


Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time
if we choose a list of size k.



ECE-374-B: Lecture 12 - Backtracking and

memorization

Instructor: Nickvash Kani
February 28, 2023

University of lllinois at Urbana-Champaign



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.
Why did we choose lists of size 57 Will lists of size 3 work?

(Hint) Write a recurrence to analyze the algorithm’s running time
if we choose a list of size k. Aag = <

15 oul)v



Review linear time selection

Given an array A =/[0, /., n — 1] of n numbers and an index i,
where 0 < i < n — T find the it smallest element of A.

For instance, assume n = 20 and / = 10.

41315711719 /10|14|13|8|18|11|2|12|16|6 |19

20

]| — 2.0
The smallest element of rank 10 would be 11. But how do we

figure that out sk S Ao S
Do median of medians..... EVRIVIN'S

Call Median-of-Medians(A, 10)




Review linear time selection

Given an array A= [0,...,n — 1] of n numbers and an index /,
where 0 < i < n — 1, find the it smallest element of A.

For instance, assume n = 20 and / = 10.

41315711719 /10|14|13|8|18|11|2|12|16|6 |19

20

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!




Review linear time selection

Given an array A= [0,...,n — 1] of n numbers and an index /,
where 0 < i < n — 1, find the it smallest element of A.

For instance, assume n = 20 and / = 10.

41315711719 /10|14|13|8|18|11|2|12|16|6 |19

20

The smallest element of rank 10 would be 11. But how do we
figure that out

Do median of medians.....

Call Median-of-Medians(A, 10)

First thing we need to do is find the pivot!




Review linear time selection

First we reorganize:
NS
N

KR
HEEE
HEEE




Review linear time selection

First we reorganize: Then we sort each column:

I
HE B

%



Review linear time selection

First we reorganize: Then we sort each column:

HEEE
HEE e
e ee) o el

HE B
HEEE NS

Still need the pivot. Find median of medians




Review linear time selection

N
N

N
NS
el




Review linear time selection

B

s Call Median-of-

3 10 .
Medians([4,13,11,16],

S

s Can sort this in linear time.
] e
= 13 is our new pivot!




Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into

two.

We know the following:

u Ien(ALower) =12

u Ien(AUpper) =5
= Want kK =10



Review linear time selection

Back to our original array! Use the pivot (=13) to break it up into

two.

We know the following:

u Ien(ALower) =12

u Ien(AUpper) =/
= Want kK =10

Call Median-of-Medians(A; ower, 10) 6



Review linear time selection

Then we do this again:

413711191018 |11|2|12|6 |5




Review linear time selection

Then we do this again:

413711191018 |11|2|12|6 |5

First we reorganize:




Review linear time selection

Then we do this again:

413711191018 |11|2|12|6 |5

First we reorganize: Then we sort each column:




Review linear time selection




Review linear time selection

Call Median-of-Medians([4,10,6],

floor(n/2) = 15'99
Can sort this in linear time.

Get back 6.

= 6 is our new pivot!



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into

two (well three).

We know the following:

u Ien(ALowe,) =5
= len(Aypper) =6
= Want kK = 10 (pivot is of rank 6)



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into

two (well three).

We know the following:

u Ien(ALowe,) =5
= len(Aypper) =6
= Want kK = 10 (pivot is of rank 6)

Call Median-of-Medians(Aypper, 10 — 6 = 4)



Review linear time selection

Then we do this again:

7

10

11

12

10



Review linear time selection

Then we do this again:

719110 8 |11|12

First we reorganize:

10



Review linear time selection

Then we do this again:

719110 8 |11|12

First we reorganize: Then we sort each column:

10



Review linear time selection

11



Review linear time selection

Call Median-of-Medians([9,12], floor(len/2) = 1)
Can sort this in linear time.

Get back 12.

12 is our new pivot!

11



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into

two (well three).

719110} 8 |11]12

We know the following:

" Ien(ALower) =5

u Ien(AUppe,) =0
= Want k = 4 (pivot is of rank 5)

12



Review linear time selection

Back to our original array! Use the pivot (=6) to break it up into
two (well three).

719110} 8 |11]12

We know the following:

" Ien(ALower) =5

u Ien(AUppe,) =0
= Want k = 4 (pivot is of rank 5)

Call Median-of-Medians(Agower, 4) 12



Review linear time selection

Final Step!

10

11

Can sort in linear timel

(|3

10

11

Return Sorted(A[4]) = 11

13



Median of medians time analysis

Median-of-medians(A, i):

sublists = [A[j:j+5] for j €range(0, len(A), 5)]

medians

// Base Case
if len (4) < 5 return sorted (a) [i]

// Find median of medians
if len (medians) < 5

[sorted (sublist) [len (sublist)/2] for sublist Esublists]

_

pivot = sorted (medians) [len (medians)/2]
7
}w else Yoy "
\/ & pivot = Median-of-medians (medians, len/2) < (l/ /g
g v
é? ' ___f // Partitioning Step
s ) 0 o low = [j for j €A if j < pivot]
A o 2 e = high = [j for j €A if j > pivot] 7
h\ (o] 0 oo 0@q 4 / w
® 600000 4 Cl""“’\ 10 .{-753
©00lap® k=g7'(l°°’) ~ \ PV ik
) S oo® O i{’i K lo l'/\:e‘w g
g o return Median-of-medians (low, i) —_— %T Cv\,’[\
= Y elseif i > k i . 8
Wmv [U return Median-of-medians (lows i-k-1) . ‘/l 67#)7'“0(— vS ©
o (
F N L e

return pivot

(%

TS TG - TC"/S\ + )0

14



Median of medians time analysis

Median-of-medians(A, i):
sublists = [A[j:j+5] for j €range(0, len(A), 5)]
medians = [sorted (sublist) [len (sublist)/2] for sublist Esublists] z

// Base Case
if len (4) < 5 return sorted (a) [i]

Cwn
// Find median of medians

if len (medians) < 5
pivot = sorted (medians) [len (medians)/2]

else -
pivot = Median-of-medians (medians, len/2)

// Partitioning Step
low = [j for j €A if j < pivot]
high = [j for j €A if j > pivot]

k = len (low) @

if i <k

return Median-of-medians (low, i)
elseif i > k

return Median-of-medians (low, i-k-1)
else
return pivot

i) = T(%n) + T(1—7On) Lap 2

)
O
‘O
—



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Yo (st»[vwfmy): S L‘ﬁ/@\ © O
AR /L\p o & ° °

TS - T T L& "o o OO0
\'/ Gork cubonys ' _ %e)""’"é
fiud ”“"’ZW v Yo wem MM
e ge on = |
or iéc::v&‘.ov\ jjg:ggO@@w
)
= 3 o

for 187
O (IS

15



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

T(n) = T(%n)%— T(gn)+cn @ et

| n work - - 0 ({v«‘éﬂ”b ﬂ; av
} [\
l\f; i) & G) &

15



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

T(n) = T(%n) + T(gn) Far

)

What aboq\t k=T177

( AR T(/‘@ T
@;‘O/_TCT‘TC o
e

éi 6 & w\”‘

0O



Pre-lecture brain teaser

We saw a linear time selection algorithm in the previous lecture.

Why did we choose lists of size 57 Will lists of size 3 work?

1 4
T(n) = T(gn) + T(gn) + cn
What about kK =77

T(n) = T(Gn) + T(3,m) +en

15



On different techniques for recursive
algorithms




Recursion

Reduction: Reduce one problem to another

Recursion
A special case of reduction

reduce problem to a smaller instance of itself

m self-reduction

s Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

= For termination, problem instances of small size are solved by

some other method as base cases.

16



Recursion in Algorithm Design

= Tail Recursion: problem reduced to a single recursive call after some

work. Easy to convert algorithm into iterative or greedy algorithms.
Examples: Interval scheduling, MST algorithms....

= Divide and Conquer: Problem reduced to multiple independent

sub-problems that are solved separately. Conquer step puts together
solution for bigger problem.
Examples: Closest pair, median selection, quick sort.

» Backtracking: Refinement of brute force search. Build solution

incrementally by invoking recursion to try all possibilities for the
decision in each step.

= Dynamic Programming: problem reduced to multiple (typically)

dependent or overlapping sub-problems. Use memorization to avoid

recomputation of common solutions leading to iterative bottom-up

algorithm.

17



Search trees and backtracking




The queens problem

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board?

18



The queens problem

19



The queens problem

19



The queens problem

W

19



The queens problem

i

19



The queens problem

i

19



The queens problem

i

19



The queens problem

19



The queens problem

W

9

|

Q: How many queens can one place on the board?

Q: Can one place 8 queens on the board? How many

permutations?

19



The eight queens puzzle

Problem published in 1848, solved in 1850.

W

9

&

20



The eight queens puzzle

Problem published in 1848, solved in 1850.

W

9

&

Y

||

Q: How to solve problem for general n?

20



Introducing concept of state tree

G

What if we attempt to find all the possible permutations and then
check?

21



Search tree for 5 queens

[

c

Q

Let's be a bit smarter and recognize that:

= Queens can't be on the same row, column or diagonal

= Can have n queens max.

22



Search tree for 5 queens

(2

a

A &
@ )
O

23



Backtracking: Informal definition

Recursive search over an implicit tree, where we “backtrack” if
certain possibilities do not work.

24



n queens C++ code

vold generate permutations( int * permut, int row, Int n )

if (row==n) {
print_board( permut, n );
y return;

for (int val =1; val <= n; val++)
if (isValid( permut, row, val ) ) {
permut[ row ] = val,;
) generate permutations( permut, row + 1, n);
}

generate _permutations( permut, O, 8 );

25



Quick note: n queens - number of solutions

N | Number of Solutions Number of Unique Solutions
1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2,680 341
12 14,200 1,787
13 73,712 9,233
14 365,596 45,752
15 2,279,184 285,053

26



Longest Increasing Sub-sequence




Sequences

Definition
Sequence: an ordered list a7, ap, ..., a,. Length of a sequence is
number of elements in the list.
1. 3456
Definition 245 ¢
. . |2
aj,...,aj is asubsequence of ay,...,a, if

7 4 5

Definition | EL
A sequence is increasing if a; < a» < ... < a,. It is non-decreasing

1< ii<h<...<i<n.

if a1 < a» <...< a,. Similarly decreasing and non-increasing.

27



Sequences - Example...

Example
= Sequence: 6,3,5,2.#7,8,1,9
= Subsequence of above sequence: 5,2, 1
= Increasing sequence: 3,5,9,17,54

= Decreasing sequence: 34,21,7,5,1

————

-(msing subsequence) df the first sequence: 25/+9.

—_—

28



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, ap, ..., a,

Goal Find an increasing subsequence a;,, a;,, ..., aj, of

k

maximum length

29



Longest Increasing Subsequence Problem

Input A sequence of numbers a1, ap, ..., a,

Goal Find an increasing subsequence a;,, a;,, ..., aj, of

k

maximum length

Example
= Sequence: 6,84, 2, 7,8, 1
= Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc 6/

= Longest increasing subsequence: 3, 5, 7, 8

29



Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[L..n]) :
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then

max = |B|

OQutput max

30



Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[L..n]) :
max = 0
for each subsequence B of A do & |
if B is increasing and |B| > max then

max = |B|

OQutput max

R et

Running time: OC\A Z,V\>

30



Naive Enumeration

Assume a1, ap, ..., a, is contained in an array A

algLISNaive (A[L..n]) :
max = 0
for each subsequence B of A do
if B is increasing and |B| > max then

max = |B|

OQutput max

Running time: O(n2"). o
2" subsequences of a sequence of length nand O(n) time to check

if a given sequence is increasing.

30



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

A 6 > 5 7B
LIS(A[L..n]):

6% . - S

31



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
= Case 1: Does not contain A[n] in which case LIS(A[Ll..n]) =

LIS(A[L1..(n — 1)])
= Case 2: contains A[n] in which case LIS(A[Ll..n]) is

31



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[L..n]);

= Case 1: Does not contain A[n] in which case LIS(A[Ll..n]) =

LIS(A[L1..(n — 1)])
= Case 2: contains A[n] in which case LIS(A[l..n]) is not so

clear.

31



Recursive Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
= Case 1: Does not contain A[n] in which case LIS(A[Ll..n]) =

LIS(A[L1..(n — 1)])
= Case 2: contains A[n] in which case LIS(A[l..n]) is not so
clear.
Observation
For second case we want to find a subsequence in A[l..(n — 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS__smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the

sequence is less than x.
31



Sequence: A[l1..5] =5,9,7,8,1

ss = |]
x = inf
,——”"””’\
ss = ] ss = [1]
x = inf X =
,f”’//’/\
ss = ] ss = [8]
x = inf x =28
et T =T T
ss = |] ss = [7] ss = [8] ss = [78]
x = inf x=7 x=28 x=7

32



Recursive Approach

LIS_smaller(A[l..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller(A[l..n], x) :
if (n=20) then return 0
m = LIS_smaller(A[1..(n — 1)], x)
if (A[n] < x) then
m = max(m, 1 4+ LIS_smaller(A[1..(n — 1)], A[n]))
OQutput m

LIS CA[1..n]) :
return LIS_smaller (A[l..n], co)

33



Running time analysis




Running time of LIS([1..n])

LIS_smaller (A[1l..n], x) :
if (n=0) then return 0
m = LIS_smaller(A[1..(n — 1)], x)
if (A[n] < x) then
m = max(m,1 + LIS_smaller(A[l..(n — 1)], A[n]))
OQutput m

LISCA[L1..n]) :
return LIS_smaller (A[l..n], co)

A; (L/Z/fle?’/S/ él

34



Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2") time.

35



Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

35



Running time of LIS([1..n])

Lemma
LIS_smaller runs in O(2") time.

Improvement: From O(n2") to O(2").

....one can do much better using memorization!

35



