Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work?
(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

ECE-374-B: Lecture 12 - Backtracking and memorization

Instructor: Nickvash Kani
February 28, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work?
(Hint) Write a recurrence to analyze the algorithm's running time
if we choose a list of size k.

Review linear time selection

Given an array $A=[0, \ldots, n-1]$ of n numbers and an index i, where $0 \leq i \leq n-1$, find the $i^{t h}$ smallest element of A.

For instance, assume $n=20$ and $i=10$.

4	3	15	7	1	17	9	10	14	13	8	18	11	2	12	16	6	19	5	20

The smallest element of rank 10 would be 11 . But how do we figure that out

Do median of medians.....
Quick Select
$+M_{0} M$
Call Median-of-Medians(A, 10)

Review linear time selection

Given an array $A=[0, \ldots, n-1]$ of n numbers and an index i, where $0 \leq i \leq n-1$, find the $i^{t h}$ smallest element of A.

For instance, assume $n=20$ and $i=10$.

4	3	15	7	1	17	9	10	14	13	8	18	11	2	12	16	6	19	5	20

The smallest element of rank 10 would be 11 . But how do we figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)
First thing we need to do is find the pivot!

Review linear time selection

Given an array $A=[0, \ldots, n-1]$ of n numbers and an index i, where $0 \leq i \leq n-1$, find the $i^{t h}$ smallest element of A.

For instance, assume $n=20$ and $i=10$.

4	3	15	7	1	17	9	10	14	13	8	18	11	2	12	16	6	19	5	20

The smallest element of rank 10 would be 11 . But how do we figure that out

Do median of medians.....
Call Median-of-Medians(A, 10)
First thing we need to do is find the pivot!

Review linear time selection

First we reorganize:

4	17	8	16
3	9	18	6
15	10	11	19
7	14	2	5
1	13	12	20

Review linear time selection

First we reorganize:

4	17	8	16
3	9	18	6
15	10	11	19
7	14	2	5
1	13	12	20

Then we sort each column:

1	9	2	5
3	10	8	6
4	13	11	16
7	14	12	19
15	17	18	20

$n / 5 \cdot c$

Review linear time selection

First we reorganize:

4	17	8	16
3	9	18	6
15	10	11	19
7	14	2	5
1	13	12	20

Then we sort each column:

1	9	2	5
3	10	8	6
4	13	11	16
7	14	12	19
15	17	18	20

Still need the pivot. Find median of medians

Review linear time selection

1	9	2	5
3	10	8	6
4	13	11	16
7	14	12	19
15	17	18	20

Review linear time selection

1	9	2	5
3	10	8	6
4	13	11	16
7	14	12	19
15	17	18	20

- Call Median-of-

Medians([4,13,11,16], floor(len/2) $=2$)

- Can sort this in linear time.
- Get back 13.
- 13 is our new pivot!

Review linear time selection

Back to our original array! Use the pivot $(=13)$ to break it up into two.

4	3	15	7	1	17	9	10	14	13	8	18	11	2	12	16	6	19	5	20

4	3	7	1	9	10	8	11	2	12	6	5

15	17	14	18	16	19	20

We know the following:

- $\operatorname{len}\left(A_{\text {Lower }}\right)=12$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=7$
- Want $k=10$

Review linear time selection

Back to our original array! Use the pivot $(=13)$ to break it up into two.

4	3	15	7	1	17	9	10	14	13	8	18	11	2	12	16	6	19	5	20

| 4 | 3 | 7 | 1 | 9 | 10 | 8 | 11 | 2 | 12 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 13 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 17 | 14 | 18 | 16 | 19 | 20 |

We know the following:

- $\operatorname{len}\left(A_{\text {Lower }}\right)=12$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=7$
- Want $k=10$

Call Median-of-Medians $\left(A_{\text {Lower }}, 10\right)$

Review linear time selection

Then we do this again:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\hline
\end{array}
$$

Review linear time selection

Then we do this again:

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l}
\hline 4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\hline
\end{array}
$$

First we reorganize:

4	10	
3	8	6
7	11	5
1	2	
9	12	

Review linear time selection

Then we do this again:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 7 & 1 & 9 & 10 & 8 & 11 & 2 & 12 & 6 & 5 \\
\hline
\end{array}
$$

First we reorganize:

4	10	
3	8	6
7	11	5
1	2	
9	12	

Then we sort each column:

1	2	
3	8	5
4	10	6
7	11	
9	12	

Review linear time selection

1	2	
3	8	5
4	10	6
7	11	
9	12	

Review linear time selection

1	2	
3	8	5
4	10	6
7	11	
9	12	

- Call Median-of-Medians([4,10,6], floor(n/2) = (19)
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!

Review linear time selection

Back to our original array! Use the pivot $(=6)$ to break it up into two (well three).

4	3	7	1	9	10	8	11	2	12	6	5

| 4 | 3 | 1 | 2 | 5 |
| :--- | :--- | :--- | :--- | :--- |\quad| 7 | 9 | 10 | 8 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

We know the following:

- $\operatorname{len}\left(A_{\text {Lower }}\right)=5$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=6$

here
- Want $k=10$ (pivot is of rank 6)

Review linear time selection

Back to our original array! Use the pivot $(=6)$ to break it up into two (well three).

4	3	7	1	9	10	8	11	2	12	6	5

| 4 | 3 | 1 | 2 | 5 |
| :--- | :--- | :--- | :--- | :--- |\quad| 7 | 9 | 10 | 8 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

We know the following:

- $\operatorname{len}\left(A_{\text {Lower }}\right)=5$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=6$
- Want $k=10$ (pivot is of rank 6)

Call Median-of-Medians $\left(A_{\text {Upper }}, 10-6=4\right)$

Review linear time selection

Then we do this again:

7	9	10	8	11	12

Review linear time selection

Then we do this again:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 7 & 9 & 10 & 8 & 11 & 12 \\
\hline
\end{array}
$$

First we reorganize:

7	
9	
10	12
8	
11	

Review linear time selection

Then we do this again:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 7 & 9 & 10 & 8 & 11 & 12 \\
\hline
\end{array}
$$

First we reorganize:

7	
9	
10	12
8	
11	

Then we sort each column:

Review linear time selection

7	
8	
9	12
10	
11	

Review linear time selection

7	
8	
9	12
10	
11	

- Call Median-of-Medians([9,12], floor(len/2) = 1)
- Can sort this in linear time.
- Get back 12.
- 12 is our new pivot!

Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into two (well three).

7	9	10	8	11	12

7	9	10	8	11

We know the following:

- len $\left(A_{\text {Lower }}\right)=5$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=0$
- Want $k=4$ (pivot is of rank 5)

Review linear time selection

Back to our original array! Use the pivot $(=6)$ to break it up into two (well three).

7	9	10	8	11	12

| 7 | 9 | 10 | 8 | 11 |
| :--- | :--- | :--- | :--- | :--- |\quad| 12 |
| :--- |

We know the following:

- $\operatorname{len}\left(A_{\text {Lower }}\right)=5$
- $\operatorname{len}\left(A_{\text {Upper }}\right)=0$
- Want $k=4$ (pivot is of rank 5)

Call Median-of-Medians($A_{\text {Lower }}, 4$)

Review linear time selection

Final Step!

Can sort in linear time!

Return Sorted $(A[4])=11$

Median of medians time analysis

Median of medians time analysis

```
Median-of-medians(A, i):
    sublists = [A[j:j+5] for j \inrange(0, len(A), 5)]
    medians = [sorted (sublist) [len (sublist)/2] for sublist Esublists]
    // Base Case
    if len (A) \leq 5 return sorted (a) [i]
    // Find median of medians
    if len (medians) \leq 5
        pivot = sorted (medians) [len (medians)/2]
    else
            pivot = Median-of-medians (medians, len/2)
    // Partitioning Step
    low = [j for j \inA if j < pivot]
    high = [j for j \inA if j > pivot]
    k = len (low)
    if i < k
        return Median-of-medians (low, i)
    elseif i > k
        return Median-of-medians (low, i-k-1)
    else
    return pivot
        T(n)=T(\frac{1}{5}n)+T(\frac{7}{10}n)+cn=O(n),
    14
```

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work? ' codes for (subarray) $=5$

$$
T(u)=T\left(1 / 5^{n}\right)+T\left(\geqslant 10^{u}\right)+c n
$$

Find madiane of medium

for. | subarray $\mid=3$

$$
\mid \text { subarrayl }=3
$$

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work?

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 5? Will lists of size 3 work?

$$
T(n)=T\left(\frac{1}{3} n\right)+T\left(\frac{4}{6} n\right)+c n
$$

What about $k=7$?

Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5 ? Will lists of size 3 work?

$$
T(n)=T\left(\frac{1}{3} n\right)+T\left(\frac{4}{6} n\right)+c n
$$

What about $k=7$?

$$
T(n)=T\left(\frac{1}{7} n\right)+T\left(\frac{10}{14} n\right)+c n
$$

On different techniques for recursive algorithms

Recursion

Reduction: Reduce one problem to another

Recursion

A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- Problem instance of size n is reduced to one or more instances of size $n-1$ or less.
- For termination, problem instances of small size are solved by some other method as base cases.

Recursion in Algorithm Design

- Tail Recursion: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms....
- Divide and Conquer: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, median selection, quick sort.
- Backtracking: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- Dynamic Programming: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memorization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.

Search trees and backtracking

The queens problem

Q: How many queens can one place on the board?
Q: Can one place 8 queens on the board?

The queens problem

The queens problem

		学i				

The queens problem

Q: How many queens can one place on the board?
Q: Can one place 8 queens on the board? How many permutations?

The eight queens puzzle

Problem published in 1848, solved in 1850.

The eight queens puzzle

Problem published in 1848, solved in 1850.

Q: How to solve problem for general n ?

Introducing concept of state tree

What if we attempt to find all the possible permutations and then check?

Search tree for 5 queens

Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal
- Can have n queens max.

Search tree for 5 queens

Backtracking: Informal definition

Recursive search over an implicit tree, where we "backtrack" if certain possibilities do not work.

n queens $\mathrm{C}++$ code

void generate_permutations(int * permut, int row, int n) \{
if (row $==n$) \{ print_board(permut, n); return;
\}
for (int val = 1; val <= n; val++) if (isValid(permut, row, val)) \{ permut[row] = val; generate_permutations(permut, row + 1, n); \}
\}
generate_permutations(permut, 0, 8);

Quick note: n queens - number of solutions

N	Number of Solutions	Number of Unique Solutions
1	1	1
2	0	0
3	0	0
4	2	1
5	10	2
6	4	1
7	40	6
8	92	12
9	352	46
10	724	92
11	2,680	341
12	14,200	1,787
13	73,712	9,233
14	365,596	45,752
15	$2,279,184$	285,053

Longest Increasing Sub-sequence

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if

$$
123456
$$

$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.
Definition 123456

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Sequences - Example...

Example

- Sequence: 6, 3, 5,2,7, 8, 1, 9
- Subsequence of above sequence: 5,2,1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: $34,21,7,5,1$
= Increasing subsequence ff the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$

Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naive Enumeration

Assume $a_{1}, a_{2}, \ldots, a_{n}$ is contained in an array A

```
algLISNaive(A[1..n]) :
    max = 0
    for each subsequence B of }A\mathrm{ do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max then
        max = |B|
    Output max
```


Naive Enumeration

Assume $a_{1}, a_{2}, \ldots, a_{n}$ is contained in an array A

```
algLISNaive(A[1..n]) :
    max = 0
    for each subsequence B of A do
        if B}\mathrm{ is increasing and }|B|>\operatorname{max then
        max = |B|
    Output max
```

Running time: $O\left(n 2^{n}\right)$

Naive Enumeration

Assume $a_{1}, a_{2}, \ldots, a_{n}$ is contained in an array A

```
algLISNaive(A[1..n]) :
    max = 0
    for each subsequence B of A do
        if B is increasing and }|B|>\operatorname{max}\mathrm{ then
        max = |B|
    Output max
```

Running time: $O\left(n 2^{n}\right)$.
2^{n} subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

$$
\begin{aligned}
\operatorname{LIS}(A[1 . . n]): & \left.\begin{array}{ll}
6 & 3 \\
& \\
& \{63 \ldots 81 \\
& \ldots .7
\end{array}\right)
\end{aligned}
$$

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(A[1 . . n]):$

- Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])=$ $\operatorname{LIS}(A[1 . .(n-1)])$
- Case 2: contains $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])$ is

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(A[1 . . n]):$

- Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])=$ $\operatorname{LIS}(A[1 . .(n-1)])$
- Case 2: contains $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])$ is not so clear.

Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(A[1 . . n]):$

- Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])=$ $\operatorname{LIS}(A[1 . .(n-1)])$
- Case 2: contains $A[n]$ in which case $\operatorname{LIS}(A[1 . . n])$ is not so clear.

Observation

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $A[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Example

Sequence: $A[1 . .5]=5,9,7,8,1$

Recursive Approach

LIS_smaller $(A[1 . . n], x)$: length of longest increasing subsequence in $A[1 . . n]$ with all numbers in subsequence less than x

```
LIS_smaller \((A[1 . . n], x)\) :
if ( \(n=0\) ) then return 0
\(m=\) LIS_smaller \((A[1 . .(n-1)], x)\)
if \((A[n]<x)\) then
    \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller $(A[1 . . n], \infty)$

Running time analysis

Running time of LIS([1..n])

$$
\begin{aligned}
& \text { LIS_smaller }(A[1 . . n], x) \text { : } \\
& \text { if }(n=0) \text { then return } 0 \\
& m=\text { LIS_smaller }(A[1 . .(n-1)], x) \\
& \text { if }(A[n]<x) \text { then } \\
& \quad m=\max (m, 1+\text { LIS_smaller }(A[1 . .(n-1)], A[n])) \\
& \text { Output } m
\end{aligned}
$$

$$
\operatorname{LIS}(A[1 . . n]):
$$

$$
\text { return LIS_smaller }(A[1 . . n], \infty)
$$

$$
A=[1,2,3,4,5,6]
$$

Running time of LIS([1..n])

Lemma
LIS_smaller runs in $O\left(2^{n}\right)$ time.

Running time of LIS([1..n])

Lemma

LIS_smaller runs in $O\left(2^{n}\right)$ time.
Improvement: From $O\left(n 2^{n}\right)$ to $O\left(2^{n}\right)$.

Running time of LIS([1..n])

Lemma

LIS_smaller runs in $O\left(2^{n}\right)$ time.
Improvement: From $O\left(n 2^{n}\right)$ to $O\left(2^{n}\right)$.
....one can do much better using memorization!

