

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci nt
number.
Fo = Fn_q1+ Fn_y where Fo = 0,F =1

ECE-374-B: Lecture 12 - Dynamic Programming |

Instructor: Nickvash Kani
October 09, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci nt
number.
Fo = Fn_q1+ Fn_y where Fo = 0,F =1

9,1, 1,2, 3,5 3 3, 21,34, . —

: .C){) h="0
3 w2/ Fo(D= s

% (n- >\

rebr e +Fib (D "

_‘dw'wi'%'w Fb (w-ty « Fibd-2)

Recursion and Memoization

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n)=Fn—1)+F(n—2)and F(0) =0,F(1) = 1.

These numbers have many interesting properties. A journal The Fibonacci
Quarterly!

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n)=Fn—1)+F(n—2)and F(0) =0,F(1) = 1.

These numbers have many interesting properties. A journal The Fibonacci
Quarterly!

+ Binet's formula: F(n) = ‘p”_gg“")n ~ 16@”‘&%0'618)” ~ LOE

o is the golden ratio (14 +/5)/2 ~ 1.618.
c lMpsecF(N+1)/F(N) =@

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n —1) + Fib(n —2)

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n —1) + Fib(n —2)

Running time? Let T(n) be the number of additiogiimib(n). /N
T =~ T(--D<T&-2D+0(1) — w w-t
2 SRR

/\ /(7\ /\4
-@6@00@0&

o(7%

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n —1) + Fib(n —2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n)=T(—1)+T(n—2)+1and T(0) = T(1) =0

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n):
if (n=0)
return 0
else if (n=1)
return 1

else
return Fib(n —1) + Fib(n—=2)

Running time? Let T(n) be the number of additions in Fib(n).

T(nM=Tnh-1)+T(n—2)+1and T(0) =T(1) =0

o(2")
Roughly same as F(n): T(n) = ©(¢").

The number of additions is exponential in n. Can we do better?

Recursion tree for the Recursive Fibonacci

Recursion tree for the Recursive Fibonacci

@@

Recursion tree for the Recursive Fibonacci

‘il

Recursion tree for the Recursive Fibonacci

"B,

© © O

DO

Recursion tree for the Recursive Fibonacci

3 @

L 2 @ 3)

© O 000D
© @

Recursion tree for the Recursive Fibonacci

Recursion tree for the Recursive Fibonacci

® ®

@ @ @ ®

© 2 @ @) @ @) @) @

©o000O0OP 00O OD @ @)
© @ OV ORCVR)R VRNCVREC)

© @

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0] = 0
F1] =1
for i = 2 to n do
Flil = Fli = 1] + F[i — 2]
return F[n]

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
F[1] =1
for i = 2 to n do
Flil = Fli = 1] + F[i — 2]
return F[n]

What Is the running time of the algorithm?

An iterative algorithm for Fibonacci numbers

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
F[1] =1
for i = 2 to n do
Flil = Fli = 1] + F[i — 2]
return F[n]

What is the running time of the algorithm? O(n) additions.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.

- |terative algorithm is storing computed values and building bottom up the
final value.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.

- |terative algorithm is storing computed values and building bottom up the
final value. Memoization.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.

- |terative algorithm is storing computed values and building bottom up the
final value. Memoization.

Dynamic Programming: Finding a recursion that can be effectively/efficiently
memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in
input size. “ cJJ“M" F.6 03 , I et b cledole

06‘\ {&rm&w
F:) , FbTY, . .- Fuls3

Automatic/implicit memoization

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm without explicitly
doing an iterative algorithm?

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm without explicitly
doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n —1) + Fib(n —2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty
Fib(n):

if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val < Fib(n — 1) + Fib(n — 2)
Store (n,val) in D
return val

Use hash-table or a map to remember which values were already computed.

Explicit memoization (not automatic)

- Initialize table/array M of size n: M[i] = —=1fori=0,...,n.
- Resulting code:
Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (M[n] # —1) // M[n]: stored value of Fib(n)
return Mn]
M[n] < Fib(n — 1) + Fib(n — 2)
return M[nj

- Need to know upfront the number of sub-problems to allocate memory.

10

Recursion tree for the memoized Fib...

®
(3) 3 o
O O 2 0O 2 @ ©
ORONONONONOMONE)
@ @

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Recursion tree for the memoized Fib...

1

Automatic (Implicit) Memorization

- Recursive version:

f(x, %2, ..., Xq) :
CODE

- Recursive version with memoization:
g(X1, X2, ..., Xg) =
if f already computed for (xi,x,...,%s) then
return value already computed
NEW_CODE

- NEW_CODE:

- Replaces any “return o” with
- Remember “f(xq,...,Xq) = a”; return a.

12

Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
- analyze problem ahead of time
- Allows for efficient memory allocation and access.

- Implicit (automatic) memoization:

- problem structure or algorithm is not well understood.
- Need to pay overhead of data-structure.

- Functional languages (e.g., LISP) automatically do memoization, usually via
hashing based dictionaries.

13

Explicit/implicit memoization for Fibonacci

Tnit: M[]=—1, i=0,.. . .n. Init: Init dictionary D
Fib(k): Fib(n):
) If (n=0)
If (kR=0)
return 0
return 0 .
. If (n=1)
If (k=1)
return 1 return 1
i (M[F] % 1) if (n is already in D)
return value stored with n in D
return Min} val < Fib(n — 1) + Fib(n — 2)
M[R] < Fib(k — 1) + Fib(k — 2) :
Store (n,val) in D
return M[R]
return val

Explicit memoization Implicit memoization

14

Dynamic programming

Removing the recursion by filling the table in the right order

Fiblter(n):
Fib(n): if (n=0) then
if (n=0) return 0
return 0 if (n=1) then
if (n=1) return 1
return 1 F[0] =0
if (M[n] # —1) F[1] =1
return M[n] for i = 2 to n do
M[n] <= Fib(n — 1) + Fib(n — 2) Fli] = Fli = 1] + F[i — 2]
return M[n] return F[n]
. .
LiiLLLul/z(///Q/
o

e

Shproblians w&\y‘@

(/]

15

Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

Fiblter(n):
Fiblter(n): if (n=0) then

if (n=0) then return 0
return 0 if (n=1) then

if (n=1) then return 1
return 1 prev2 =0

F[0] =0 prevl =1

F[1] =1 for i = 2 to n do

for i = 2 to n do temp = prevl + prev2
Fli] = F[i = 1] + F[i — 2] prev2 = previ

return F[n] prevl = temp

return prev

16

Dynamic programming - quick review

Dynamic Programming is smart recursion

17

Dynamic programming - quick review

Dynamic Programming is smart recursion

+ explicit memorization

17

Dynamic programming - quick review

Dynamic Programming is smart recursion
+ explicit memorization
+ filling the table in right order

+ removing recursion,

17

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x. Fob(~>

+ On input of size n the number of distinct sub-problems that foo(x) generates
is at most A(n) ¢ 06’50(,)

+ foo(x) spends at most B(n) time not counting the time for its recursive calls.

18

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

+ On input of size n the number of distinct sub-problems that foo(x) generates
IS at most A(n)

+ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes
O(1) time.

18

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an inpu@

+ On input of gige n the number of distinct sub-problems that foo(x) generates
is at mo

+ foo(x) spends at mos@ime not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes
O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if
X| = n?

18

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

+ On input of size n the number of distinct sub-problems that foo(x) generates
IS at most A(n)

+ foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes
O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if
x| = n? O(A(n)B(n)).

18

Fibonacci numbers are big -
corrected running time analysis

Back to Fibonacci Numbers

T Is the iterative algorithm a polynomial time algorithm? Does it take O(n) time?

+ input is n and hence input size is ©(logn)
- output is F(n) and output size is ©(n). Why?

- Hence output size is exponential in input size so no polynomial time
algorithm possible!

+ Running time of iterative algorithm: ©(n) additions but number sizes are
O(n) bits long! Hence total time is O(n?), in fact ©(n?). Why?

19

Longest Increasing Sub-sequence
Revisited

Sequences

Definition ‘ .
Sequence: an ordered list a1, ay,...,a,. Length of a sequence i1s number of

elements in the list.

Definition . o .
a,...,Q 1sasub-sequence of as,...,a, F1 << <...<Ilp <N

Definition o ‘ -
A sequence Is Increasing if a; < a, < ... < ap. It 1s non-decreasing If

a1 <a; <...<ap Similarly decreasing and non-increasing.

20

Sequences - Example...

Example
- Sequence: 6,3,5,2,7,8,1
- Subsequence of above sequence: 5,2, 1
- Increasing sequence: 3,5,9,17,54
- Decreasing sequence: 34,21,7,5,1
- Increasing subsequence of the first sequence: 2,7, 8.

- Longest Increasing subsequence of the first sequence: 3,5,7, 8.

21

Longest Increasing Subsequence Problem

Input A sequence of numbers ag, as,...,an_1
Goal Find<rincreasing subsequence a;,,aj,,...,a; of maximum length

ma—m

22

Longest Increasing Subsequence Problem

Input A sequence of numbers ag, aq,...,an_1
Goal Find an increasing subsequence a;,,a;,, ..., a; of maximum length
Example

- Sequence: 6, 3,5, 2,7 8,1
- Increasing subsequences: 6,7 8 and 3,5,7 8 and 2, 7 etc

- Longest increasing subsequence: 3,5, 7, 8

22

Naive Recursion Enumeration - State Tree

55 = 55 = 5 s5=[2) ss=s ss=[7 ss= 55;2% s5=[5,2,7]
"‘[;J ; A= 6] =16 [] H [J [] [] [] [J
53,“ H ss=03.5] [] ss=B2 [2 [2 H [] [Ul [7 I 7 [] [Ul I 27
CEIEEE || TELE || S || 5 7 N I A M || L)) A G G G) .0 L
I] [] [] =63 [] [5 [5 [5] [2 [2 |[ss=632] ss=[52 [22 [.2 [52 [] =67 [7 ||ss=[637]f| ss=[57 |[ss=[6.57] [27 [5,71 [7 [7 [7 [27 [1 [27)||ss=[B527]|ss=[6,3527]

- This is just for [6,3,5,2,7]! (Tikz won't print larger trees)
How many leafs are there for the full [6,3,5,2,7 8, 1] sequence

- What is the running time?

23

Naive Recursion Enumeration - Code

Assume as, a,...,0an IS contained in an array A

algLISNaive (A[1..n]) :
max =0
for each subsequence B of A do
if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2M).
2" subsequences of a sequence of length n and O(n) time to check if a given
sequence Is increasing.

24

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n —1]):

25

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n — 1]):
- Case 1: Does not contain A[n — 1] in which case LIS(A[0..n —1]) =

LIS(A[0..(n —2)])

- Case 2: contains A[n — 1] in which case LIS(A[0..n —1]) is not so clear.

Observation | . '
For second case we want to find a subsequence in A[1..(n — 2)] that Is restricted to

numbers less than Aln — 1]. This suggests that a more general problem is

LIS_smaller(A[0..n — 1], x) which gives the longest increasing subsequence in A
where each number in the sequence is less than x.

25

Example

Sequence: A[0..6] = 6,3,5,2,7,8,1

A=16,3,527,8,1]
ss=1]
x = inf
A=16,3,5,2,7,8] A=16,3,52,7,8]
ss=1] ss=[1]
x = inf x=1
[
A=1[6,3,52,7] A=16,3,52,7] A=16,3,52,7]
ss=1] ss =[8] ss=[1]
X = inf X=8 x=1
A=16,3,52] A=16,3,52] A=16,3,52] A=16,3,52] A=16.3.52]
ss=1] ss=[7] ss=1[g] ss=1[7,8] ss=[1]
X = inf Xx=7 X =8 x=7 x=1
[
A=1[6,3,5] A=16,3,5] A=16,3,5] A=1[6,3,5] A=16,3,5] A=1[6,3,5] A=16,3,5] A=1[6,3,5] A=1[6,3,5]
ss=1] ss=1[2] ss=17] ss=[2,7) ss=[8] ss=[2,8] ss=17.8] ss=1[2,7,8] ss=[1]
X = inf X=2 x=7 x=2 x=38 x=2 x=7 Xx=2 x=1
[[[[[
A=16,3] A=1[6,3] A=1[6,3] A=1[6,3] A=1[6,3] A=16,3] A=1[6,3] A=1[6,3] A=16,3] A=1[6,3] A=16,3] A=16,3] A=16,3]
ss=]] ss = [5] ss=1[2] ss=1[7] ss=[57] ss=[2,7] ss =[8] ss=1[5,8] ss=[2.8] ss=[7,8] ss=[5,7,8] ss =[2,7,8] ss=[1]
X = inf X=5 X=2 x=17 xX=5 xX=2 x=38 X=5 xX=2 x=7 x=5 xX=2 x=1
[[[[[
A= 6] a=[6]|[A=16]|| A=16] A=[6] A= 6] A=[6] || A=1l6] A=6] A=6] A= 6] A=6] A=6] A=1[6] A=6] A=[6 A= 6] A=16] A=[6] A=16] A=16]
ss=1] ss=1[3]||ss=[5]||ss=[3,5]| |ss=1[2] ss = ss=3,7]||ss =[5.7]||ss = [3.5.7] | | ss = [2.7] ss=[8] ss=[3,8]| [ss=1[5.8]| |ss=[3.5,8] || ss = [2.8] ss=[7,8] ss =[3.7,8] || ss = [5,7.8] || ss = [3.5,7.8] || ss = [2,7, 8] ss=[1]
X = inf X=3 X=5 X=3 X=2 7 X =3 X =5 Xx=3 x=2 X=8 X=3 X=5 Xx=3 X=2 X=17 x=3 X=5 X=3 x=2 x=1
[[[[[[[[[[[[[[[[
A=D[A=D [A=D [A=D]|f A=D A=l A= [A=0 A= A=l A= A=l A=) A=1D A=l A=l A=l A=l A=l A= A=l A=l A=l A= A=
ss=[l||ss=1[6]||ss=Bl||ss=[5]||ss=[3.5]| [ss=1[2| |ss=[|ss=16.7]|[ss=1[3.7]||ss = [57]||ss = [3.5.7]| | ss = [2.7] | | s5 = [8] || 55 = [6.8] |[55 = [3.8] || 55 = [3.5.8] || 55 = [3.5,8] | | 55 = [2.8] | | 55 = [7. 8] || 55 = [6.7,8] || 55 = [3,7.8] || 55 = [5.7. 8] || 55 = [3,5.7. 8] || 55 = [2.7, 8] ss=[1]
x=inf]| x=6 X=3 x=5 X=3 X=2 x=7 X=6 X=3 X=5 X=3 xX=2 Xx=38 X=6 X=3 X=3 x=3 X=2 x=7 X=6 x=3 x=5 X=3 X=2 x=1

26

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS_smaller(A[1..i],x) :
if i=0 then return 0
m = LIS_smaller(A[1..; — 1], x)
if All] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

27

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) F('(ﬂ
return LIS_smaller(A[1..n], o) C.,.P“} '
NE

+ How many distinct sub-problems will LIS_smaller(A[1..n], o%j‘g',ene'ra.te?

Af‘ e bt~ (-‘
A[l--fu-Z]

4G -]

. 28

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

- How many distinct sub-problems will LIS_smaller(A[1..n], oc) generate}

28

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

- How many distinct sub-problems will LIS_smaller(A[1..n], o0) generate? O(n?)
- What is the running time if we memorize recursion?

28

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))

Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

- How many distinct sub-problems will LIS_smaller(A[1_a]. co) generate? O(n?)

- What is the running time if we memorize recursio Ince each call
takes O(1) time to assemble the answers from to recursive calls and no other

computation.
28

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

- How many distinct sub-problems will LIS_smaller(A[1..n], o0) generate? O(n?)
- What is the running time if we memorize recursion? O(n?) since each call
takes O(1) time to assemble the answers from to recursive calls and no other

computation. O(fw?)

L ?
+ How much space for memorization? () é“))8

Recursive Approach

LIS_smaller(A[1..i],x) :
if i=0 then return o
m = LIS_smaller(A[1..I — 1], x)
if Ali] <x then
m = max(m, 1+ LIS_smaller(A[1..i — 1], A[]]))
Output m

LISCA[1..n]) :
return LIS_smaller(A[1..n], oo)

- How many distinct sub-problems will LIS_smaller(A[1..n], o0) generate? O(n?)
- What is the running time if we memorize recursion? O(n?) since each call
takes O(1) time to assemble the answers from to recursive calls and no other

computation.

- How much space for memorization? O(n?) s

Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n?) we name them to help us
understand _tbgstructure better. For notational ease we add oo at end of array (in
positi*ﬂl'—ﬁj)f\ = 3= A c]
v a1 -
@,]):’l!’ngth of longest increasing sequence in A[1..]] among numbers less than
Alj] (defined only for i < j)
AL AL, AL 23, .. .

29

Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n?) we name them to help us
understand the structure better. For notational ease we add oo at end of array (in
position n + 1)

LIS(i,)): length of longest increasing sequence in A[1..i] among numbers less than
Alj] (defined only for i < j)

Base case: L/S(0,)) =0for1<j<n+1

Recursive relation: %
- LIS(i,)) = LIS(i —1,)) if A[i] > A[J] x
= LIS(i,)) = max{LIS(i — 1,)), 1+ LIS — 1, 1)} If A[i] < A[J]

Output: LIS(n,n +1).
29

How to order bottom up computation?

Al1l=6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |]j
[] 0
[6] 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(i=1,)) Al > A[J]
=6,3,5,2,7,8,1] ’ LIS(i = 1,)) . |
max Alll < A[J]
14 LIS(i — 1,1) .

How to order bottom up computation?

Alll=6 A[2]=3 A[3]=5 Al4]l=2 A[5]=7 Al6]=8 A[7]=1 inf
1 2 3 4 5 6 7 8
[] 00 0 0 0 0 0 0 0
[6] 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5.2,7,8,1] 7
Represents sub-array |
0
Sequence: A[1...7] 1S(7.j) = LIS(h—=1,))
- [6,3,5,2,7,8,1] ’ LIS(i =1,)
max

14+ LIS(i — 1, 1)

Represents limiter
J

=20
All] = Al

Alll <Al
30

How to order bottom up computation?

All1l =6 A[2]=3 A[3]=5 Al4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |j
[] 040 0 0 0 0 0 0 0
6] 1 0 0 1 1 0 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
(6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents Su b—array |
(0 i=0
Sequence: A[1...7] S(]) = 4 LIS(i = 1,)) Al > A[J]
Y
=16,3,5,2,7,8,1] LIS(i —1,)) _ .
max Alil < A[j]
T+ LIS(I—1,1)

\ 30

How to order bottom up computation?

Alll=6 A[2]=3 A[3]=5 Al4]=2 A[5]=7 A[6]=8 A[7]=1 inf
1 2 3 4 5 6 7 8
[00 0 0 0 0 0 0 0
6] 1 04— 0 0 1 1 0 1
[6] 2 ?I_\ 0 1 1 0 1
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i
0
Sequence: A[1...7] S(]) = ¢ LIS(T=1,))
)
- [6737572777871] L/S(I—1,])
max
T4+ LIS(I—1,1)

\

Represents limiter
J

=0
Ali] = A[]

Alll <A
30

How to order bottom up computation?

Al1l =6 A[2]=3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |j
] 0]o0 0 0 0 0 0 0 0
(6] 1 0 0 0 1 1 0 1
[6,3] 2 1N1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents Su b—array |
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(F=1,)) Alill > A[J]
Y
=16,3,5,2,7,8,1] LIS(i = 1,)) _ ,
max Alil < A[j]
T+ LIS(1—1,1)

\ 30

How to order bottom up computation?

Al1l=6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |]
[] 0]0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array |
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(i=1,)) Al > A[J]
=6,3,5,2,7,8,1] ’ LIS(i = 1,)) . |
max Alll < A[J]
14 LIS(i — 1,1) .

How to order bottom up computation?

Al1l=6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |]
[] 0]0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array |
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(i=1,)) Al > A[J]
=6,3,5,2,7,8,1] ’ LIS(i = 1,)) . |
max Alll < A[J]
1+ LIS(i —1,1) .

How to order bottom up computation?

Al1l=6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |
[0|0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7
Represents sub-array |
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(i=1,)) Al > A[J]
=6,3,5,2,7,8,1] ’ LIS(i = 1,)) . |
max Alll < A[J]
14 LIS(i — 1,1) .

How to order bottom up computation?

A1l =6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 Al6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |j
[010 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 |
Represents sub-array |
(0 i=0
Sequence: A[1...7] S(L]) = 4 LIS(h=1,)) Al > A[J]
=6,3,5,2,7,8,1] ’ LIS(i —1,)) . |
max Alll < A[J]
14 LIS(i — 1,1) .

Iterative algorithm

The dynamic program for longest increasing subsequence

LIS-Iterative(A[1..n]):
Aln+1] = o0
int LIS[0..n —1,0..n]
for j=0...n) if A[i] < A[j] then LIS[0][]] =1

for i=1...n—1 do
for j=i...n—1 do
if CA[l] > A[])
LIS[i,j] = LIS[i — 1,]]
else
LIS[i,j] = max(LIS[i — 1,j],1+ LIS[i — 1,1])

Return LIS[n,n +1]

Running time: O(n?)
Space: O(n?) 31

Iterative algorithm

The dynamic program for longest increasing subsequence

LIS-Iterative(A[1..n]):
Aln+1] = o0
int LIS[0..n —1,0..n]
for j=0...n) if A[i] < A[j] then LIS[0][]] =1

for i=1...n—1 do
for j=i...n—1 do
if CA[l] > A[])
LIS[i,j] = LIS[i — 1,]]
else
LIS[i,j] = max(LIS[i — 1,j],1+ LIS[i — 1,1])

Return LIS[n,n +1]

Running time: O(n?)
Space: O(n?) Can be done in linear space. How? 31

Finding the sub-sequence

Al1] =6 A[2] =3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |j
[] 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 4
Represents sub-array |
Sequence: A[1...7]) ,
=1[6,3,5,2,7,8,1] 0 ’
. LIS(I=1,)) Alll = AlJ]
We know the LIS length LIS(1,)) = 4 . .
LIS(i—=1,)) . .
(4) but how do we find max All] < A[J]
1o T4 LIS(i —1,1) 32
the LIS itself~ \

Finding the sub-sequence

Al1] =6 A[2] =3 A[3]=5 Al4]=2 A[5]=7 A[6]=8 A[7]=1 inf | Represents limiter
1 2 3 4 5 6 7 8 |
] 00 0 0 0 0 0 0 0
[6] 1 o\o 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
6,3,5] 3 *g 2 0 2
[6,3,5,2] 4 2 2 0 2
191y (\
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 *ﬁ
[6,3,5,2,7,8,1] 7 4
Represents sub-array i
Sequence: A[1...7] 0 _{
—16,3,5,2,7,8,1] =
N NE(E) Alll = AJj]
We know the LIS length LIS(1,)) = S(i)
(4) but how do we find max) -
the LIS itself? ' T+ LIS =1, t"

Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS?

Yes! Using a different recursion and optimizing one can obtain an O(nlogn) time

and O(n) space algorithm. O(nlogn) time is not obvious. Depends on improving
time by using data structures on top of dynamic programming.

33

How to come up with dynamic
programming algorithm: summary

Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct
sub-problems is small; polynomial in the original problem size.

- Estimate the number of sub-problems, the time to evaluate each sub-problem and
the space needed to store the value.

- Come up with an explicit memorization algorithm for the problem.

- ..need to find the right way or order the sub-problems evaluation. This leads to an a
dynamic programming algorithm.

- Profit! ﬁ

PHASET PHASE2 PHASE3

Write fast 7 Profit

algorithms @)

34

