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Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the Fibonnacci nth
number.

Fn = Fn�1 + Fn�2 where F0 = 0, F1 = 1
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Recursion and Memoization



Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n� 1) + F(n� 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting properties. A journal The Fibonacci
Quarterly1!

• Binet’s formula: F(n) = 'n�(1�')np
5 ⇡ 1.618n�(�0.618)np

5 ⇡ 1.618np
5

' is the golden ratio (1+
p
5)/2 ' 1.618.

• limn!1F(n+ 1)/F(n) = '
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n� 1) + Fib(n� 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n� 1) + T(n� 2) + 1 and T(0) = T(1) = 0
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return 1

else
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n� 1) + Fib(n� 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n) = T(n� 1) + T(n� 2) + 1 and T(0) = T(1) = 0

Roughly same as F(n): T(n) = ⇥('n).

The number of additions is exponential in n. Can we do better?
4
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Recursion tree for the Recursive Fibonacci
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Recursion tree for the Recursive Fibonacci
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F[0] = 0
F[1] = 1
for i = 2 to n do

F[i] = F[i� 1] + F[i� 2]
return F[n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

• Recursive algorithm is computing the same numbers again and again.
• Iterative algorithm is storing computed values and building bottom up the
final value.

Memoization.

Dynamic Programming: Finding a recursion that can be effectively/efficiently
memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in
input size.
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Automatic/implicit memoization



Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm without explicitly
doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)
else

return Fib(n� 1) + Fib(n� 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (n is already in D)
return value stored with n in D

val( Fib(n� 1) + Fib(n� 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already computed.
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Explicit memoization (not automatic)

• Initialize table/array M of size n: M[i] = �1 for i = 0, . . . ,n.
• Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= �1) // M[n]: stored value of Fib(n)
return M[n]

M[n] ( Fib(n� 1) + Fib(n� 2)
return M[n]

• Need to know upfront the number of sub-problems to allocate memory.
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Recursion tree for the memoized Fib...
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Automatic (Implicit) Memorization

• Recursive version:
f (x1, x2, . . . , xd):

CODE

• Recursive version with memoization:
g(x1, x2, . . . , xd):

if f already computed for (x1, x2, . . . , xd) then
return value already computed

NEW_CODE

• NEW_CODE:
• Replaces any “return ↵” with
• Remember “f (x1, . . . , xd) = ↵”; return ↵.

12



Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm) preferred:
• analyze problem ahead of time
• Allows for efficient memory allocation and access.

• Implicit (automatic) memoization:
• problem structure or algorithm is not well understood.
• Need to pay overhead of data-structure.
• Functional languages (e.g., LISP) automatically do memoization, usually via
hashing based dictionaries.
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Explicit/implicit memoization for Fibonacci

Init: M[i] = �1, i = 0, . . . ,n.

Fib(k):
if (k = 0)

return 0
if (k = 1)

return 1
if (M[k] 6= �1)

return M[n]
M[k] ( Fib(k� 1) + Fib(k� 2)
return M[k]

Explicit memoization

Init: Init dictionary D

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (n is already in D)

return value stored with n in D
val( Fib(n� 1) + Fib(n� 2)

Store (n, val) in D
return val

Implicit memoization

14



Dynamic programming



Removing the recursion by filling the table in the right order

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (M[n] 6= �1)

return M[n]
M[n] ( Fib(n� 1) + Fib(n� 2)
return M[n]

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F[0] = 0
F[1] = 1
for i = 2 to n do

F[i] = F[i� 1] + F[i� 2]
return F[n]

15
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Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F[0] = 0
F[1] = 1
for i = 2 to n do

F[i] = F[i� 1] + F[i� 2]
return F[n]

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1+ prev2
prev2 = prev1
prev1 = temp

return prev1
16



Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memorization

+ filling the table in right order

+ removing recursion.
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Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x.

• On input of size n the number of distinct sub-problems that foo(x) generates
is at most A(n)

• foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes
O(1) time.

Q: What is an upper bound on the running time of memorized version of foo(x) if
|x| = n? O(A(n)B(n)).

18
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Fibonacci numbers are big –
corrected running time analysis



Back to Fibonacci Numbers

T Is the iterative algorithm a polynomial time algorithm? Does it take O(n) time?

• input is n and hence input size is ⇥(log n)
• output is F(n) and output size is ⇥(n). Why?
• Hence output size is exponential in input size so no polynomial time
algorithm possible!

• Running time of iterative algorithm: ⇥(n) additions but number sizes are
O(n) bits long! Hence total time is O(n2), in fact ⇥(n2). Why?

19



Longest Increasing Sub-sequence
Revisited



Sequences

Definition
Sequence: an ordered list a1,a2, . . . ,an. Length of a sequence is number of
elements in the list.

Definition
ai1 , . . . , aik is a sub-sequence of a1, . . . ,an if 1  i1 < i2 < . . . < ik  n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1  a2  . . .  an. Similarly decreasing and non-increasing.

20



Sequences - Example...

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Subsequence of above sequence: 5, 2, 1
• Increasing sequence: 3, 5, 9, 17, 54
• Decreasing sequence: 34, 21, 7, 5, 1
• Increasing subsequence of the first sequence: 2, 7, 8.
• Longest Increasing subsequence of the first sequence: 3, 5, 7, 8.

21



Longest Increasing Subsequence Problem

Input A sequence of numbers a0,a1, . . . ,an�1
Goal Find an increasing subsequence ai0 ,ai1 , . . . , aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8

22
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Longest Increasing Subsequence Problem

Input A sequence of numbers a0,a1, . . . ,an�1
Goal Find an increasing subsequence ai0 ,ai1 , . . . , aik of maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8
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Naive Recursion Enumeration - State Tree
A = [6, 3, 5, 2, 7]

ss = []

A = [6, 3, 5, 2]
ss = [7]

A = [6, 3, 5]
ss = [2, 7]

A = [6, 3]
ss = [5, 2, 7]

A = [6]
ss = [3, 5, 2, 7]

A = []

ss = [6, 3, 5, 2, 7]
A = []

ss = [3, 5, 2, 7]

A = [6]
ss = [5, 2, 7]

A = []

ss = [6, 5, 2, 7]
A = []

ss = [5, 2, 7]

A = [6, 3]
ss = [2, 7]

A = [6]
ss = [3, 2, 7]

A = []

ss = [6, 3, 2, 7]
A = []

ss = [3, 2, 7]

A = [6]
ss = [2, 7]

A = []

ss = [6, 2, 7]
A = []

ss = [2, 7]

A = [6, 3, 5]
ss = [7]

A = [6, 3]
ss = [5, 7]

A = [6]
ss = [3, 5, 7]

A = []

ss = [6, 3, 5, 7]
A = []

ss = [3, 5, 7]

A = [6]
ss = [5, 7]

A = []

ss = [6, 5, 7]
A = []

ss = [5, 7]

A = [6, 3]
ss = [7]

A = [6]
ss = [3, 7]

A = []

ss = [6, 3, 7]
A = []

ss = [3, 7]

A = [6]
ss = [7]

A = []

ss = [6, 7]
A = []

ss = [7]

A = [6, 3, 5, 2]
ss = []

A = [6, 3, 5]
ss = [2]

A = [6, 3]
ss = [5, 2]

A = [6]
ss = [3, 5, 2]

A = []

ss = [6, 3, 5, 2]
A = []

ss = [3, 5, 2]

A = [6]
ss = [5, 2]

A = []

ss = [6, 5, 2]
A = []

ss = [5, 2]

A = [6, 3]
ss = [2]

A = [6]
ss = [3, 2]

A = []

ss = [6, 3, 2]
A = []

ss = [3, 2]

A = [6]
ss = [2]

A = []

ss = [6, 2]
A = []

ss = [2]

A = [6, 3, 5]
ss = []

A = [6, 3]
ss = [5]

A = [6]
ss = [3, 5]

A = []

ss = [6, 3, 5]
A = []

ss = [3, 5]

A = [6]
ss = [5]

A = []

ss = [6, 5]
A = []

ss = [5]

A = [6, 3]
ss = []

A = [6]
ss = [3]

A = []

ss = [6, 3]
A = []

ss = [3]

A = [6]
ss = []

A = []

ss = [6]
A = []

ss = []

• This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
• How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
• What is the running time?
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Naive Recursion Enumeration - Code

Assume a1,a2, . . . ,an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given
sequence is increasing.
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Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n� 1]):

• Case 1: Does not contain A[n� 1] in which case LIS(A[0..n� 1]) =

LIS(A[0..(n� 1)])
• Case 2: contains A[n� 1] in which case LIS(A[0..n� 1]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n� 2)] that is restricted to
numbers less than A[n� 1]. This suggests that a more general problem is
LIS_smaller(A[0..n� 1], x) which gives the longest increasing subsequence in A
where each number in the sequence is less than x.
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Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1
A = [6, 3, 5, 2, 7, 8, 1]

ss = []

x = inf

A = [6, 3, 5, 2, 7, 8]
ss = [1]
x = 1

A = [6, 3, 5, 2, 7]
ss = [1]
x = 1

A = [6, 3, 5, 2]
ss = [1]
x = 1

A = [6, 3, 5]
ss = [1]
x = 1

A = [6, 3]
ss = [1]
x = 1

A = [6]
ss = [1]
x = 1

A = []

ss = [1]
x = 1

A = [6, 3, 5, 2, 7, 8]
ss = []

x = inf

A = [6, 3, 5, 2, 7]
ss = [8]
x = 8

A = [6, 3, 5, 2]
ss = [7, 8]
x = 7

A = [6, 3, 5]
ss = [2, 7, 8]

x = 2

A = [6, 3]
ss = [2, 7, 8]

x = 2

A = [6]
ss = [2, 7, 8]

x = 2

A = []

ss = [2, 7, 8]
x = 2

A = [6, 3, 5]
ss = [7, 8]
x = 7

A = [6, 3]
ss = [5, 7, 8]

x = 5

A = [6]
ss = [3, 5, 7, 8]

x = 3

A = []

ss = [3, 5, 7, 8]
x = 3

A = [6]
ss = [5, 7, 8]

x = 5

A = []

ss = [5, 7, 8]
x = 5

A = [6, 3]
ss = [7, 8]
x = 7

A = [6]
ss = [3, 7, 8]

x = 3

A = []

ss = [3, 7, 8]
x = 3

A = [6]
ss = [7, 8]
x = 7

A = []

ss = [6, 7, 8]
x = 6

A = []

ss = [7, 8]
x = 7

A = [6, 3, 5, 2]
ss = [8]
x = 8

A = [6, 3, 5]
ss = [2, 8]
x = 2

A = [6, 3]
ss = [2, 8]
x = 2

A = [6]
ss = [2, 8]
x = 2

A = []

ss = [2, 8]
x = 2

A = [6, 3, 5]
ss = [8]
x = 8

A = [6, 3]
ss = [5, 8]
x = 5

A = [6]
ss = [3, 5, 8]

x = 3

A = []

ss = [3, 5, 8]
x = 3

A = [6]
ss = [5, 8]
x = 5

A = []

ss = [3, 5, 8]
x = 3

A = [6, 3]
ss = [8]
x = 8

A = [6]
ss = [3, 8]
x = 3

A = []

ss = [3, 8]
x = 3

A = [6]
ss = [8]
x = 8

A = []

ss = [6, 8]
x = 6

A = []

ss = [8]
x = 8

A = [6, 3, 5, 2, 7]
ss = []

x = inf

A = [6, 3, 5, 2]
ss = [7]
x = 7

A = [6, 3, 5]
ss = [2, 7]
x = 2

A = [6, 3]
ss = [2, 7]
x = 2

A = [6]
ss = [2, 7]
x = 2

A = []

ss = [2, 7]
x = 2

A = [6, 3, 5]
ss = [7]
x = 7

A = [6, 3]
ss = [5, 7]
x = 5

A = [6]
ss = [3, 5, 7]

x = 3

A = []

ss = [3, 5, 7]
x = 3

A = [6]
ss = [5, 7]
x = 5

A = []

ss = [5, 7]
x = 5

A = [6, 3]
ss = [7]
x = 7

A = [6]
ss = [3, 7]
x = 3

A = []

ss = [3, 7]
x = 3

A = [6]
ss = [7]
x = 7

A = []

ss = [6, 7]
x = 6

A = []

ss = [7]
x = 7

A = [6, 3, 5, 2]
ss = []

x = inf

A = [6, 3, 5]
ss = [2]
x = 2

A = [6, 3]
ss = [2]
x = 2

A = [6]
ss = [2]
x = 2

A = []

ss = [2]
x = 2

A = [6, 3, 5]
ss = []

x = inf

A = [6, 3]
ss = [5]
x = 5

A = [6]
ss = [3, 5]
x = 3

A = []

ss = [3, 5]
x = 3

A = [6]
ss = [5]
x = 5

A = []

ss = [5]
x = 5

A = [6, 3]
ss = []

x = inf

A = [6]
ss = [3]
x = 3

A = []

ss = [3]
x = 3

A = [6]
ss = []

x = inf

A = []

ss = [6]
x = 6

A = []

ss = []

x = inf
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i� 1], x)
if A[i] < x then

m = max(m, 1+ LIS_smaller(A[1..i� 1], A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)
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Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i� 1], x)
if A[i] < x then

m = max(m, 1+ LIS_smaller(A[1..i� 1], A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will LIS_smaller(A[1..n],1) generate?

O(n2)
• What is the running time if we memorize recursion? O(n2) since each call
takes O(1) time to assemble the answers from to recursive calls and no other
computation.

• How much space for memorization? O(n2)
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Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i� 1], x)
if A[i] < x then

m = max(m, 1+ LIS_smaller(A[1..i� 1], A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will LIS_smaller(A[1..n],1) generate? O(n2)
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• How much space for memorization? O(n2)
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Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n2) we name them to help us
understand the structure better. For notational ease we add1 at end of array (in
position n+ 1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than
A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1  j  n+ 1
Recursive relation:
• LIS(i, j) = LIS(i� 1, j) if A[i] � A[j]
• LIS(i, j) = max{LIS(i� 1, j), 1+ LIS(i� 1, i)} if A[i] < A[j]

Output: LIS(n,n+ 1).
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Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n2) we name them to help us
understand the structure better. For notational ease we add1 at end of array (in
position n+ 1)

LIS(i, j): length of longest increasing sequence in A[1..i] among numbers less than
A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1  j  n+ 1
Recursive relation:
• LIS(i, j) = LIS(i� 1, j) if A[i] � A[j]
• LIS(i, j) = max{LIS(i� 1, j), 1+ LIS(i� 1, i)} if A[i] < A[j]

Output: LIS(n,n+ 1).
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How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0
[6] 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence: A[1 . . . 7]
= [6, 3, 5, 2, 7, 8, 1]

LIS(i, j) =

8
>>>>><

>>>>>:

0 i = 0
LIS(i� 1, j) A[i] � A[j]

max

8
<

:
LIS(i� 1, j)

1+ LIS(i� 1, i)
A[i] < A[j]
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Iterative algorithm

The dynamic program for longest increasing subsequence
LIS-Iterative(A[1..n]):

A[n+ 1] = 1
int LIS[0..n� 1, 0..n]
for j = 0 . . .n) if A[i]  A[j] then LIS[0][j] = 1

for i = 1 . . .n� 1 do
for j = i . . .n� 1 do

if (A[i] � A[j])
LIS[i, j] = LIS[i� 1, j]

else
LIS[i, j] = max(LIS[i� 1, j], 1+ LIS[i� 1, i])

Return LIS[n,n+ 1]

Running time: O(n2)
Space: O(n2)

Can be done in linear space. How?
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Finding the sub-sequence

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 4
Represents sub-array i

Sequence: A[1 . . . 7]
= [6, 3, 5, 2, 7, 8, 1]

We know the LIS length
(4) but how do we find

the LIS itself?

LIS(i, j) =

8
>>>>><

>>>>>:

0 i = 0
LIS(i� 1, j) A[i] � A[j]

max

8
<

:
LIS(i� 1, j)

1+ LIS(i� 1, i)
A[i] < A[j]
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max

8
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Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS?

Yes! Using a different recursion and optimizing one can obtain an O(n log n) time

and O(n) space algorithm. O(n log n) time is not obvious. Depends on improving
time by using data structures on top of dynamic programming.
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How to come up with dynamic
programming algorithm: summary



Dynamic Programming

• Find a “smart” recursion for the problem in which the number of distinct
sub-problems is small; polynomial in the original problem size.

• Estimate the number of sub-problems, the time to evaluate each sub-problem and
the space needed to store the value.

• Come up with an explicit memorization algorithm for the problem.
• ...need to find the right way or order the sub-problems evaluation. This leads to an a
dynamic programming algorithm.

• Profit!
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