We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work? (Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

# **ECE-374-B: Lecture 12 - Backtracking and memorization**

Instructor: Nickvash Kani

February 28, 2023

University of Illinois at Urbana-Champaign

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k. Acsume k is odd

### **Review linear time selection**

Given an array A = [0, ..., n-1] of *n* numbers and an index *i*, where  $0 \le i \le n-1$ , find the  $i^{th}$  smallest element of A.

For instance, assume n = 20 and i = 10.

10 | 14 | 13 | 8 | 18 | 11 | 2 12 15 9 16 19 3 17 | 5 20 4 1 6 

The smallest element of rank 10 would be 11. But how do we figure that out Do median of medians.... Quick Scleet

Call Median-of-Medians(A, 10)

Given an array A = [0, ..., n - 1] of *n* numbers and an index *i*, where  $0 \le i \le n - 1$ , find the *i*<sup>th</sup> smallest element of *A*.

For instance, assume n = 20 and i = 10.

18 | 11 14 | 13 | 

The smallest element of rank 10 would be 11. But how do we figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

Given an array A = [0, ..., n - 1] of *n* numbers and an index *i*, where  $0 \le i \le n - 1$ , find the *i*<sup>th</sup> smallest element of *A*.

For instance, assume n = 20 and i = 10.

18 | 11 14 | 13 | 

The smallest element of rank 10 would be 11. But how do we figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!

#### First we reorganize:

| 4  | 17 | 8  | 16 |
|----|----|----|----|
| 3  | 9  | 18 | 6  |
| 15 | 10 | 11 | 19 |
| 7  | 14 | 2  | 5  |
| 1  | 13 | 12 | 20 |

#### First we reorganize:

| 4  | 17 | 8  | 16 |
|----|----|----|----|
| 3  | 9  | 18 | 6  |
| 15 | 10 | 11 | 19 |
| 7  | 14 | 2  | 5  |
| 1  | 13 | 12 | 20 |

#### Then we sort each column:

| 1  | 9  | 2  | 5  |
|----|----|----|----|
| 3  | 10 | 8  | 6  |
| 4  | 13 | 11 | 16 |
| 7  | 14 | 12 | 19 |
| 15 | 17 | 18 | 20 |

N/ C

#### First we reorganize:

| 4  | 17 | 8  | 16 |
|----|----|----|----|
| 3  | 9  | 18 | 6  |
| 15 | 10 | 11 | 19 |
| 7  | 14 | 2  | 5  |
| 1  | 13 | 12 | 20 |

#### Then we sort each column:

| 1  | 9  | 2  | 5  |
|----|----|----|----|
| 3  | 10 | 8  | 6  |
| 4  | 13 | 11 | 16 |
| 7  | 14 | 12 | 19 |
| 15 | 17 | 18 | 20 |

Still need the pivot. Find median of medians

# **Review linear time selection**

| 1  | 9  | 2  | 5  |
|----|----|----|----|
| 3  | 10 | 8  | 6  |
| 4  | 13 | 11 | 16 |
| 7  | 14 | 12 | 19 |
| 15 | 17 | 18 | 20 |

## **Review linear time selection**

| 1  | 9  | 2  | 5  |
|----|----|----|----|
| 3  | 10 | 8  | 6  |
| 4  | 13 | 11 | 16 |
| 7  | 14 | 12 | 19 |
| 15 | 17 | 18 | 20 |

- Call Median-of-Medians([4,13,11,16], floor(len/2) = 2)
- Can sort this in linear time.
- Get back 13.
- **13** is our new pivot!

Back to our original array! Use the pivot (=13) to break it up into two.



We know the following:

- $len(A_{Lower}) = 12$
- $len(A_{Upper}) = 7$
- Want k = 10

Back to our original array! Use the pivot (=13) to break it up into two.





We know the following:

- $len(A_{Lower}) = 12$
- $len(A_{Upper}) = 7$
- Want k = 10

Call Median-of-Medians(A<sub>Lower</sub>, 10)

| 4 | 3 | 7 | 1 | 9 | 10 | 8 | 11 | 2 | 12 | 6 | 5 |  |
|---|---|---|---|---|----|---|----|---|----|---|---|--|
|---|---|---|---|---|----|---|----|---|----|---|---|--|

First we reorganize:

| 4 | 10 |   |
|---|----|---|
| 3 | 8  | 6 |
| 7 | 11 | 5 |
| 1 | 2  |   |
| 9 | 12 |   |

First we reorganize:

| 4 | 10 |   |
|---|----|---|
| 3 | 8  | 6 |
| 7 | 11 | 5 |
| 1 | 2  |   |
| 9 | 12 |   |

| 1 | 2  |   |
|---|----|---|
| 3 | 8  | 5 |
| 4 | 10 | 6 |
| 7 | 11 |   |
| 9 | 12 |   |

Then we sort each column:

# **Review linear time selection**

| 1 | 2  |   |
|---|----|---|
| 3 | 8  | 5 |
| 4 | 10 | 6 |
| 7 | 11 |   |
| 9 | 12 |   |

## **Review linear time selection**



- Call Median-of-Medians([4,10,6], floor(n/2) = 10)
- Can sort this in linear time.
- Get back 6.
- 6 is our new pivot!

Back to our original array! Use the pivot (=6) to break it up into two (well three).



• Want k = 10 (pivot is of rank 6)

Back to our original array! Use the pivot (=6) to break it up into two (well three).

We know the following:

- $len(A_{Lower}) = 5$
- $len(A_{Upper}) = 6$
- Want k = 10 (pivot is of rank 6)

Call Median-of-Medians( $A_{Upper}$ , 10 - 6 = 4)

| 7 | 9 | 10 | 8 | 11 | 12 |
|---|---|----|---|----|----|
|---|---|----|---|----|----|

First we reorganize:

| 7  |    |
|----|----|
| 9  |    |
| 10 | 12 |
| 8  |    |
| 11 |    |

First we reorganize:

Then we sort each column:

| 7  |    |
|----|----|
| 9  |    |
| 10 | 12 |
| 8  |    |
| 11 |    |

| 7  |    |
|----|----|
| 8  |    |
| 9  | 12 |
| 10 |    |
| 11 |    |

# **Review linear time selection**



## **Review linear time selection**



- Call Median-of-Medians([9,12], floor(len/2) = 1)
- Can sort this in linear time.
- Get back 12.
- 12 is our new pivot!

Back to our original array! Use the pivot (=6) to break it up into two (well three).



We know the following:

- $len(A_{Lower}) = 5$
- $\operatorname{len}(A_{Upper}) = 0$
- Want k = 4 (pivot is of rank 5)

Back to our original array! Use the pivot (=6) to break it up into two (well three).

We know the following:

- $len(A_{Lower}) = 5$
- $\operatorname{len}(A_{Upper}) = 0$
- Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(A<sub>Lower</sub>, 4)

Final Step!

Can sort in linear time!



Return Sorted(A[4]) = 11

## Median of medians time analysis



14

## Median of medians time analysis



$$T(n) = T(\frac{1}{5}n) + T(\frac{7}{10}n) + cn = O(n)$$
, 14

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 5? Will lists of size 3 work? 'h dun'

for 
$$(subservary) = 5$$
  
 $T(u) = T(3u) + T(7u) + cn$   
 $find medium
 $of medium$   
 $for . |subservary| = 3$   
 $T(u) = T(3u) + T(7u) + cn$$ 

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work?



We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n) + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n) + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$
What about  $k = 7$ ?
$$\frac{1}{2}n + T(\frac{1}{2}n + cn) = 1$$

We saw a linear time selection algorithm in the previous lecture. Why did we choose lists of size 5? Will lists of size 3 work?

$$T(n) = T(\frac{1}{3}n) + T(\frac{4}{6}n) + cn$$

What about k = 7?

$$T(n) = T(\frac{1}{7}n) + T(\frac{10}{14}n) + cn$$

# On different techniques for recursive algorithms

**Reduction:** Reduce one problem to another

**Recursion** A special case of reduction

- reduce problem to a smaller instance of itself
- self-reduction
- Problem instance of size *n* is reduced to one or more instances of size *n* - 1 or less.
- For termination, problem instances of small size are solved by some other method as base cases.

### **Recursion in Algorithm Design**

- <u>Tail Recursion</u>: problem reduced to a <u>single</u> recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms.
   **Examples:** Interval scheduling, MST algorithms....
- Divide and Conquer: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.
   Examples: Closest pair, median selection, quick sort.
- <u>Backtracking</u>: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
- <u>Dynamic Programming</u>: problem reduced to multiple (typically) <u>dependent or overlapping</u> sub-problems. Use memorization to avoid recomputation of common solutions leading to <u>iterative bottom-up</u> algorithm.

# Search trees and backtracking



- Q: How many queens can one place on the board?
- Q: Can one place 8 queens on the board?

|  |  | Ŵ |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |

|  |  | Ŵ |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |

|  | Ŵ |   |  |  |
|--|---|---|--|--|
|  |   |   |  |  |
|  |   |   |  |  |
|  |   |   |  |  |
|  |   | Ŵ |  |  |
|  |   |   |  |  |
|  |   |   |  |  |











Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many permutations?

## The eight queens puzzle

#### Problem published in 1848, solved in 1850.



### The eight queens puzzle

#### Problem published in 1848, solved in 1850.



Q: How to solve problem for general *n*?

### Introducing concept of state tree



What if we attempt to find all the possible permutations and then check?

#### Search tree for 5 queens



Let's be a bit smarter and recognize that:

- Queens can't be on the same row, column or diagonal
- Can have *n* queens max.

### Search tree for 5 queens







Recursive search over an implicit tree, where we "backtrack" if certain possibilities do not work.

### n queens C++ code

```
generate permutations(int * permut, int row, int n)
VOID
{
  if (row == n) {
     print board( permut, n );
     return;
  }
  for (int val = 1; val \leq n; val++)
     if (isValid(permut, row, val)) {
       permut[row] = val;
       generate permutations( permut, row + 1, n);
     }
}
```

generate\_permutations( permut, 0, 8 );

## Quick note: n queens - number of solutions

| N  | Number of Solutions | Number of Unique Solutions |
|----|---------------------|----------------------------|
| 1  | 1                   | 1                          |
| 2  | 0                   | 0                          |
| 3  | 0                   | 0                          |
| 4  | 2                   | 1                          |
| 5  | 10                  | 2                          |
| 6  | 4                   | 1                          |
| 7  | 40                  | 6                          |
| 8  | 92                  | 12                         |
| 9  | 352                 | 46                         |
| 10 | 724                 | 92                         |
| 11 | 2,680               | 341                        |
| 12 | 14,200              | 1,787                      |
| 13 | 73,712              | 9,233                      |
| 14 | 365,596             | 45,752                     |
| 15 | 2,279,184           | 285,053                    |

# **Longest Increasing Sub-sequence**

#### Definition

Sequence: an ordered list  $a_1, a_2, \ldots, a_n$ . Length of a sequence is number of elements in the list. 123456 123456 245.

#### Definition

 $a_{i_1}, \ldots, a_{i_k}$  is a subsequence of  $a_1, \ldots, a_n$  if  $1 \le i_1 \le i_2 \le \ldots \le i_k \le n$ .

#### Definition

A sequence is increasing if  $a_1 < a_2 < \ldots < a_n$ . It is non-decreasing if  $a_1 \leq a_2 \leq \ldots \leq a_n$ . Similarly decreasing and non-increasing.

36

### Sequences - Example...

### Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2,7,9.

### **Longest Increasing Subsequence Problem**

**Input** A sequence of numbers  $a_1, a_2, \ldots, a_n$ 

**Goal** Find an increasing subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  of maximum length

### **Longest Increasing Subsequence Problem**

**Input** A sequence of numbers  $a_1, a_2, \ldots, a_n$ 

**Goal** Find an increasing subsequence  $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$  of maximum length

#### Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

G,

### **Naive Enumeration**

Assume  $a_1, a_2, \ldots, a_n$  is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
    Output max
```

### **Naive Enumeration**

Assume  $a_1, a_2, \ldots, a_n$  is contained in an array A



Running time:  $O(n 2^{n})$ 

## **Naive Enumeration**

Assume  $a_1, a_2, \ldots, a_n$  is contained in an array A

```
algLISNaive(A[1..n]):
    max = 0
    for each subsequence B of A do
        if B is increasing and |B| > max then
            max = |B|
    Output max
```

Running time:  $O(n2^n)$ .

 $2^n$  subsequences of a sequence of length n and O(n) time to check if a given sequence is increasing.

### **Recursive Approach: LIS: Longest increasing subsequence**

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

 $\mathsf{LIS}(A[1..(n-1)])$ 

Case 2: contains A[n] in which case LIS(A[1..n]) is

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LIS(A[1..(n-1)])

Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

• Case 1: Does not contain A[n] in which case LIS(A[1..n]) =

LIS(A[1..(n-1)])

Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

#### Observation

For second case we want to find a subsequence in A[1..(n-1)] that is restricted to numbers less than A[n]. This suggests that a more general problem is **LIS\_smaller**(A[1..n], x) which gives the longest increasing subsequence in A where each number in the sequence is less than x.

Example

Sequence: A[1..5] = 5, 9, 7, 8, 1



**LIS\_smaller**(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all numbers in subsequence less than x

> LIS\_smaller(A[1..n], x): if (n = 0) then return 0  $m = LIS\_smaller(A[1..(n - 1)], x)$ if (A[n] < x) then  $m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))$ Output m

> > LIS(A[1..n]):

return LIS\_smaller( $A[1..n], \infty$ )

# **Running time analysis**

## Running time of LIS([1..n])

LIS\_smaller(A[1..n], x): if (n = 0) then return 0  $m = LIS\_smaller(A[1..(n - 1)], x)$ if (A[n] < x) then  $m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))$ Output m

> LIS(A[1..n]): return LIS\_smaller( $A[1..n], \infty$ )

$$A = (1, 2, 3, 4, 5, 6]$$

## Running time of LIS([1..n])

**Lemma LIS\_smaller** runs in  $O(2^n)$  time. **Lemma** LIS\_smaller runs in  $O(2^n)$  time.

Improvement: From  $O(n2^n)$  to  $O(2^n)$ .

#### **Lemma** LIS\_smaller runs in $O(2^n)$ time.

```
Improvement: From O(n2^n) to O(2^n).
```

....one can do much better using memorization!