
1

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted
the processing of the recursion as a table:

" D R E A D
"

D
E
E
D

Is there an easier way to get the
minimum alignment without having to
calculate all the values in the cell?

1

ECE-374-B: Lecture 14 - Graph search

Instructor: Nickvash Kani
October 16, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted
the processing of the recursion as a table:

" D R E A D
"

D
E
E
D

Is there an easier way to get the
minimum alignment without having to
calculate all the values in the cell?

2

Alignement the last letters
of both sequences on top

ftp.qq 3 4 S of eachother

14g
2

3

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted
the processing of the recursion as a table:

" D R E A D
"

D
E
E
D

Look at the flow of the computation!
3

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted
the processing of the recursion as a table:

" D R E A D
"

D
E
E
D

Look at the flow of the computation!
3

Sw 4,0

08 0.0

0

Of

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted
the processing of the recursion as a table:

" D R E A D
"

D
E
E
D

We can solve the problem by turning it into a graph!

3

2 8EE8

Graph Basics

Why Graphs?

• Graphs help model networks which are ubiquitous: transportation networks
(rail, roads, airways), social networks (interpersonal relationships),
information networks (web page links), and many problems that don’t even
look like graph problems.

• Fundamental objects in Computer Science, Optimization, Combinatorics
• Many important and useful optimization problems are graph problems
• Graph theory: elegant, fun and deep mathematics

4

Graph

An undirected (simple) graph G = (V, E) is a 2-
tuple:
• V is a set of vertices (also referred to as
nodes/points)

• E is a set of edges where each edge e 2 E is
a set of the form {u, v} with u, v 2 V and
u 6= v.

Example
In figure, G = (V, E) where V = {1, 2, 3, 4, 5, 6, 7, 8} and
E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {3, 7}, {3, 8}, {4, 5}, {5, 6}, {7, 8}}.

5

Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.
The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

• Three missionaries, three cannibals, one boat, one river
• Boat carries two people, must have at least one person
• Must all get across
• At no time can cannibals outnumber missionaries

How is this a graph search problem?
What are the vertices?
What are the edges?

6

Cannibals and Missionaries: Is the language empty?

MMMCCCb_ MMCC_MCbMC

MMMCCb_C
M

MMM_CCCbCC

MMMCb_CC C

MC_MMCCb
MM

MMCCb_MC MC

CC_MMMCbMM

CCCb_MMM C

C_MMMCCb

CCb_MMMC

_MMMCCCb

CC

C

 CC

MMMCC_Cb
C

MMMC_CCb

CC C

*Omitted states where cannibals outnumber
missionaries

Problems goes back to 800 CE
Versions with brothers and sis-
ters.
Jealous Husbands.
Lions and buffalo
All bad names to a simple prob-
lem...

7

Problems on DFAs and NFAs sometimes are just problems on graphs

• M: DFA/NFA is L(M) empty?
• M: DFA is L(M) = ⌃⇤?
• M: DFA, and a string w. Does M accepts w?
• N: NFA, and a string w. Does N accepts w?

8

Graph notation and representation

Notation and Convention

Notation
An edge in an undirected graphs is an unordered pair of nodes and hence it is a
set. Conventionally we use uv for {u, v} when it is clear from the context that the
graph is undirected.

• u and v are the end points of an edge {u, v}
• Multi-graphs allow

• loops which are edges with the same node appearing as both end points
• multi-edges: different edges between same pairs of nodes

• In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.

9

Graph Representation I

Adjacency Matrix
Represent G = (V, E) with n vertices and m edges using a n⇥ n adjacency matrix A
where

• A[i, j] = A[j, i] = 1 if {i, j} 2 E and A[i, j] = A[j, i] = 0 if {i, j} 62 E.
• Advantage: can check if {i, j} 2 E in O(1) time
• Disadvantage: needs ⌦(n2) space even when m⌧ n2

10

Graph adjacency matrix example [10 vertices]

1

3

9

4

6

7

5

10

8

2

1 2 3 4 5 6 7 8 9 10
1 0 0 1 1 0 0 0 0 1 0
2 0 0 0 0 0 0 1 1 0 1
3 1 0 0 0 1 1 1 0 0 0
4 1 0 0 0 0 1 0 0 0 1
5 0 0 1 0 0 1 0 1 1 0
6 0 0 1 1 1 0 1 0 0 0
7 0 1 1 0 0 1 0 0 0 1
8 0 1 0 0 1 0 0 0 1 0
9 1 0 0 0 1 0 0 1 0 0
10 0 1 0 1 0 0 1 0 0 0

11

Graph Representation II

Adjacency Lists
Represent G = (V, E) with n vertices and m edges using adjacency lists:

• For each u 2 V , Adj(u) = {v | {u, v} 2 E}, that is neighbors of u. Sometimes
Adj(u) is the list of edges incident to u.

• Advantage: space is O(m+ n)
• Disadvantage: cannot “easily” determine in O(1) time whether {i, j} 2 E

• By sorting each list, one can achieve O(log n) time
• By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are represented using
plain vanilla (unsorted) adjacency lists.

12

Graph adjacency list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list
1 3, 4, 9
2 7, 8, 10
3 1, 5, 6, 7
4 1, 6, 10
5 3, 6, 8, 9
6 3, 4, 5, 7
7 2, 3, 6, 10
8 2, 5, 9
9 1, 5, 8
10 2, 4, 7

13

0

Graph adjacency matrix+list example [10 vertices]

1

3

9

4

6

7

5

10

8

2

vertex adjacency list
1 3, 4, 9
2 7, 8, 10
3 1, 5, 6, 7
4 1, 6, 10
5 3, 6, 8, 9
6 3, 4, 5, 7
7 2, 3, 6, 10
8 2, 5, 9
9 1, 5, 8
10 2, 4, 7

1 2 3 4 5 6 7 8 9 10
1 0 0 1 1 0 0 0 0 1 0
2 0 0 0 0 0 0 1 1 0 1
3 1 0 0 0 1 1 1 0 0 0
4 1 0 0 0 0 1 0 0 0 1
5 0 0 1 0 0 1 0 1 1 0
6 0 0 1 1 1 0 1 0 0 0
7 0 1 1 0 0 1 0 0 0 1
8 0 1 0 0 1 0 0 0 1 0
9 1 0 0 0 1 0 0 1 0 0
10 0 1 0 1 0 0 1 0 0 0

14

Graph adjacency matrix example [20 vertices]

1

20

147

4

8

1817

9 13

6

16 1512 19

10

11

2

5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
5 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0
7 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
8 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
9 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1
11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
12 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
13 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
14 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
15 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
16 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
17 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
18 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
19 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
20 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

15

Graph adjacency matrix example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
12 0 1 0 1 0 0 0 1 1 0 0
13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
19 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
21 0 0 1 0 1 0 0 0 0 0 0 1 0 0
22 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
23 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
25 0 0 0 0 1 0 1 0 0 1 0 0 1 0
26 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 1 0 0 0 0 1 0 1
28 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
29 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
32 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
33 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0
34 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
35 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
36 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
39 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16

Graph adjacency list example [40 vertices]

1

34

36

24

6

27

40

4

28 8

19 30

26

29

9

10

35

16

25

2

122223

3338

37

13

17 15

20

32

11

39

31

14

5

18

21

3

7

vertex adjacency list
1 6, 24, 34, 36
2 12, 22, 23, 29
3 14, 15, 21
4 8, 19, 28, 36
5 6, 24, 25, 27
6 1, 5, 7, 23
7 6, 25, 32, 39
8 4, 19, 30
9 10, 16, 28, 35
10 9, 25, 27, 35
11 13, 15, 33, 34
12 2, 33, 37, 38
13 11, 15, 17, 25
14 3, 22, 40
15 3, 11, 13, 22
16 9, 20, 23, 33
17 13, 20, 32, 34
18 20, 30, 34, 40
19 4, 8, 31, 37
20 16, 17, 18, 35
21 3, 31, 38
22 2, 14, 15
23 2, 6, 16, 26
24 1, 5, 31, 38
25 5, 7, 10, 13
26 23, 29
27 5, 10, 40
28 4, 9, 30, 36
29 2, 26
30 8, 18, 28
31 19, 21, 24, 37
32 7, 17, 37, 39
33 11, 12, 16, 39
34 1, 11, 17, 18
35 9, 10, 20, 36
36 1, 4, 28, 35
37 12, 19, 31, 32
38 12, 21, 24, 39
39 7, 32, 33, 38
40 14, 18, 27

17

A Concrete Representation

• Assume vertices are numbered arbitrarily as {1, 2, . . . ,n}.
• Edges are numbered arbitrarily as {1, 2, . . . ,m}.
• Edges stored in an array/list of size m. E[j] is jth edge with info on end points
which are integers in range 1 to n.

• Array Adj of size n for adjacency lists. Adj[i] points to adjacency list of vertex
i. Adj[i] is a list of edge indices in range 1 to m.

18

A Concrete Representation

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

19

A Concrete Representation: Advantages

• Edges are explicitly represented/numbered. Scanning/processing all edges
easy to do.

• Representation easily supports multigraphs including self-loops.
• Explicit numbering of vertices and edges allows use of arrays: O(1)-time
operations are easy to understand.

• Can also implement via pointer based lists for certain dynamic graph settings.

20

Connectivity I

Connectivity

Given a graph G = (V, E):

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 2 E for
1  i  k� 1. The length of the path is k� 1 (the number of edges in the path)
and the path is from v1 to vk. Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that {vi, vi+1} 2 E for
1  i  k� 1 and {v1, vk} 2 E. Single vertex not a cycle according to this
definition.
Caveat: Some times people use the term cycle to also allow vertices to be
repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.
• The connected component of u, con(u), is the set of all vertices connected to
u. Is u 2 con(u)?

21Yes

Connectivity II

Define a relation C on V⇥V as uCv if u is connected
to v
• In undirected graphs, connectivity is a
reflexive, symmetric, and transitive relation.
Connected components are the equivalence
classes.

• Graph is connected if there is only one
connected component.

1

2 3

4 5

6

7

8

9

10

22

I

Connectivity Problems

Algorithmic Problems
• Given graph G and nodes u and v, is u connected to v?
• Given G and node u, find all nodes that are connected to u.
• Find all connected components of G.

Can be accomplished in O(m+ n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is good to
understand on its own.

23

Connectivity Problems

Algorithmic Problems
• Given graph G and nodes u and v, is u connected to v?
• Given G and node u, find all nodes that are connected to u.
• Find all connected components of G.

Can be accomplished in O(m+ n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is good to
understand on its own.

23

Computing connected components
in undirected graphs using basic
graph search

Basic Graph Search in Undirected Graphs

Given G = (V, E) and vertex u 2 V . Let n = |V|.
Explore(G,u):

Visited[1 . . n] FALSE
// ToExplore, S: Lists
Add u to ToExplore and to S
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
Add y to ToExplore
Add y to S

Output S

24

U

Example

Explore(G,u):
Visited[1 . . n] FALSE
// ToExplore, S: Lists
Add u to ToExplore and to S
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
Add y to ToExplore
Add y to S

Output S

1

2 3

4 5

6

7

8

9

10

Running Time:

25

G

0011

Explore G 1 ToExplore S

8

Example

Explore(G,u):
Visited[1 . . n] FALSE
// ToExplore, S: Lists
Add u to ToExplore and to S
Visited[u] TRUE
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
Add y to ToExplore
Add y to S

Output S

1

2 3

4 5

6

7

8

9

10

Running Time:
25

n 101
on El

conca
0 utm while visited 1 All true the

push unvisitedmode onto
To Exp

i

Search Tree

One can create a natural search tree T rooted at u during search.
Explore(G,u):

array Visited[1..n]
Initialize: Visited[i] FALSE for i = 1, . . . ,n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
Add y to ToExplore
Add y to S
Add y to T with x as its parent

Output S

T is a spanning tree of con(u) rooted at u

26

Finding all connected components

Modify Basic Search to find all connected components of a given graph G in
O(m+ n) time.

27

Directed Graphs and Directed
Connectivity

Directed Graphs

Definition
A directed graph G = (V, E) consists of:
• set of vertices/nodes V and
• a set of edges/arcs E ✓ V ⇥ V .

AB C

DE F

G H

An edge is an ordered pair of vertices. (u, v) different from (v,u).

28

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

• Road networks with one-way streets.
• Web-link graph: vertices are web-pages and there is an edge from page p to
page p0 if p has a link to p0. Web graphs used by Google with PageRank
algorithm to rank pages.

• Dependency graphs in variety of applications: link from x to y if y depends on
x. Make files for compiling programs.

• Program Analysis: functions/procedures are vertices and there is an edge
from x to y if x calls y.

29

Directed Graph Representation

Graph G = (V, E) with n vertices and m edges:
• Adjacency Matrix: n⇥ n asymmetric matrix A. A[u, v] = 1 if (u, v) 2 E and
A[u, v] = 0 if (u, v) 62 E. A[u, v] is not same as A[v,u].

• Adjacency Lists: for each node u, Out(u) (also referred to as Adj(u)) and In(u)
store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

30

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily
extends to directed graphs.

Array of edges E

ej

information including end point indices

Array of adjacency lists

vi

List of edges (indices) that are incident to vi

31

Directed Connectivity

Given a graph G = (V, E):

• A (directed) path is a sequence of distinct vertices v1, v2, . . . , vk such that
(vi, vi+1) 2 E for 1  i  k� 1. The length of the path is k� 1 and the path is
from v1 to vk.
By convention, a single node u is a path of length 0.

• A cycle is a sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) 2 E
for 1  i  k� 1 and (vk, v1) 2 E.
By convention, a single node u is not a cycle.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be
reached from u

• Let rch(u) be the set of all vertices reachable from u.

32

Directed Connectivity II

Asymmetricity: D can reach B but B cannot reach D

AB C

DE F

G H

Questions:

• Is there a notion of connected components?
• How do we understand connectivity in directed graphs? 33

Strong connected components

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach v and v can
reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition
C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

34

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach v and v can
reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition
C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

34

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach v and v can
reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition
C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

34

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach v and v can
reach u. In other words v 2 rch(u) and u 2 rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition
C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

34

Strongly Connected Components: Example

AB C

DE F

G H

35

Strongly Connected Components: Example

AB C

DE F

G H

35

scCB
so

E

see
F

Strongly Connected Components: Example

AB C

DE F

G H

35

Or

Strongly Connected Components: Example

AB C

DE F

G H

35

Strongly Connected Components: Example

AB C

DE F

G H

35

Directed Graph Connectivity Problems

• Given G and nodes u and v, can u reach v?
• Given G and u, compute rch(u).
• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v).

• Find the strongly connected component containing node u, that is SCC(u).
• Is G strongly connected (a single strong component)?
• Compute all strongly connected components of G.

36

Graph exploration in directed graphs

Basic Graph Search in Directed Graphs

Given G = (V, E) a directed graph and vertex u 2 V . Let n = |V|.
Explore(G,u):

array Visited[1..n]
Initialize: Set Visited[i] FALSE for 1  i  n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] TRUE
Make tree T with root as u
while (ToExplore is non-empty) do

Remove node x from ToExplore
for each edge (x, y) in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x, y)

Output S 37

OR

Vr

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Example

AB C

DE F

G H

38

Properties of Basic Search

Proposition
Explore(G,u) terminates with S = rch(u).
Proof Sketch.
• Once Visited[i] is set to TRUE it never changes. Hence a node is added only
once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

• By induction on iterations, can show v 2 S) v 2 rch(u)
• Since each node v 2 S was in ToExplore and was explored, no edges in G
leave S. Hence no node in V � S is in rch(u). Caveat: In directed graphs edges
can enter S.

• Thus S = rch(u) at termination.

39

Directed Graph Connectivity Problems

• Given G and nodes u and v, can u reach v?
• Given G and u, compute rch(u).
• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v).

• Find the strongly connected component containing node u, that is SCC(u).
• Is G strongly connected (a single strong component)?
• Compute all strongly connected components of G.

First five problems can be solved in O(n+m) time by via Basic Search (or
BFS/DFS). The last one can also be done in linear time but requires a rather
clever DFS based algorithm (next lecture).

40

Explore return if vins

Explore return 5

Grew G with all the edges
reversed

Directed Graph Connectivity Problems

• Given G and nodes u and v, can u reach v?
• Given G and u, compute rch(u).
• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v).

• Find the strongly connected component containing node u, that is SCC(u).
• Is G strongly connected (a single strong component)?
• Compute all strongly connected components of G.

First five problems can be solved in O(n+m) time by via Basic Search (or
BFS/DFS). The last one can also be done in linear time but requires a rather
clever DFS based algorithm (next lecture).

40

Algorithms via Basic Search

Algorithms via Basic Search - I

• Given G and nodes u and v, can u reach v?
• Given G and u, compute rch(u).

Use Explore(G,u) to compute rch(u) in O(n+m) time.

41

Algorithms via Basic Search - I

• Given G and nodes u and v, can u reach v?
• Given G and u, compute rch(u).

Use Explore(G,u) to compute rch(u) in O(n+m) time.

41

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v).

Naive: O(n(n+m))

Definition (Reverse graph.)
Given G = (V, E), Grev is the graph with edge directions reversed
Grev = (V, E0) where E0 = {(y, x) | (x, y) 2 E}

Compute rch(u) in Grev !

• Running time: O(n+m) to obtain Grev from G and O(n+m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute Grev . Can do Explore(G,u) in Grev implicitly.

42

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v). Naive: O(n(n+m))

Definition (Reverse graph.)
Given G = (V, E), Grev is the graph with edge directions reversed
Grev = (V, E0) where E0 = {(y, x) | (x, y) 2 E}

Compute rch(u) in Grev !

• Running time: O(n+m) to obtain Grev from G and O(n+m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute Grev . Can do Explore(G,u) in Grev implicitly.

42

o

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v). Naive: O(n(n+m))

Definition (Reverse graph.)
Given G = (V, E), Grev is the graph with edge directions reversed
Grev = (V, E0) where E0 = {(y, x) | (x, y) 2 E}

Compute rch(u) in Grev !

• Running time: O(n+m) to obtain Grev from G and O(n+m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute Grev . Can do Explore(G,u) in Grev implicitly.

42

G

o g

Algorithms via Basic Search - II

• Given G and u, compute all v that can reach u, that is all v such that
u 2 rch(v). Naive: O(n(n+m))

Definition (Reverse graph.)
Given G = (V, E), Grev is the graph with edge directions reversed
Grev = (V, E0) where E0 = {(y, x) | (x, y) 2 E}

Compute rch(u) in Grev !

• Running time: O(n+m) to obtain Grev from G and O(n+m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute Grev . Can do Explore(G,u) in Grev implicitly.

42

Algorithms via Basic Search - III

SCC(G,u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u. That is, compute
SCC(G,u).

SCC(G,u) = rch(G,u) \ rch(Grev,u)

Hence, SCC(G,u) can be computed with Explore(G,u) and Explore(Grev,u). Total
O(n+m) time.

Why can rch(G,u) \ rch(Grev,u) be done in O(n) time?

43

Explore G u rehew

Explore Gre
u v3 rch v u

ecclus

Algorithms via Basic Search - III

SCC(G,u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u. That is, compute
SCC(G,u).

SCC(G,u) = rch(G,u) \ rch(Grev,u)

Hence, SCC(G,u) can be computed with Explore(G,u) and Explore(Grev,u). Total
O(n+m) time.

Why can rch(G,u) \ rch(Grev,u) be done in O(n) time?

43

Algorithms via Basic Search - III

SCC(G,u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u. That is, compute
SCC(G,u).

SCC(G,u) = rch(G,u) \ rch(Grev,u)

Hence, SCC(G,u) can be computed with Explore(G,u) and Explore(Grev,u). Total
O(n+m) time.

Why can rch(G,u) \ rch(Grev,u) be done in O(n) time?

43

Algorithms via Basic Search - III

SCC(G,u) = {v | u is strongly connected to v}

• Find the strongly connected component containing node u. That is, compute
SCC(G,u).

SCC(G,u) = rch(G,u) \ rch(Grev,u)

Hence, SCC(G,u) can be computed with Explore(G,u) and Explore(Grev,u). Total
O(n+m) time.

Why can rch(G,u) \ rch(Grev,u) be done in O(n) time?

43

SCC I

Graph G and its reverse graph Grev

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reverse graph Grev
44

SCC II

Graph G a vertex F and its reachable set rch(G, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reachable set of vertices from F

45

8

SCC III

Graph G a vertex F and the set of vertices that can reach it in G:rch(Grev, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Set of vertices that can reach F, computed via DFS in the reverse graph Grev .

46

O

O

O

over

SCC IV: ...

Graph G a vertex F and its strong connected component in G: SCC(G, F)
AB C

DE F

G H

Graph G

AB C

DE F

G H

rch(G, F)

AB C

DE F

G H

rch(Grev, F)

AB C

DE F

G H

SCC(G, F) = rch(G, F) \ rch(Grev, F)

47

Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G,u) = V .

48

Algorithms via Basic Search - IV

• Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G,u) = V .

48

Algorithms via Basic Search - V

• Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n+m)).

Question: Can we do it in O(n+m) time?

49

Algorithms via Basic Search - V

• Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n+m)).

Question: Can we do it in O(n+m) time?

49

Algorithms via Basic Search - V

• Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n+m)).

Question: Can we do it in O(n+m) time?

49

Algorithms via Basic Search - V

• Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n+m)).

Question: Can we do it in O(n+m) time?

49

Algorithms via Basic Search - V

• Find all strongly connected components of G.

While G is not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n+m)).

Question: Can we do it in O(n+m) time?

49

Find out next time.....

