A[n] in which case LIS(A[l..n]) =

LIS(A[1..(n — 1)])
= Case 2: contains A[n] in which case LIS(A[1..n]) is not so
clear.
Observation
For second case we want to find a subsequence in A[1l..(n —1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS_smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the

sequence is less than x.
31

Sequence: A[1..5] =5,9,7,8,1

ss =]
x = inf
_“\
ss =] ss = [1]
x = inf K=
2= ”’\
ss =] ss = [8]
x = inf x =38
,/’/’/\ ,/’/’\
ss =] ss = [7] ss=[g] ss = [78]
x = inf x=7 x=28 x =7

32

Recursive Approach

LIS_smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller(A[1..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1..(n — 1)], x)
if (Aln] < x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)], A[n]))
OQutput m

LISCA[1..n]):
return LIS_smaller (A[1..n], c0)

33

Running time analysis

Running time of LIS([1..n])

LIS_smaller(A[1..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1..(n — 1)], x)
if (A[n] < x) then
m = max(m, 1+ LIS_smaller(A[1..(n — 1)], A[n]))
OQutput m

LISCA[L..n]):
return LIS_smaller (A[1..n], co)

34

Running time of LIS([1..n])

Lemma
LIS__smaller runs in O(2") time.

35

Running time of LIS([1..n])

Lemma
LIS__smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

35

Running time of LIS([1..n])

Lemma
LIS__smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

....one can do much better using memorization!

35

	On different techniques for recursive algorithms
	Search trees and backtracking
	Longest Increasing Sub-sequence
	Running time analysis

