Write a (very simple) recursive algorithm that calculates the Fibonacci n^{th} number.

$$F_n = F_{n-1} + F_{n-2} \text{ where } F_0 = 0, F_1 = 1$$
Write a (very simple) recursive algorithm that calculates the Fibonacci n^{th} number.

$$F_n = F_{n-1} + F_{n-2} \text{ where } F_0 = 0, F_1 = 1$$
Recursion and Memoization
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \text{ and } F(0) = 0, F(1) = 1. \]

These numbers have many interesting properties. A journal The Fibonacci Quarterly! is the golden ratio \((\frac{1}{2}(1 + \sqrt{5}))\) or approximately 1.618.\]
Fibonacci Numbers

Fibonacci numbers defined by recurrence:

\[F(n) = F(n - 1) + F(n - 2) \] and \[F(0) = 0, \, F(1) = 1. \]

These numbers have many interesting properties. A journal **The Fibonacci Quarterly**!

- **Binet’s formula**: \[F(n) = \frac{\varphi^n - (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n - (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}} \]
\(\varphi \) is the golden ratio \((1 + \sqrt{5})/2 \approx 1.618. \)

- \(\lim_{n \to \infty} F(n + 1)/F(n) = \varphi \)
Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.

\[
\text{Fib}(n):
\begin{align*}
\text{if } (n = 0) & \quad \text{return } 0 \\
\text{else if } (n = 1) & \quad \text{return } 1 \\
\text{else} & \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\end{align*}
\]
Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.

```python
Fib(n):
    if (n = 0)
        return 0
    else if (n = 1)
        return 1
    else
        return Fib(n - 1) + Fib(n - 2)
```

Running time? Let $T(n)$ be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + O(1) = O(2^n)$$

$Fib = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$

$m = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots$
Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.

$$\text{Fib}(n):$$

```python
    if (n = 0)
        return 0
    else if (n = 1)
        return 1
    else
        return Fib(n - 1) + Fib(n - 2)
```

Running time? Let $T(n)$ be the number of additions in Fib(n).

$$T(n) = T(n - 1) + T(n - 2) + 1 \text{ and } T(0) = T(1) = 0$$
Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute $F(n)$.

```python
Fib(n):
    if ($n = 0$)
        return 0
    else if ($n = 1$)
        return 1
    else
        return $Fib(n - 1) + Fib(n - 2)$
```

Running time? Let $T(n)$ be the number of additions in $Fib(n)$.

$$T(n) = T(n - 1) + T(n - 2) + 1$$

$T(0) = T(1) = 0$

$$T(n) = O(2^n)$$

Roughly same as $F(n)$: $T(n) = \Theta(\varphi^n) < O(2^n)$

The number of additions is exponential in n. Can we do better?
Recursion tree for the Recursive Fibonacci

0 1
Recursion tree for the Recursive Fibonacci
Recursion tree for the Recursive Fibonacci

0 1
2 1
0 1
3 2
0 1
Recursion tree for the Recursive Fibonacci
An iterative algorithm for Fibonacci numbers

\[\text{FibIter}(n): \]
\begin{align*}
\text{if } (n = 0) & \text{ then} \\
& \quad \text{return } 0 \\
\text{if } (n = 1) & \text{ then} \\
& \quad \text{return } 1 \\
F[0] &= 0 \\
F[1] &= 1 \\
\text{for } i = 2 \text{ to } n & \text{ do} \\
& \quad F[i] = F[i - 1] + F[i - 2] \\
\text{return } F[n]
\end{align*}

What is the running time of the algorithm? \(O(n) \) additions.

\[F = [0, 1, 1, 2, \ldots \ldots] \]
An iterative algorithm for Fibonacci numbers

FibIter(n):
 if (n = 0) then
 return 0
 if (n = 1) then
 return 1
 F[0] = 0
 F[1] = 1
 for i = 2 to n do
 F[i] = F[i - 1] + F[i - 2]
 return F[n]

What is the running time of the algorithm?

\(O(n) \cdot O(1) = O(n) \)
An iterative algorithm for Fibonacci numbers

FibIter(n):
 if (n = 0) then
 return 0
 if (n = 1) then
 return 1
 F[0] = 0
 F[1] = 1
 for i = 2 to n do
 F[i] = F[i-1] + F[i-2]
 return F[n]

What is the running time of the algorithm? \(O(n) \) additions.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. **Memoization**.
What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be effectively/efficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.
Automatic/implicit memorization
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```python
def Fib(n):
    if n == 0:
        return 0
    if n == 1:
        return 1
    if Fib(n) was previously computed:
        return stored value of Fib(n)
    else:
        return Fib(n-1) + Fib(n-2)
```

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure).
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n) : \\
\begin{align*}
\text{if} & \quad (n = 0) \\
& \quad \text{return} \ 0 \\
\text{if} & \quad (n = 1) \\
& \quad \text{return} \ 1 \\
\text{if} & \quad (\text{Fib}(n) \text{ was previously computed}) \\
& \quad \text{return} \ \text{stored value of Fib}(n) \\
\text{else} & \\
& \quad \text{return} \ \text{Fib}(n - 1) + \ \text{Fib}(n - 2)
\end{align*}
\]
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n): \\
\quad \text{if } (n = 0) \\
\quad \quad \text{return } 0 \\
\quad \text{if } (n = 1) \\
\quad \quad \text{return } 1 \\
\quad \text{if } (\text{Fib}(n) \text{ was previously computed}) \\
\quad \quad \text{return stored value of Fib(n)} \\
\quad \text{else} \\
\quad \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\]

How do we keep track of previously computed values?
Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

\[
\text{Fib}(n):
\]
\[
\text{if } (n = 0) \quad \text{return } 0 \\
\text{if } (n = 1) \quad \text{return } 1 \\
\text{if } (\text{Fib}(n) \text{ was previously computed}) \quad \text{return stored value of Fib}(n) \\
\text{else} \quad \text{return } \text{Fib}(n - 1) + \text{Fib}(n - 2)
\]

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)
Automatic implicit memorization

Initialize a (dynamic) dictionary data structure D to empty

$$\text{Fib}(n):$$

if $(n = 0)$
 return 0

if $(n = 1)$
 return 1

if $(n$ is already in D)
 return value stored with n in D

val $\leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2)$

Store (n, val) in D

return val

Use hash-table or a map to remember which values were already computed.
Explicit memorization (not automatic)

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.

\[
\begin{align*}
\text{Fib}(n) &= \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
M[n] & \text{if } M[n] \neq -1 \\
M[n] \left(\text{Fib}(n-1) + \text{Fib}(n-2) \right) & \text{otherwise}
\end{cases}
\end{align*}
\]

- Need to know upfront the number of sub-problems to allocate memory.
Explicit memorization (not automatic)

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.
- Resulting code:

```python
Fib(n):
    if (n == 0)
        return 0
    if (n == 1)
        return 1
    if (M[n] != -1) // M[n]: stored value of Fib(n)
        return M[n]
    M[n] ← Fib(n - 1) + Fib(n - 2)
    return M[n]
```
Explicit memorization (not automatic)

- Initialize table/array M of size n: $M[i] = -1$ for $i = 0, \ldots, n$.
- Resulting code:

  ```python
  def Fib(n):
      if (n == 0):
          return 0
      if (n == 1):
          return 1
      if (M[n] != -1) // M[n]: stored value of Fib(n)
          return M[n]
      M[n] = Fib(n - 1) + Fib(n - 2)
      return M[n]
  ```

- Need to know upfront the number of sub-problems to allocate memory.
Recursion tree for the memorized Fib...
Automatic (Implicit) Memorization

- Recursive version:

 \[f(x_1, x_2, \ldots, x_d) : \]

 CODE

- Recursive version with memoization:

 \[g(x_1, x_2, \ldots, x_d) : \]

  ```
  if f already computed for (x_1, x_2, \ldots, x_d) then
  return value already computed
  ```

 NEW_CODE

- NEW_CODE:
 - Replaces any “return \(\alpha \)” with
 - Remember “\(f(x_1, \ldots, x_d) = \alpha \)” ; return \(\alpha \).
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.

Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
Explicit vs Implicit Memoization

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.

- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.
Explicit/implicit memorization for Fibonacci

Init: \(M[i] = -1, \ i = 0, \ldots, n. \)

Fib\((k)\):
- if \((k = 0) \)
 return 0
- if \((k = 1) \)
 return 1
- if \((M[k] \neq -1) \)
 return \(M[n] \)

\(M[k] \leftarrow \text{Fib}(k - 1) + \text{Fib}(k - 2) \)
return \(M[k] \)

Init: Init dictionary \(D \)

Fib\((n)\):
- if \((n = 0) \)
 return 0
- if \((n = 1) \)
 return 1
- if \((n \text{ is already in } D) \)
 return value stored with \(n \) in \(D \)
 \(\text{val} \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2) \)
Store \((n, \text{val}) \) in \(D \)
return \(\text{val} \)

Explicit memorization

Implicit memorization
Dynamic programming
Removing the recursion by filling the table in the right order

\begin{align*}
\text{Fib}(n): & \quad \text{if } (n = 0) \quad \text{return } 0 \\
& \quad \text{if } (n = 1) \quad \text{return } 1 \\
& \quad \text{if } (M[n] \neq -1) \quad \text{return } M[n] \\
& \quad M[n] \leftarrow \text{Fib}(n - 1) + \text{Fib}(n - 2) \\
& \quad \text{return } M[n]
\end{align*}

\begin{align*}
\text{FibIter}(n): & \quad \text{if } (n = 0) \quad \text{then} \\
& \quad \text{return } 0 \\
& \quad \text{if } (n = 1) \quad \text{then} \\
& \quad \text{return } 1 \\
& \quad F[0] = 0 \\
& \quad F[1] = 1 \\
& \quad \text{for } i = 2 \text{ to } n \text{ do} \\
& \quad \quad F[i] = F[i - 1] + F[i - 2] \\
& \quad \text{return } F[n]
\end{align*}
Dynamic programming: Saving space!

Saving space. Do we need an array of \(n \) numbers? Not really.

\[
\text{FibIter}(n):
\]

\[
\begin{align*}
&\text{if } (n = 0) \text{ then} \\
&\quad \text{return } 0 \\
&\text{if } (n = 1) \text{ then} \\
&\quad \text{return } 1 \\
&F[0] = 0 \\
&F[1] = 1 \\
&\text{for } i = 2 \text{ to } n \text{ do} \\
&\quad F[i] = F[i - 1] + F[i - 2] \\
&\text{return } F[n]
\end{align*}
\]

\[
\text{FibIter}(n):
\]

\[
\begin{align*}
&\text{if } (n = 0) \text{ then} \\
&\quad \text{return } 0 \\
&\text{if } (n = 1) \text{ then} \\
&\quad \text{return } 1 \\
&prev2 = 0 \\
&prev1 = 1 \\
&\text{for } i = 2 \text{ to } n \text{ do} \\
&\quad \text{temp} = prev1 + prev2 \\
&\quad prev2 = prev1 \\
&\quad prev1 = \text{temp} \\
&\text{return } prev1
\end{align*}
\]
Dynamic programming – quick review

Dynamic Programming is **smart recursion**
Dynamic Programming is \textbf{smart recursion} + \textbf{explicit memorization}
Dynamic Programming is **smart recursion**

+ **explicit memorization**
+ filling the table in right order
+ removing recursion.
Suppose we have a recursive program $foo(x)$ that takes an input x.

1. On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$.
2. $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.

Q: What is an upper bound on the running time of the memorized version of $foo(x)$ if $|x| = n$?

$O(A(n)B(n))$.

\[F_b: A(n) = n \]

\[B(n) = O(n) \]

(1) addition
Analyzing memorized recursive function

Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.
Analyzing memorized recursive function

Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we memorize the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.

Q: What is an upper bound on the running time of memorized version of $foo(x)$ if $|x| = n$? $A(n) \cdot B(n)$
Analyzing memorized recursive function

Suppose we have a recursive program $foo(x)$ that takes an input x.

- On input of size n the number of distinct sub-problems that $foo(x)$ generates is at most $A(n)$
- $foo(x)$ spends at most $B(n)$ time not counting the time for its recursive calls.

Suppose we **memorize** the recursion.

Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.

Q: What is an upper bound on the running time of **memorized** version of $foo(x)$ if $|x| = n$? $O(A(n)B(n))$.
Fibonacci numbers are big – corrected running time analysis
Is the iterative algorithm a polynomial time algorithm? Does it take $O(n)$ time?

- input is n and hence input size is $\Theta(\log n)$
- output is $F(n)$ and output size is $\Theta(n)$. Why?
- Hence output size is exponential in input size so no polynomial time algorithm possible!
- Running time of iterative algorithm: $\Theta(n)$ additions but number sizes are $O(n)$ bits long! Hence total time is $O(n^2)$, in fact $\Theta(n^2)$. Why?
Longest Increasing Sub-sequence Revisited
Sequences

Definition
Sequence: an ordered list a_1, a_2, \ldots, a_n. **Length** of a sequence is number of elements in the list.

Definition
a_{i_1}, \ldots, a_{i_k} is a **sub-sequence** of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition
A sequence is **increasing** if $a_1 < a_2 < \ldots < a_n$. It is **non-decreasing** if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly **decreasing** and **non-increasing**.
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1
- Subsequence of above sequence: 5, 2, 1
- Increasing sequence: 3, 5, 9, 17, 54
- Decreasing sequence: 34, 21, 7, 5, 1
- Increasing subsequence of the first sequence: 2, 7, 8.
- *Longest* Increasing subsequence of the first sequence: 3, 5, 7, 8.
Longest Increasing Subsequence Problem

Input A sequence of numbers \(a_0, a_1, \ldots, a_{n-1} \)

Goal Find an increasing subsequence \(a_{i_0}, a_{i_1}, \ldots, a_{i_k} \) of maximum length
Longest Increasing Subsequence Problem

Input A sequence of numbers $a_0, a_1, \ldots, a_{n-1}$

Goal Find an increasing subsequence $a_{i_0}, a_{i_1}, \ldots, a_{i_k}$ of maximum length

Example
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8
- This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
- How many leaves are there for the full [6,3,5,2,7, 8, 1] sequence
- What is the running time?
Naive Recursion Enumeration - Code

Assume a_1, a_2, \ldots, a_n is contained in an array A

```python
algLISNaive(A[1..n]):
    max = 0
    for each subsequence $B$ of $A$
do
        if $B$ is increasing and $|B| > max$ then
            max = $|B|$ 

Output max
```

Running time: $O(n2^n)$.

2^n subsequences of a sequence of length n and $O(n)$ time to check if a given sequence is increasing.
Can we find a recursive algorithm for LIS?

\textbf{LIS}(A[0..'n - 1]):
Can we find a recursive algorithm for LIS?

LIS\((A[0..n-1]) \):

- **Case 1**: Does not contain \(A[n-1] \) in which case
 \[\text{LIS}(A[0..n-1]) = \text{LIS}(A[0..(n-1)]) \]

- **Case 2**: contains \(A[n-1] \) in which case \(\text{LIS}(A[0..n-1]) \) is not so clear.

Observation
*For second case we want to find a subsequence in \(A[1..(n-2)] \) that is restricted to numbers less than \(A[n-1] \). This suggests that a more general problem is **LIS_smaller**(\(A[0..n-1], x \)) which gives the longest increasing subsequence in \(A \) where each number in the sequence is less than \(x \).*
Sequence: $A[0..6] = 6, 3, 5, 2, 7, 8, 1$
Recursive Approach

$LIS(A[1..n])$: the length of longest increasing subsequence in A

$LIS_{smaller}(A[1..n], x)$: length of longest increasing subsequence in $A[1..n]$ with all numbers in subsequence less than x

```
LIS_{smaller}(A[1..i], x):
    if $i = 0$ then return 0
    $m = LIS_{smaller}(A[1..i - 1], x)$
    if $A[i] < x$ then
        $m = max(m, 1 + LIS_{smaller}(A[1..i - 1], A[i]))$
    Output $m$
```

$LIS(A[1..n])$:
 return $LIS_{smaller}(A[1..n], \infty)$
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) : \\
\text{if } i = 0 \text{ then return } 0 \\
m = \text{LIS_smaller}(A[1..i - 1], x) \\
\text{if } A[i] < x \text{ then} \\
m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\]

\[
\text{LIS}(A[1..n]) : \\
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate?
Recursive Approach

\[
\text{LIS}_\text{smaller}(A[1..i], x) : \\
\quad \text{if } i = 0 \text{ then return } 0 \\
\quad m = \text{LIS}_\text{smaller}(A[1..i - 1], x) \\
\quad \text{if } A[i] < x \text{ then} \\
\quad \quad m = \max(m, 1 + \text{LIS}_\text{smaller}(A[1..i - 1], A[i])) \\
\quad \text{Output } m
\]

\[
\text{LIS}(A[1..n]) : \\
\quad \text{return } \text{LIS}_\text{smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS}_\text{smaller}(A[1..n], \infty) \) generate? \(O(n^2) \)
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) : \\
\hspace{1em} \text{if } i = 0 \text{ then return } 0 \\
\hspace{1em} m = \text{LIS_smaller}(A[1..i - 1], x) \\
\hspace{1em} \text{if } A[i] < x \text{ then} \\
\hspace{2em} m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\hspace{1em} \text{Output } m
\]

\[
\text{LIS}(A[1..n]) : \\
\hspace{1em} \text{return } \text{LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS_smaller}(A[1..n], \infty) \) generate? \(O(n^2) \)
- What is the running time if we memorize recursion? \(O(n^2) \)

\[
A(n) = O(n^2) \\
B(n) = O(1)
\]
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x) :
\begin{align*}
\text{if } i &= 0 \text{ then return } 0 \\
 m &= \text{LIS_smaller}(A[1..i - 1], x) \\
\text{if } A[i] &< x \text{ then} \\
 m &= \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \\
\text{Output } m
\end{align*}
\]

\[
\text{LIS}(A[1..n]) : \\
\text{return LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \text{LIS_smaller}(A[1..n], \infty) generate? \(O(n^2)\)
- What is the running time if we memorize recursion? \(O(n^2)\) since each call takes \(O(1)\) time to assemble the answers from recursive calls and no other computation.
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x): \\
\text{if } i = 0 \text{ then return } 0 \\
m = \text{LIS_smaller}(A[1..i-1], x) \\
\text{if } A[i] < x \text{ then} \\
m = \max(m, 1 + \text{LIS_smaller}(A[1..i-1], A[i])) \\
\text{Output } m
\]

\[
\text{LIS}(A[1..n]): \\
\text{return } \text{LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS_smaller}(A[1..n], \infty) \) generate? \(O(n^2) \)
- What is the running time if we memorize recursion? \(O(n^2) \) since each call takes \(O(1) \) time to assemble the answers from to recursive calls and no other computation.
- How much space for memorization?
Recursive Approach

\[
\text{LIS_smaller}(A[1..i], x):
\]
\begin{enumerate}
 \item if \(i = 0 \) then return 0
 \item \(m = \text{LIS_smaller}(A[1..i - 1], x) \)
 \item if \(A[i] < x \) then
 \begin{enumerate}
 \item \(m = \max(m, 1 + \text{LIS_smaller}(A[1..i - 1], A[i])) \)
 \end{enumerate}
\end{enumerate}
Output \(m \)

\[
\text{LIS}(A[1..n]):
\]
\[
\text{return} \ \text{LIS_smaller}(A[1..n], \infty)
\]

- How many distinct sub-problems will \(\text{LIS_smaller}(A[1..n], \infty) \) generate? \(O(n^2) \)
- What is the running time if we memorize recursion? \(O(n^2) \) since each call takes \(O(1) \) time to assemble the answers from recursive calls and no other computation.
- How much space for memorization? \(O(n^2) \)
Naming sub-problems and recursive equation

After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n + 1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)
Naming sub-problems and recursive equation

After seeing that number of sub-problems is $O(n^2)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $n+1$)

$LIS(i, j)$: length of longest increasing sequence in $A[1..i]$ among numbers less than $A[j]$ (defined only for $i < j$)

Base case: $LIS(0, j) = 0$ for $1 \leq j \leq n + 1$

Recursive relation:
- $LIS(i, j) = LIS(i - 1, j)$ if $A[i] \geq A[j]$
- $LIS(i, j) = \max \{LIS(i - 1, j), 1 + LIS(i - 1, i)\}$ if $A[i] < A[j]$

Output: $LIS(n, n + 1)$.
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases} \]
How to order bottom up computation?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

 Represents limiter

\[j \]

\[i \]

\[\text{Represents sub-array} \]

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[LIS(i, j) = \]

\[\begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases} \]
How to order bottom up computation?

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
 0 & i = 0 \\
 LIS(i - 1, j) & A[i] \geq A[j] \\
 \max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:
\[
LIS(i, j) =
\begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:
\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Represents limiter \(j \)

Represents sub-array \(i \)

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & \text{if } i = 0 \\
LIS(i - 1, j) & \text{if } A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & \text{if } A[i] < A[j]
\end{cases}
\]

Sequence:

\(A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \)
How to order bottom up computation?

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
How to order bottom up computation?

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Represents limiter</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represents sub-array i

Recursive relation:

\[
LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]

Sequence:

\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1]\]
How to order bottom up computation?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[6]</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Receives a sub-array \(i \)

Receives a limiter \(j \)

Recursive relation:

\[
LIS(i, j) =
\begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ \begin{array}{l}
LIS(i - 1, j) \\
1 + LIS(i - 1, i)
\end{array} \right\} & A[i] < A[j]
\end{cases}
\]

Sequence:

\[
A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1]
\]
Iterative algorithm

The dynamic program for longest increasing subsequence

\[\text{LIS-Iterative}(A[1..n]) : \]
\[
A[n + 1] = \infty
\]
\[
\text{int } \text{LIS}[0..n - 1, 0..n]
\]
\[
\text{for } j = 0 \ldots n \) \text{ if } A[i] \leq A[j] \text{ then } \text{LIS}[0][j] = 1
\]
\[
\text{for } i = 1 \ldots n - 1 \text{ do }
\]
\[
\text{for } j = i \ldots n - 1 \text{ do }
\]
\[
\text{if } (A[i] \geq A[j])
\]
\[
\text{LIS}[i, j] = \text{LIS}[i - 1, j]
\]
\[
\text{else}
\]
\[
\text{LIS}[i, j] = \max(\text{LIS}[i - 1, j], 1 + \text{LIS}[i - 1, i])
\]
\[
\text{Return } \text{LIS}[n, n + 1]
\]

Running time: \(O(n^2) \)
Space: \(O(n^2) \)
Iterative algorithm

The dynamic program for longest increasing subsequence

\textbf{LIS-Iterative}(A[1..n]):

- \(A[n + 1] = \infty \)
- \(\text{int } LIS[0..n - 1, 0..n] \)
- \(\text{for } j = 0 \ldots n \text{ do if } A[i] \leq A[j] \text{ then } LIS[0][j] = 1 \)

- \(\text{for } i = 1 \ldots n - 1 \text{ do} \)
 - \(\text{for } j = i \ldots n - 1 \text{ do} \)
 - \(\text{if } (A[i] \geq A[j]) \)
 - \(LIS[i, j] = LIS[i - 1, j] \)
 - \(\text{else} \)
 - \(LIS[i, j] = \max(LIS[i - 1, j], 1 + LIS[i - 1, i]) \)

- Return \(LIS[n, n + 1] \)

Running time: \(O(n^2) \)

Space: \(O(n^2) \) Can be done in linear space. How?
Two comments

Question: Can we compute an optimum solution and not just its value?
Question: Can we compute an optimum solution and not just its value?
Yes! See notes.
Finding the sub-sequence

Sequence:
\[A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1] \]

We know the LIS length (4) but how do we find the LIS itself?

\[LIS = [3, 5, 7, 8] \]

\[LIS(i, j) = \begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases} \]
Finding the sub-sequence

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6]</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[6,3]</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>[6,3,5]</td>
<td>3</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2]</td>
<td>4</td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7]</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8]</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6,3,5,2,7,8,1]</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Represents sub-array i

Represents limiter j

Sequence:

A[1 \ldots 7] = [6, 3, 5, 2, 7, 8, 1]

We know the LIS length (4) but how do we find the LIS itself?

Recursive relation:

\[
LIS(i, j) =
\begin{cases}
0 & i = 0 \\
LIS(i - 1, j) & A[i] \geq A[j] \\
\max \left\{ LIS(i - 1, j), 1 + LIS(i - 1, i) \right\} & A[i] < A[j]
\end{cases}
\]
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS?
Two comments

Question: Can we compute an optimum solution and not just its value?
Yes!

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and optimizing one can obtain an $O(n \log n)$ time and $O(n)$ space algorithm. $O(n \log n)$ time is not obvious. Depends on improving time by using data structures on top of dynamic programming.
How to come up with dynamic programming algorithm: summary
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.

...need to find the right way or order the sub-problems evaluation. This leads to an a dynamic programming algorithm.

Optimize the resulting algorithm further...
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- ...need to find the right way or order the sub-problems evaluation.
 This leads to an a dynamic programming algorithm.
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- ...need to find the right way or order the sub-problems evaluation. This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- ...need to find the right way or order the sub-problems evaluation. This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further
- ...
Dynamic Programming

- Find a “smart” recursion for the problem in which the number of distinct sub-problems is small; polynomial in the original problem size.
- Estimate the number of sub-problems, the time to evaluate each sub-problem and the space needed to store the value.
- This gives an upper bound on the total running time if we use automatic/explicit memorization.
- Come up with an explicit memorization algorithm for the problem.
- Eliminate recursion and find an iterative algorithm.
- ...need to find the right way or order the sub-problems evaluation. This leads to an a dynamic programming algorithm.
- Optimize the resulting algorithm further
- ...
- Get rich!