

Pre-lecture brain teaser

Consider computing f(x, y) by recursive function + memoization.

min(x,y)

f(O,y)zy f(x,0) =x.

The resulting algorithm when computing f(n, n) would take:

a O(n2)

d) o(n")
e

(a)
(b) O
(c) 0(2”)
(d)
(e)

The function is Ill defined - it can not be computed.

ECE-374-B: Lecture 13 - Dynamic Programming Il

Instructor: Nickvash Kani
October 14, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Consider computing f(x, y) by recursive function + memoization.

Dbfmb lovS min(x.y) 2l
T d k f(x,y) = Z Xxf(X+y—i1—=1),

=1
f(O,y)=y f(x,0)=x.
Al Be = man Ko ey Foue

The resulting algorith hen computing f(n,a)'@ould take!

(@) 0(n?) | -

W o(n?) O63A “ Z\,\-%

(c) 0(2") 2.-3

(d) O(n™) - 2

(e) The function is ill defined - it can not be conTpoted— — —— 2!

Recipe for Dynamic Programming

1. Develop a recursive backtracking style algorithm A for given problem.

2. ldentify structure of subproblems generated by A on an instance | of size n

21 Estimate number of different subproblems generated as a function of n. Is it
polynomial or exponential in n?

2.2 If the number of problems is “small” (polynomial) then they typically have some
“clean” structure.

3. Rewrite subproblems in a compact fashion. e curvewce
4. Rewrite recursive algorithm in terms of notation for subproblems.

5. Convert to iterative algorithm by bottom up evaluation in an appropriate
order.

6. Optimize further with data structures and/or additional ideas.

Why is it called dynamic programming?

Dynamic programming was a technique “invented” by Richard Bellman. From his
autobiography:

| spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An
Interesting question is, Where did the name, dynamic programming, come from? The 1950s were not good years for
mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred of the word research. I'm not using the term lightly;
I'm using it precisely. His face would suffuse, he would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation
was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, | felt | had to do
something to shield Wilson and the Air Force from the fact that | was really doing mathematics inside the RAND
Corporation. What title, what name, could | choose? In the first place | was interested in planning, in decision
making, in thinking. But planning, is not a good word for various reasons. | decided therefore to use the word
“programming”. | wanted to get across the idea that this was dynamic, this was multistage, this was time-varying
| thought, lets Rill two birds with one stone. Lets take a word that has an absolutely precise meaning, namely
dynamic, in the classical physical sense. It also has a very interesting property as an adjective, and that is it’s
impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give
it a pejorative meaning. It's impossible. Thus, | thought dynamic programming was a good name. It was something
not even a Congressman could object to. So | used it as an umbrella for my activities.

Edit Distance and Sequence
Alignment

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x; ... X, and yqv> ... ym what is a distance between
them?

Spell Checking Problem

Given a string “exponen” that is not in the dictionary, how should a spell checker
suggest a nearby string?

What does nearness mean?

Question: Given two strings x1x; ... X, and yqv> ... ym what is a distance between
them?

Edit Distance: minimum number of “edits” to transform x into y.

—

Edit Distance

Definition
Edit distance between two words X and Y is the number of letter insertions, letter
deletions and letter substitutions required to obtain Y from X.

Example .
The edit distance between FOOD and MONEY Is at least 4:

FOOD — MOOD — MONOD — MONED — MONEY

Edit Distance: Alternate View

Alignment ‘ ‘ -
Place words one on top of the other, with gaps in the first word indicating

Insertions, and gaps in the second word indicating deletions.
O
N

F O D
M O E Y

Edit Distance: Alternate View

Alignment ‘ ‘ -
Place words one on top of the other, with gaps in the first word indicating

Insertions, and gaps in the second word indicating deletions.

F O O D
M O N E Y

Formally, an alignment is a set M of pairs (i,J) such that each index appears at
most once, and there is no “crossing” | < I and 1 i1s matched to j implies I’ is

matched to j’ > j. In the above example, thisis M = {(1,1),(2,2),(3,3), (4,5)}.

Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word indicating

Insertions, and gaps in the second word indicating deletions.

F O O D
M O NE Y

Formally, an alignment is a set M of pairs (i,J) such that each index appears at
most once, and there is no “crossing”™ | < I and 1 i1s matched to j implies I’ is
matched to j > Jj. In the above example, thisis M = {(1,1),(2,2),(3,3), (4,5)}.
Cost of an alignment is the number of mismatched columns plus number of
unmatched indices. in both strings.

Edit Distance Problem

Problem o . _
Given two words, find the edit distance between them, 1.e,, an alignment of

smallest cost.

- Spell-checkers and Dictionaries
- Unix diff

- DNA sequence alignment ... but, we need a new metric

Sequence alignment problem - Similarity Metric

Definition _ _
For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost 4.

- [Mismatch cost] For each pair p and g that have been matched in M, we incur
coSst apg; typically app = 0.

10

Sequence alignment problem - Similarity Metric

Definition _ _
For two strings X and Y, the cost of alignment M is

- [Gap penalty] For each gap in the alignment, we incur a cost 4.

- [Mismatch cost] For each pair p and g that have been matched in M, we incur
coSst apg; typically app = 0.

Edit distance is special case when § = apg = 1.

10

Edit distance as alignment

An Example

Example
0 clul|r|r C
olclclulr]|r cle Cost =0 4+ age
Alternative:
0 clul|rlr a C
olclclulrlr|e cle Cost = 3¢

Or a really stupid solution (delete string, insert other string):

o|cyujryryajnjcy|e

o|cjcyuyrjrijejnjci|e

Cost =198, & ((w<wm) 1

Sequence Alignment

Input Given two words X and Y, and gap penalty § and mismatch costs apq

Goal Find alignment of minimum cost

12

Edit distance: The algorithm

Edit distance - Basic observation

Let X = ax and Y = By
a, B: strings.
x and y single characters.

Think about optimal edit distance between X and Y as alignment, and consider
last column of alignment of the two strings:

a X o X ax
or or
B | by p y
Prgfrkes must have optimal alignment! (o, ")

> OptAlgn€ X, 4> = Opt Alge(P/p) « t-rvy
> Or"A‘:ﬁ" CXIV) = 0,}*&1%(&/57) T S

13

Problem Structure

Let X = X1Xg - - Xm and Y = yqy» - - - yp. If (M, n) are not matched then either the
mt position of X remains unmatched or the n'" position of Y remains unmatched.

- Case xm and y, are matched.

+ Pay mismatch cost ay,y, plus cost of aligning strings X - - - Xm—1 and yq - - - yn_1
- Case x;, 1S unmatched.

- Pay gap penalty plus cost of aligning x; - - - Xm—q1 and yq - - - v
- Case yp, IS unmatched.

- Pay gap penalty plus cost of aligning x4 - - - Xy, and yq -« - Yn_1

14

Subproblems and Recurrence

X1 X1 Xj or X1... X1 X or X100 XX

Vieo Vi || Y Vi Y1y, Vi Y Yj

Optimal Costs o
Let Opt(/,/) be optimal cost of aligning x;---x; and y1---y;. Then

(ayy, + Opt(i — 1,j — 1),
Opt(i,j) = min ¢ § + Opt(i — 1,)),
\5 + Opt(iaj o 1)

Opt (/> =t

15

Subproblems and Recurrence

X1 X1 Xj or X1... X1 X or X100 XX

Vieo Vi || Y Vi Y1y, Vi Y Yj

Optimal Costs o
Let Opt(/,/) be optimal cost of aligning x;---x; and y1---y;. Then

Opt (i,]) = min ¢

Base Cases: Opt(/,0) =46 -i1and Opt(0,)) =9 -

Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]
Array COST stores cost of matching two chars. Thus COST|[a, b] give the cost of
matching character a to character b.

EDIST(A[1..m], B[1..n])
If (m=0) return né
If (n=0) return mé
My = & + EDIST(A[1..(m — 1], B[1..n])
my = & + EDIST(A[1..m], B[1..(n — 1)]))
ms = COST[A[m], B[n]] + EDIST(A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, ms)

16

J

E

De 0 1 2 3 4 5
@

E 2

E 3

D| 4

Example: DEED and DREAD
! R | F | A | D%

Opt(l,)) =

Base Cases:
+ Opt(1,0) =9 -1

17

3 D R E A D
0 1 2 3 /y 5
1 0 1 2 3 al
2
3

Example: DEED and DREAD

Opt(i,)) =
(Oéxl-yj + Opt(l — 1,] — 1),
min < 6 + Opt(i — 1,)),
L0+ Opt(i,j —1)
Base Cases:
+ Opt(1,0) =9 -1

17

Example: DEED and DREAD

Obpe O (?), B
+ tl—a_ ’
([D] 1 0 | 1 2 3 A % %P”f‘_
mj&ﬁﬁJrOpt/—WéE £l
= / N
. 54/;, ™ 1 | 1| 2 | 3 9+ Opt(l) 1)
3 E@O - Opt(i,0) = 0N
3 o \ - Opt(0,)) =6
17

Example: DEED and DREAD

DI

ot (VRE), Ut

Opt(l,)) =

DE D

! w?+0m0—1/ 1),
ﬂ
min<(5—|—Optl—1QE 2
€+Om01—0 \9DR

DRe 0
Base Cases: /s 3

. Opt(i,0) =6 - i

17

Example: DEED and DREAD

c|p| R|E]| A|D
Lo 1] 23| 4|5
pl 1 Lo| 1|2 3] 4
El 2 1] 1 2] 2|3
El 3221 1] 2|3
pl % [3] 3| 2| 2 @

Opt (1,

min <

J) =

’ozx,-y,- + Opt(i — 1,7 — 1),
6 + Opt(i —1,)),

L0+ Opt(i,j —1)

Base Cases:
+ Opt(1,0) =9 -1

Example: DEED and DREAD

3 D R E A D

e | O 1 2 3 4 S

D
D

R
E

E
E

AlD

D

17

Example: DEED and DREAD

D
D

A

E
E

R
E

D
D

R

R

R

N

O

~RRRR

e

O

oz

17

/i

3

2

1

0

1

3 D R E A D
0 1 2 3 /y 5
1 0 1 2 3 al
2 1 1 1 2 3
3 2 2 1 2 3
3 3 3 2 2 2

R
[4

E
E

Example: DEED and DREAD

o

R

2

Example: DEED and DREAD

O

S
RRR

17

< o oN @\
o (@ @\ N
QN i v QN
i — N ™M
- — N o
— N ™M o
- L] L -

Dynamic programming algorithm for
edit-distance

As part of the input...

The cost of aligning a character against another character

Y : Alphabet

We are given a cost function (in a table):

Vb,ce X COSTIb][c] = cost of aligning b with c.
Vb e X COST[b][b] =0

0 : price of deletion of insertion of a single character

18

Dynamic program for edit distance

EDIST(A[1..m], B[1..n])
int M[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j=1 to n do M|0,j] =jé

for i=1 to m do
for j=1 to n do

COST [A[I]] [BI]] + MIi — 1]l — 1],
MIi1[j] = min < & + M[i — 1][j],
§ 4+ M[i][j — 1]

19

Dynamic program for edit distance

EDIST(A[1..m], B[1..n])
int M[0..m][0..n]
for i=1 to m do M[i,0] =i§
for j=1 to n do M|0,j] =jé

for i=1 to m do
for j=1 to n do

COST [A[I]] [BI]] + MIi — 1]l — 1],
MIi1[j] = min < & + M[i — 1][j],
§ 4+ M[i][j — 1]

Analysis

- Running time is OC*'“)
- Space used is ch u>

19

Reducing space for edit distance

Matrix and DAG of computation of edit distance

Figure 1: Iterative algorithm in previous slide computes values in row order.

20

Optimizing Space

- Recall
4 . .
O‘X/yj + M(I o 17/ o 1)7

M(i,j) = min ¢ § 4+ M(i — 1,)),

« Entries in j" column only depend on (j — 1)% column and earlier entries in j
column

+ Only store the current column and the previous column reusing space; N(/, 0)
stores M(1,) — 1) and N(i,1) stores M(1,))

21

3 D R E A D
0 1 2 3 4 5
1
2
3

Example: DEED vs. DREAD filled by column

22

€ D R E A D
0 1 2 3 4 5
1 0
2 1
3 2
3 3

Example: DEED vs. DREAD filled by column

22

Example: DEED vs. DREAD filled by column

3 D R E A D

€ 0 1 2 3 /) 5

22

Example: DEED vs. DREAD filled by column

3 D R E A D

€ 0 1 2 3 /) 5

22

Example: DEED vs. DREAD filled by column

3 D R E A D

€ 0 1 2 3 /) 5

22

Example: DEED vs. DREAD filled by column

3 D R E A D

€ 0 1 2 3 /) 5

22

Computing in column order to save space

N

Figure 2: M(i,j) only depends on previous column values. Keep only two columns and
compute in column order.

23

Space Efficient Algorithm

for all i do N[i,0] =ié
for j=1 to n do
N[0,1] =j6 (% corresponds to M(0,j) =)
for i=1 to m do
iy + N[i =1, 0]
N[, 1] = min 4 6 4+ N[i — 1,1]
5+ N[i, 0]
for i=1 to m do
Copy N[i, 0] = N[i,]

Analysis

Running time is O(mn) and space used is O(2m) @

24

Analyzing Space Efficiency

- From the m x n matrix M we can construct the actual alignment (exercise)

- Matrix N computes cost of optimal alignment but no way to construct the
actual alignment

- Space efficient computation of alignment? More complicated algorithm —
see notes and Kleinberg-Tardos book.

25

Longest Common Subsequence
Problem

LCS Problem

Definition
LCS between two strings X and Y Is the length of longest common subsequence
between X and Y.

iv2v4eq (BDzoC
BACBAD BOCHPO
AC

DAD ABAD

26

LCS Problem

Definition
LCS between two strings X and Y Is the length of longest common subsequence
between X and Y.

ABAZDC ABAZDC
BACBAD BACBAD

Example . |
LCS between ABAZDC and BACBAD is 4 via ABAD

26

LCS Problem

Definition
LCS between two strings X and Y Is the length of longest common subsequence
between X and Y.

ABAZDC ABAZDC
BACBAD BACBAD

Example . |
LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

26

How do we plan out the recursion?

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:

+ Assuming A[m] # BJ[n]
- The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m — 1], B[1...n]), LCS(A[1...m], B[1...n —1]))

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:

+ Assuming A[m] # BJ[n]
- The one or neither of the end characters are in the LCS. Therefore becomes:

max (LCS(A[1...m — 1], B[1...n]), LCS(A[1...m], B[1...n —1]))

+ Assuming A[m] = BJn]

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:

+ Assuming A[m] # BJ[n]
- The one or neither of the end characters are in the LCS. Therefore becomes:
max (LCS(A[1...m — 1], B[1...n]), LCS(A[1...m], B[1...n —1]))
+ Assuming A[m] = B[n]
- Either Al[m] and B[n] are both in the LCS. Therefore:
LCS(A[1...m], B[1...n]) = 14 LCS(A[1...m = 1], B[1...n — 1])

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:
+ Assuming A[m] # BJ[n]
-+ The one or neither of the end characters are in the LCS. Therefore becomes:
max (LCS(A[1...m — 1], B[1...n]), LCS(A[1...m], B[1...n —1]))
+ Assuming A[m] = B[n]
- Either Al[m] and B[n] are both in the LCS. Therefore:
LCS(A[1...m], B[1...n]) = 1+ LCS(A[1...m — 1], B[1...n —1])
- Or A[m] and B[n] is not in the LCS. Therefore the LCS Is either:

LCS(A[1...m — 1], B[1....n])
LCS(A[1...m], B[1...n — 1])

27

How do we plan out the recursion?

Start off with A[1...m] and BJ[1...n] and reason the following:
+ Assuming A[m] # BJ[n]
-+ The one or neither of the end characters are in the LCS. Therefore becomes:
max (LCS(A[1...m — 1], B[1...n]), LCS(A[1...m], B[1...n —1]))
+ Assuming A[m] = B[n]
- Either Al[m] and B[n] are both in the LCS. Therefore:
LCS(A[1...m], B[1...n]) = 1+ LCS(A[1...m — 1], B[1...n —1])
- Or A[m] and B[n] is not in the LCS. Therefore the LCS Is either:

LCS(A[1...m — 1], B[1....n])
LCS(A[1...m], B[1...n — 1])

- Base Case:
27

LCS recursive definition

A[1..n], B[1..m]: Input strings.

(

0 I=00r;=0
max . Ali] # BJ]
.. LCS(’:/ o 1)
LCS(i,)) = 4
max| LCs(j-1). | Al =Bl
\ 14 LCS(i —1,j — 1)

28

LCS recursive definition
: Input strings.

(

0 i=0o0rj=0
max(LU =),) Al] # Blj
LCS(ij) = 4 LCS(1,)—1)
LCS(i —1,)),
max LCS(1,] — 1), Ali]l = B[]
14 LCS(i—1,j— 1)

Running time: 0wa>
opace: 4 (uw) —_— 0(»&«—»6%:“3) .

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, ¥: “alphabet” all the different values in A and B

Vb,ce X :b+#£c COST[b][c] = +o0.
vbex COSTIb][b] = 1

1: price of deletion of insertion of a single character

29

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, ¥: “alphabet” all the different values in A and B

Vb,ce X :b+#£c COST[b][c] = +o0.
vbex COSTIb][b] = 1

1: price of deletion of insertion of a single character

ED gcs
Maximum ED || D |R|E|A|D 5 0
Min LCS D|E|E|D
Sub-opt ED DIR|E|A|D g 1
Sub-opt LCS D|/E|E|D
Min ED D[R|E|A D | LCs-DED) me—éb)
Max LCS D E FE D —_ 2

Longest common subsequence is just edit distance for the two sequences...

A, B: input sequences, ¥: “alphabet” all the different values in A and B

Vb,ce X :b+#£c COST[b][c] = +o0.
vbex COSTIb][b] = 1

1: price of deletion of insertion of a single character

Yy € ED

Length of longest common sub-sequence =

29

How to improve dynamic programming?

Key skills you need to successfully come up with dynamic programming solutions:

- Formulate recurrences for various problems (There's only like 10-20 dynamic
programming problems in general, rest are rewrites of the same concepts).

- Be able to describe recurrences in plain english.
- |dentify subproblem order
- PRACTICE.

30

