
1

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the
Fibonnacci nth number.

Fn = Fn�1 + Fn�2 where F0 = 0,F1 = 1

1

ECE-374-B: Lecture 13 - Dynamic
Programming I

Instructor: Nickvash Kani
March 02, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Write a (very simple) recursive algorithm that calcuates the
Fibonnacci nth number.

Fn = Fn�1 + Fn�2 where F0 = 0,F1 = 1

2

F b n

if u 01 I

return
u
Base Case

else
return

Fib n 1 Fib n 2

QQ 8

do

Recursion and Memoization

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n � 1) + F (n � 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The
Fibonacci Quarterly1!

• Binet’s formula: F (n) = 'n�(1�')n
p

5 ⇡ 1.618n�(�0.618)n
p

5 ⇡ 1.618n
p

5
' is the golden ratio (1 +

p
5)/2 ' 1.618.

• limn!1F (n + 1)/F (n) = '

3

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n � 1) + F (n � 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The
Fibonacci Quarterly1!

• Binet’s formula: F (n) = 'n�(1�')n
p

5 ⇡ 1.618n�(�0.618)n
p

5 ⇡ 1.618n
p

5
' is the golden ratio (1 +

p
5)/2 ' 1.618.

• limn!1F (n + 1)/F (n) = '

3

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

4

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

4

p

Q 2

II 4

a
TCO O

TG Ten 1 TCL 2 OCI Tat

IOE
Fib O I I 2 3,5 8 13 21 34

A O 1,2 3 4,5 6 7 8 9

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

4

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).
Fib(n):

if (n = 0)
return 0

else if (n = 1)
return 1

else
return Fib(n � 1) + Fib(n � 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n � 1) + T (n � 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n): T (n) = ⇥('n).

The number of additions is exponential in n. Can we do better?
4

Tcu ten 1 ten D I 064

2064

Recursion tree for the Recursive Fibonacci

10

5

Recursion tree for the Recursive Fibonacci

10 2

0 1

5

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

5

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

1

3

2

0 1

2

0 1

4

5

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

5

Recursion tree for the Recursive Fibonacci

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

5

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7

5

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

6

O

F O I I 2 I

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]
return F [n]

What is the running time of the algorithm?

O(n) additions.

6

OG tin

I addition
OLD

OCS OH OLD

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

6

What is the difference?

• Recursive algorithm is computing the same numbers again
and again.

• Iterative algorithm is storing computed values and building
bottom up the final value.

Memoization.

Dynamic Programming: Finding a recursion that can be
effectively/efficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

7

What is the difference?

• Recursive algorithm is computing the same numbers again
and again.

• Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be
effectively/efficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

7

when we store outputs

of previous problem

instances

What is the difference?

• Recursive algorithm is computing the same numbers again
and again.

• Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming: Finding a recursion that can be
effectively/efficiently memorized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

7

Automatic/implicit memorization1

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)
else

return Fib(n � 1) + Fib(n � 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

8

1

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)
else

return Fib(n � 1) + Fib(n � 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

8

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)
else

return Fib(n � 1) + Fib(n � 2)

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure)

8

Automatic Memorization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)
else

return Fib(n � 1) + Fib(n � 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

8

Automatic implicit memorization

Initialize a (dynamic) dictionary data structure D to empty
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (n is already in D)
return value stored with n in D

val (Fib(n � 1) + Fib(n � 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already
computed.

9

Explicit memorization (not automatic)

• Initialize table/array M of size n: M[i] = �1 for i = 0, . . . , n.

• Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= �1) // M[n]: stored value of Fib(n)
return M[n]

M[n] (Fib(n � 1) + Fib(n � 2)
return M[n]

• Need to know upfront the number of sub-problems to allocate
memory.

10

Explicit memorization (not automatic)

• Initialize table/array M of size n: M[i] = �1 for i = 0, . . . , n.
• Resulting code:

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (M[n] 6= �1) // M[n]: stored value of Fib(n)

return M[n]
M[n] (Fib(n � 1) + Fib(n � 2)
return M[n]

• Need to know upfront the number of sub-problems to allocate
memory.

10

Explicit memorization (not automatic)

• Initialize table/array M of size n: M[i] = �1 for i = 0, . . . , n.
• Resulting code:

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (M[n] 6= �1) // M[n]: stored value of Fib(n)

return M[n]
M[n] (Fib(n � 1) + Fib(n � 2)
return M[n]

• Need to know upfront the number of sub-problems to allocate
memory.

10

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

65

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

3

5

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

5

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

2

5

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

5

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

4

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2

4

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

6

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4

6

11

Recursion tree for the memorized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4 5

6

11

Automatic (Implicit) Memorization

• Recursive version:
f (x1, x2, . . . , xd):

CODE

• Recursive version with memoization:
g(x1, x2, . . . , xd):

if f already computed for (x1, x2, . . . , xd) then
return value already computed

NEW_CODE

• NEW_CODE:
• Replaces any “return ↵” with
• Remember “f (x1, . . . , xd) = ↵”; return ↵.

12

Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm)
preferred:

• analyze problem ahead of time

• Allows for efficient memory allocation and access.
• Implicit (automatic) memoization:

• problem structure or algorithm is not well understood.
• Need to pay overhead of data-structure.
• Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

13

Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm)
preferred:

• analyze problem ahead of time
• Allows for efficient memory allocation and access.

• Implicit (automatic) memoization:
• problem structure or algorithm is not well understood.
• Need to pay overhead of data-structure.
• Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

13

Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm)
preferred:

• analyze problem ahead of time
• Allows for efficient memory allocation and access.

• Implicit (automatic) memoization:
• problem structure or algorithm is not well understood.

• Need to pay overhead of data-structure.
• Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

13

Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm)
preferred:

• analyze problem ahead of time
• Allows for efficient memory allocation and access.

• Implicit (automatic) memoization:
• problem structure or algorithm is not well understood.
• Need to pay overhead of data-structure.

• Functional languages (e.g., LISP) automatically do
memoization, usually via hashing based dictionaries.

13

Explicit vs Implicit Memoization

• Explicit memoization (on the way to iterative algorithm)
preferred:

• analyze problem ahead of time
• Allows for efficient memory allocation and access.

• Implicit (automatic) memoization:
• problem structure or algorithm is not well understood.
• Need to pay overhead of data-structure.
• Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

13

Explicit/implicit memorization for Fibonacci

Init: M[i] = �1, i = 0, . . . , n.

Fib(k):
if (k = 0)

return 0
if (k = 1)

return 1
if (M[k] 6= �1)

return M[n]
M[k] (Fib(k � 1) + Fib(k � 2)
return M[k]

Explicit memorization

Init: Init dictionary D

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (n is already in D)

return value stored with n in D
val (Fib(n � 1) + Fib(n � 2)

Store (n, val) in D
return val

Implicit memorization

14

Dynamic programming

Removing the recursion by filling the table in the right order

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (M[n] 6= �1)

return M[n]
M[n] (Fib(n � 1) + Fib(n � 2)
return M[n]

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]
return F [n]

15

Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i � 1] + F [i � 2]
return F [n]

FibIter(n):
if (n = 0) then

return 0
if (n = 1) then

return 1
prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

16
Recurrence F n F nil Flu 2

Memorized the output

Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memorization

+ filling the table in right order

+ removing recursion.

17

Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memorization

+ filling the table in right order

+ removing recursion.

17

Dynamic programming – quick review

Dynamic Programming is smart recursion

+ explicit memorization

+ filling the table in right order

+ removing recursion.

17

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x .

• On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

• foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x | = n? O(A(n)B(n)).

18

1 1 a

Fib Ala u

B u OG
1 addition

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x .

• On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

• foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x | = n? O(A(n)B(n)).

18

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x .

• On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

• foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x | = n?

O(A(n)B(n)).

18

ACA OG

Analyzing memorized recursive function

Suppose we have a recursive program foo(x) that takes an input x .

• On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

• foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose we memorize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.

Q: What is an upper bound on the running time of memorized
version of foo(x) if |x | = n? O(A(n)B(n)).

18

Fibonacci numbers are big –
corrected running time analysis

Back to Fibonacci Numbers

T Is the iterative algorithm a polynomial time algorithm? Does it
take O(n) time?

• input is n and hence input size is ⇥(log n)
• output is F (n) and output size is ⇥(n). Why?
• Hence output size is exponential in input size so no

polynomial time algorithm possible!
• Running time of iterative algorithm: ⇥(n) additions but

number sizes are O(n) bits long! Hence total time is O(n2),
in fact ⇥(n2). Why?

19

Longest Increasing Sub-sequence
Revisited

Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1 , . . . , aik is a sub-sequence of a1, . . . , an if
1 i1 < i2 < . . . < ik n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing
if a1 a2 . . . an. Similarly decreasing and non-increasing.

20

Sequences - Example...

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Subsequence of above sequence: 5, 2, 1
• Increasing sequence: 3, 5, 9, 17, 54
• Decreasing sequence: 34, 21, 7, 5, 1
• Increasing subsequence of the first sequence: 2, 7, 8.
• Longest Increasing subsequence of the first sequence:

3, 5, 7, 8.

21

v7

Longest Increasing Subsequence Problem

Input A sequence of numbers a0, a1, . . . , an�1

Goal Find an increasing subsequence ai0 , ai1 , . . . , aik of
maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8

22

Longest Increasing Subsequence Problem

Input A sequence of numbers a0, a1, . . . , an�1

Goal Find an increasing subsequence ai0 , ai1 , . . . , aik of
maximum length

Example
• Sequence: 6, 3, 5, 2, 7, 8, 1
• Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
• Longest increasing subsequence: 3, 5, 7, 8

22

Naive Recursion Enumeration - State Tree
A = [6, 3, 5, 2, 7]

ss = []

A = [6, 3, 5, 2]
ss = [7]

A = [6, 3, 5]
ss = [2, 7]

A = [6, 3]
ss = [5, 2, 7]

A = [6]
ss = [3, 5, 2, 7]

A = []

ss = [6, 3, 5, 2, 7]
A = []

ss = [3, 5, 2, 7]

A = [6]
ss = [5, 2, 7]

A = []

ss = [6, 5, 2, 7]
A = []

ss = [5, 2, 7]

A = [6, 3]
ss = [2, 7]

A = [6]
ss = [3, 2, 7]

A = []

ss = [6, 3, 2, 7]
A = []

ss = [3, 2, 7]

A = [6]
ss = [2, 7]

A = []

ss = [6, 2, 7]
A = []

ss = [2, 7]

A = [6, 3, 5]
ss = [7]

A = [6, 3]
ss = [5, 7]

A = [6]
ss = [3, 5, 7]

A = []

ss = [6, 3, 5, 7]
A = []

ss = [3, 5, 7]

A = [6]
ss = [5, 7]

A = []

ss = [6, 5, 7]
A = []

ss = [5, 7]

A = [6, 3]
ss = [7]

A = [6]
ss = [3, 7]

A = []

ss = [6, 3, 7]
A = []

ss = [3, 7]

A = [6]
ss = [7]

A = []

ss = [6, 7]
A = []

ss = [7]

A = [6, 3, 5, 2]
ss = []

A = [6, 3, 5]
ss = [2]

A = [6, 3]
ss = [5, 2]

A = [6]
ss = [3, 5, 2]

A = []

ss = [6, 3, 5, 2]
A = []

ss = [3, 5, 2]

A = [6]
ss = [5, 2]

A = []

ss = [6, 5, 2]
A = []

ss = [5, 2]

A = [6, 3]
ss = [2]

A = [6]
ss = [3, 2]

A = []

ss = [6, 3, 2]
A = []

ss = [3, 2]

A = [6]
ss = [2]

A = []

ss = [6, 2]
A = []

ss = [2]

A = [6, 3, 5]
ss = []

A = [6, 3]
ss = [5]

A = [6]
ss = [3, 5]

A = []

ss = [6, 3, 5]
A = []

ss = [3, 5]

A = [6]
ss = [5]

A = []

ss = [6, 5]
A = []

ss = [5]

A = [6, 3]
ss = []

A = [6]
ss = [3]

A = []

ss = [6, 3]
A = []

ss = [3]

A = [6]
ss = []

A = []

ss = [6]
A = []

ss = []

• This is just for [6,3,5,2,7]! (Tikz won’t print larger trees)
• How many leafs are there for the full [6,3,5,2,7, 8, 1] sequence
• What is the running time?

23

Naive Recursion Enumeration - Code

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.

24

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n � 1]):

• Case 1: Does not contain A[n � 1] in which case
LIS(A[0..n � 1]) = LIS(A[0..(n � 1)])

• Case 2: contains A[n � 1] in which case LIS(A[0..n � 1]) is
not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 2)]
that is restricted to numbers less than A[n � 1]. This suggests that
a more general problem is LIS_smaller(A[0..n � 1], x) which gives
the longest increasing subsequence in A where each number in the
sequence is less than x.

25

Backtracking Approach: LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[0..n � 1]):

• Case 1: Does not contain A[n � 1] in which case
LIS(A[0..n � 1]) = LIS(A[0..(n � 1)])

• Case 2: contains A[n � 1] in which case LIS(A[0..n � 1]) is
not so clear.

Observation
For second case we want to find a subsequence in A[1..(n � 2)]
that is restricted to numbers less than A[n � 1]. This suggests that
a more general problem is LIS_smaller(A[0..n � 1], x) which gives
the longest increasing subsequence in A where each number in the
sequence is less than x.

25

no 2

Example

Sequence: A[0..6] = 6, 3, 5, 2, 7, 8, 1
A = [6, 3, 5, 2, 7, 8, 1]

ss = []

x = inf

A = [6, 3, 5, 2, 7, 8]
ss = [1]
x = 1

A = [6, 3, 5, 2, 7]
ss = [1]
x = 1

A = [6, 3, 5, 2]
ss = [1]
x = 1

A = [6, 3, 5]
ss = [1]
x = 1

A = [6, 3]
ss = [1]
x = 1

A = [6]
ss = [1]
x = 1

A = []

ss = [1]
x = 1

A = [6, 3, 5, 2, 7, 8]
ss = []

x = inf

A = [6, 3, 5, 2, 7]
ss = [8]
x = 8

A = [6, 3, 5, 2]
ss = [7, 8]

x = 7

A = [6, 3, 5]
ss = [2, 7, 8]

x = 2

A = [6, 3]
ss = [2, 7, 8]

x = 2

A = [6]
ss = [2, 7, 8]

x = 2

A = []

ss = [2, 7, 8]
x = 2

A = [6, 3, 5]
ss = [7, 8]

x = 7

A = [6, 3]
ss = [5, 7, 8]

x = 5

A = [6]
ss = [3, 5, 7, 8]

x = 3

A = []

ss = [3, 5, 7, 8]
x = 3

A = [6]
ss = [5, 7, 8]

x = 5

A = []

ss = [5, 7, 8]
x = 5

A = [6, 3]
ss = [7, 8]

x = 7

A = [6]
ss = [3, 7, 8]

x = 3

A = []

ss = [3, 7, 8]
x = 3

A = [6]
ss = [7, 8]

x = 7

A = []

ss = [6, 7, 8]
x = 6

A = []

ss = [7, 8]
x = 7

A = [6, 3, 5, 2]
ss = [8]
x = 8

A = [6, 3, 5]
ss = [2, 8]

x = 2

A = [6, 3]
ss = [2, 8]

x = 2

A = [6]
ss = [2, 8]

x = 2

A = []

ss = [2, 8]
x = 2

A = [6, 3, 5]
ss = [8]
x = 8

A = [6, 3]
ss = [5, 8]

x = 5

A = [6]
ss = [3, 5, 8]

x = 3

A = []

ss = [3, 5, 8]
x = 3

A = [6]
ss = [5, 8]

x = 5

A = []

ss = [3, 5, 8]
x = 3

A = [6, 3]
ss = [8]
x = 8

A = [6]
ss = [3, 8]

x = 3

A = []

ss = [3, 8]
x = 3

A = [6]
ss = [8]
x = 8

A = []

ss = [6, 8]
x = 6

A = []

ss = [8]
x = 8

A = [6, 3, 5, 2, 7]
ss = []

x = inf

A = [6, 3, 5, 2]
ss = [7]
x = 7

A = [6, 3, 5]
ss = [2, 7]

x = 2

A = [6, 3]
ss = [2, 7]

x = 2

A = [6]
ss = [2, 7]

x = 2

A = []

ss = [2, 7]
x = 2

A = [6, 3, 5]
ss = [7]
x = 7

A = [6, 3]
ss = [5, 7]

x = 5

A = [6]
ss = [3, 5, 7]

x = 3

A = []

ss = [3, 5, 7]
x = 3

A = [6]
ss = [5, 7]

x = 5

A = []

ss = [5, 7]
x = 5

A = [6, 3]
ss = [7]
x = 7

A = [6]
ss = [3, 7]

x = 3

A = []

ss = [3, 7]
x = 3

A = [6]
ss = [7]
x = 7

A = []

ss = [6, 7]
x = 6

A = []

ss = [7]
x = 7

A = [6, 3, 5, 2]
ss = []

x = inf

A = [6, 3, 5]
ss = [2]
x = 2

A = [6, 3]
ss = [2]
x = 2

A = [6]
ss = [2]
x = 2

A = []

ss = [2]
x = 2

A = [6, 3, 5]
ss = []

x = inf

A = [6, 3]
ss = [5]
x = 5

A = [6]
ss = [3, 5]

x = 3

A = []

ss = [3, 5]
x = 3

A = [6]
ss = [5]
x = 5

A = []

ss = [5]
x = 5

A = [6, 3]
ss = []

x = inf

A = [6]
ss = [3]
x = 3

A = []

ss = [3]
x = 3

A = [6]
ss = []

x = inf

A = []

ss = [6]
x = 6

A = []

ss = []

x = inf

26

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS_smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

27

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate?

O(n2)

• What is the running time if we memorize recursion? O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization? O(n2)

28

1 x must be
Ali n t

one of the values in A

Ali in
23 M

Cn values

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate? O(n2)

• What is the running time if we memorize recursion? O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization? O(n2)

28

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate? O(n2)

• What is the running time if we memorize recursion?

O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization? O(n2)

28

OC 4
A a 062

BG OCD

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate? O(n2)

• What is the running time if we memorize recursion? O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization? O(n2)

28

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate? O(n2)

• What is the running time if we memorize recursion? O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization?

O(n2)

28

Recursive Approach

LIS_smaller(A[1..i], x):
if i = 0 then return 0
m = LIS_smaller(A[1..i � 1], x)
if A[i] < x then

m = max(m, 1 + LIS_smaller(A[1..i � 1],A[i]))
Output m

LIS(A[1..n]):
return LIS_smaller(A[1..n],1)

• How many distinct sub-problems will
LIS_smaller(A[1..n],1) generate? O(n2)

• What is the running time if we memorize recursion? O(n2)

since each call takes O(1) time to assemble the answers from
to recursive calls and no other computation.

• How much space for memorization? O(n2)
28

Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n2) we name them
to help us understand the structure better. For notational ease we
add 1 at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 j n + 1
Recursive relation:

• LIS(i , j) = LIS(i � 1, j) if A[i] � A[j]
• LIS(i , j) = max{LIS(i � 1, j), 1 + LIS(i � 1, i)} if A[i] < A[j]

Output: LIS(n, n + 1).

29

µ
D

x Ali

Naming sub-problems and recursive equation

After seeing that number of sub-problems is O(n2) we name them
to help us understand the structure better. For notational ease we
add 1 at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 j n + 1
Recursive relation:

• LIS(i , j) = LIS(i � 1, j) if A[i] � A[j]
• LIS(i , j) = max{LIS(i � 1, j), 1 + LIS(i � 1, i)} if A[i] < A[j]

Output: LIS(n, n + 1).

29

IAN 08

if we
don't

inelad

Ali
in
LIS

TH if we can ill

include AC in LIS

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0
[6] 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

How to order bottom up computation?

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 4
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

30

Iterative algorithm

The dynamic program for longest increasing subsequence
LIS-Iterative(A[1..n]):

A[n + 1] = 1
int LIS[0..n � 1, 0..n]
for j = 0 . . . n) if A[i] A[j] then LIS[0][j] = 1

for i = 1 . . . n � 1 do
for j = i . . . n � 1 do

if (A[i] � A[j])
LIS[i , j] = LIS[i � 1, j]

else
LIS[i , j] = max(LIS[i � 1, j], 1 + LIS[i � 1, i])

Return LIS[n, n + 1]

Running time: O(n2)

Space: O(n2)

Can be done in linear space. How?

31

Iterative algorithm

The dynamic program for longest increasing subsequence
LIS-Iterative(A[1..n]):

A[n + 1] = 1
int LIS[0..n � 1, 0..n]
for j = 0 . . . n) if A[i] A[j] then LIS[0][j] = 1

for i = 1 . . . n � 1 do
for j = i . . . n � 1 do

if (A[i] � A[j])
LIS[i , j] = LIS[i � 1, j]

else
LIS[i , j] = max(LIS[i � 1, j], 1 + LIS[i � 1, i])

Return LIS[n, n + 1]

Running time: O(n2)

Space: O(n2) Can be done in linear space. How? 31

Two comments

Question: Can we compute an optimum solution and not just its
value?

Yes! See notes.

32

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

32

Finding the sub-sequence

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 4
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

We know the LIS length (4)
but how do we find the LIS

itself?

LIS = [3, 5, 7, 8]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

33

Finding the sub-sequence

A[1] = 6 A[2] = 3 A[3]=5 A[4]=2 A[5]=7 A[6]=8 A[7]=1 inf Represents limiter
1 2 3 4 5 6 7 8 j

[] 0 0 0 0 0 0 0 0 0
[6] 1 0 0 0 1 1 0 1
[6,3] 2 1 0 1 1 0 1
[6,3,5] 3 0 2 2 0 2
[6,3,5,2] 4 2 2 0 2
[6,3,5,2,7] 5 3 0 3
[6,3,5,2,7,8] 6 0 4
[6,3,5,2,7,8,1] 7 4
Represents sub-array i

Sequence:
A[1 . . . 7] = [6, 3, 5, 2, 7, 8, 1]

We know the LIS length (4)
but how do we find the LIS

itself?

LIS = [3, 5, 7, 8]

Recursive relation:

LIS(i , j) =
8
>>>>><

>>>>>:

0 i = 0
LIS(i � 1, j) A[i] � A[j]

max

8
<

:
LIS(i � 1, j)

1 + LIS(i � 1, i)
A[i] < A[j]

33

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes!

Question: Is there a faster algorithm for LIS?

Yes! Using a
different recursion and optimizing one can obtain an O(n log n)
time and O(n) space algorithm. O(n log n) time is not obvious.
Depends on improving time by using data structures on top of
dynamic programming.

34

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes!

Question: Is there a faster algorithm for LIS? Yes! Using a
different recursion and optimizing one can obtain an O(n log n)
time and O(n) space algorithm. O(n log n) time is not obvious.
Depends on improving time by using data structures on top of
dynamic programming.

34

How to come up with dynamic
programming algorithm: summary

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.

• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.

• ...need to find the right way or order the sub-problems evaluation.
Th is leads to an a dynamic programming algorithm.

• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.

• Optimize the resulting algorithm further
• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further

• ...
• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...

• Get rich!

35

Dynamic Programming

• Find a “smart” recursion for the problem in which the number of
distinct sub-problems is small; polynomial in the original problem
size.

• Estimate the number of sub-problems, the time to evaluate each
sub-problem and the space needed to store the value.

• This gives an upper bound on the total running time if we use
automatic/explicit memorization.

• Come up with an explicit memorization algorithm for the problem.
• Eliminate recursion and find an iterative algorithm.
• ...need to find the right way or order the sub-problems evaluation.

Th is leads to an a dynamic programming algorithm.
• Optimize the resulting algorithm further
• ...
• Get rich! 35

