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Graph Basics



Why Graphs?

- Graphs help model networks which are ubiquitous: transportation networks
(rail, roads, airways), social networks (interpersonal relationships),
information networks (web page links), and many problems that don’t even
look like graph problems.

- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems

- Graph theory: elegant, fun and deep mathematics



An undirected (simple) graph G = (V,E) is a 2-
tuple:

-V is a set of vertices (also referred to as
nodes/points)

- Eis a set of edges where each edge e € E IS
a set of the form {u, v} with u,v € V and
u V.

Example
In figure, G = (V, E) where V ={1,2,3,4,5,6,7,8} and

E={{1,25,{13},12,3},{2,4},12,5},{3,5},{3,7}, {3,8}, {4, 5}, 15,6}, {7, 8} }.




Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.

The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

- Three missionaries, three cannibals, one boat, one river
- Boat carries two people, must have at least one person
- Must all get across

- At no time can cannibals outnumber missionaries

How Is this a graph search problem?
What are the vertices?
What are the edges?



Cannibals and Missionaries: Is the language empty?

Problems goes back to 800 CE
Versions with brothers and sis-
ters.

@ Jealous Husbands.

ccco_mmm )t - Lions and buffalo

w - @ All bad names to a simple prob-

lem...

CcC




Problems on DFAs and s sometimes are just problems on graphs

+ M: DFA/NFA is L(M) empty?
« M: DFAis L(M) = £*?
- M: DFA, and a string w. Does M accepts w?

- N: NFA, and a string w. Does N accepts w?



Graph notation and representation



Notation and Convention

Notation . _ . .
An edge In an undirected graphs is an unordered pair of nodes and hence itis a

set. Conventionally we use uv for {u,v} when it is clear from the context that the
graph is undirected.

U and v are the end points of an edge {u, v}

- Multi-graphs allow
- loops which are edges with the same node appearing as both end points
- multi-edges: different edges between same pairs of nodes

- In this class we will assume that a graph is a simple graph unless explicitly
stated otherwise.




Graph Representation |

Adjacency Matrix _ . . | |
Represent G = (V, E) with n vertices and m edges using a n x n adjacency matrix A

where

< AliJ| = Alj,il = 1if {i,j} € Eand A[i,j] = A[j, /] = 0 if {i,j} ¢ E.
- Advantage: can check if {i,j} € Ein O(1) time

- Disadvantage: needs Q(n?) space even when m < n?

10
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Graph Representation Il

Adjacency Lists _ . . . _
Represent G = (V, E) with n vertices and m edges using adjacency lists:

+ Foreach u eV, Adj(u) ={v | {u,v} € E}, that is neighbors of u. Sometimes
Adj(u) is the list of edges incident to u.

- Advantage: space is O(m + n)
- Disadvantage: cannot “easily” determine in O(1) time whether {i,j} € E

- By sorting each list, one can achieve O(logn) time
- By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are represented using
plain vanilla (unsorted) adjacency lists.
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Graph adjacency list example [10 vertices]

vertex || adjacency list
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Graph adjacency list example [40 vertices]

vertex

adjacency list
6, 24, 34,36
12,22,23,29
14,15,21
8,19,28,36
6, 24, 25,27
1,57,23
6,25,32,39
4,19, 30

10, 16, 28, 35
9,25,27,35
13,15, 33, 34
2,33,37,38
11,15,17,25
3,22,40
3,11,13,22
9,20, 23,33
13,20,32, 34
20, 30, 34, 40
4,8,31,37
16, 17,18, 35

3,31,38
2,14,15
2,6,16,26
1,5,31,38
5,7,10,13
23,29
5,10, 40

4,9, 30, 36
2,26

8,18, 28
19,21, 24,37
7,17,37,39
11,12, 16,39
1,11,17,18
9, 10, 20, 36
1,4,28,35
12,19, 31,32
12,21,24,39
7,32,33,38

14, 18,27

17



A Concrete Representation

+ Assume vertices are numbered arbitrarily as {1,2,...,n}.
- Edges are numbered arbitrarily as {1,2,...,m}.

- Edges stored in an array/list of size m. E[j] is j*" edge with info on end points
which are integers in range 1to n.

- Array Adj of size n for adjacency lists. Adj[i] points to adjacency list of vertex
i. Adj[i] is a list of edge indices in range 1to m.

18



A Concrete Representation

Array of edges E

________ lj

information including end point indices

Array of adjacency lists

List of edges (indices) that are incident to v;

19



A Concrete Representation: Advantages

- Edges are explicitly represented/numbered. Scanning/processing all edges
easy to do.

- Representation easily supports multigraphs including self-loops.

- Explicit numbering of vertices and edges allows use of arrays: O(1)-time
operations are easy to understand.

- Can also implement via pointer based lists for certain dynamic graph settings.

20



Connectivity |




Connectivity

Given a graph G = (V, E):

+ path: sequence of distinct vertices vq, vy, ...,V such that v,v; 4 € E for
1 < i< k-1 The length of the path is k — 1 (the number of edges in the path)
and the path is from v4 to v,. Note: a single vertex u Is a path of length 0.

- cycle: sequence of distinct vertices vq,Vvy, ..., V, such that {v;,vi,,} € E for
1<i1<kR—1and{v,Vv,} € E. Single vertex not a cycle according to this
definition.

Caveat: Some times people use the term cycle to also allow vertices to be
repeated; we will use the term tour.

- Avertex u Is connected to v if there is a path from u to v.

+ The connected component of u, con(u), is the set of all vertices connected to

u. Is u e con(u)? .o

21



Connectivity Il

Define arelation Con VxVasuCvifuisconnected
tov
- In undirected graphs, connectivity is a
reflexive, symmetric, and transitive relation.
Connected components are the equivalence
classes.

+ Grapffis connected)if there is only one
connected component.

22



Connectivity Problems

Algorithmic Problems

- Glven graph G and nodes u and v, is u connected to v?

- Glven G and node u, find all nodes that are connected to u.

- Find all connected components of G.

23



Connectivity Problems

Algorithmic Problems

- Glven graph G and nodes u and v, is u connected to v?

- Glven G and node u, find all nodes that are connected to u.

- Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure which is good to
understand on its own.

23



Computing connected components
In undirected graphs using basic
graph search




Basic Graph Search in Undirected Graphs

Given G = (V,E) and vertex u € V. Let n = |V|.

Explore(G,u):
Visited[1 .. n] < FALSE
// ToExplore, S: Lists
Add u to ToExplore and to S U‘
Visited[u] «<— TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge xy in Adj(x) do
If (Visited[y] = FALSE)
Visited[y] <— TRUE
Add y to ToExplore
Add y to S

OQutput S

24



Explore(G,u):
Visited[1 .. n] < FALSE
// ToExplore, S: Lists
Add u to ToExplore and to S
Visited[u] «+- TRUE
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge xy in Adj(x) do
if (Visited[y] = FALSE)
Visited[y] < TRUE

Add y to ToExplore gplﬂ"" (&' ') Toeﬂ'lofe. S

Add y to S

OQutput S /\/
7

4

53
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Explore(G,u):

Visited[1 .. n] < FALSE

// ToExplore, S: Lists

Add u to ToExplore and to S

_ Visited[u] < TRUE

hile (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge xy in Adj(x) do
if (Visited[y] = FALSE)
Visited[y] < TRUE
Add y to ToExplore
dd y to S

Output S

Running Time: /) éw )




One can create a natural search tree T rooted at u during search.

Explore(G,u):
array Visited[1..n]
Initialize: Visited[i] + FALSE for i=1,...,n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] «+ TRUE
Make tree T with root as u
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge (x,y) in Adj(x) do
if (Visited[y] = FALSE)
Visited[y] <— TRUE
Add y to ToExplore
Add y to S

Add y to T with x as 1ts parent
26

OQutput S




Finding all connected components

Modify Basic Search to find all connected components of a given graph G in
O(m + n) time.

27



Directed Graphs and Directed
Connectivity




Directed Graphs

Definition
A directed graph G = (V, E) consists of:

- set of vertices/nodes V and

- a set of edges/arcs E C V x V.

An edge is an ordered pair of vertices. (u,v) different from (v, u).

28



Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.

- Web-link graph: vertices are web-pages and there is an edge from page p to
page p’ iIf p has a link to p’. Web graphs used by Google with PageRank

algorithm to rank pages.

- Dependency graphs in variety of applications: link from x to y if y depends on
X. Make files for compiling programs.

- Program Analysis: functions/procedures are vertices and there is an edge
from x to y if x calls y.

29



Directed Graph Representation

Graph G = (V, E) with n vertices and m edges:

+ Adjacency Matrix: n x n asymmetric matrix A. Alu,v] =11f (u,v) € E and
Alu,v] =0 if (u,v) € E. Alu,Vv] is not same as Alv, u].

- Adjacency Lists: for each node u, Out(u) (also referred to as Adj(u)) and In(u)
store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

30



A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily
extends to directed graphs.

Array of edges E

________ 6] [

information including end point indices

Array of adjacency lists

List of edges (indices) that are incident to v;

31



Directed Connectivity

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices vq, v, ..., Vv, such that
(vi,viyq) € Efor1 < i< k—1. The length of the path is k — 1 and the path is
from vq to v,

By convention, a single node u is a path of length 0.

- A cycle is a sequence of distinct vertices v4, vy, ..., Vi such that (vj,vj4) € E
for1<i<k—1and (v, v4) € E.

By convention, a single node u is not a cycle.

- Avertex u can reach v if there is a path from u to v. Alternatively v can be
reached from u

+ Let rch(u) be the set of all vertices reachable from u.

32



Directed Connectivity |l

Asymmetricity: D can reach B but B cannot reach D
3‘@ ©
9‘ ©

Questions:

- Is there a notion of connected components?

- How do we understand connectivity in directed graphs? >



Strong connected components




Connectivity and Strong Connected Components

Definition . .
Given a directed graph G, u is strongly connected to v If u can reach v and v can

reach u. In other words v € rch(u) and u € rch(v).

34



Connectivity and Strong Connected Components

Definition . .
Given a directed graph G, u is strongly connected to v If u can reach v and v can

reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

34



Connectivity and Strong Connected Components

Definition . .
Given a directed graph G, u is strongly connected to v If u can reach v and v can

reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition | . . . N
C is an equivalence relation, that is reflexive, symmetric and transitive.

34



Connectivity and Strong Connected Components

Definition . .
Given a directed graph G, u is strongly connected to v If u can reach v and v can

reach u. In other words v € rch(u) and u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition | . . . N

C is an equivalence relation, that is reflexive, symmetric and transitive.
Equivalence classes of C: strong connected components of G.

They partition the vertices of G.

SCC(u): strongly connected component containing u.

34



Strongly Connected Components: Example
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Strongly Connected Components: Example
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Strongly Connected Components: Example
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Strongly Connected Components: Example
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Directed Graph Connectivity Problems

- Glven G and nodes u and v, can u reach v?

+ Given G and u, compute rch(u).

- Given G and u, compute all v that can reach u, that is all v such that
u € rch(v).

+ Find the strongly connected component containing node u, that is SCC(u).
- |Is G strongly connected (a single strong component)?

+ Compute all strongly connected components of G.

36



Graph exploration in directed graphs




Basic Graph Search in Directed Graphs

Given G = (V, E) a directed graph and vertexu € V. Let n = |V/|. d@

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[i] + FALSE for 1<i<n

List: ToExplore, S .

\
-
X

Add u to ToExplore and to S, Visited[u] < TRUE ""m
Make tree T with root as u
while (ToExplore is non-empty) do
Remove node x from ToExplore — Cf ,a[\
for each edge (x,y) in Adj(x) do -
if (Visited]y] = FALSE)
Visited[y] < TRUE @)
Add y to ToExplore
Add y to S

Add y to T with edge (x,y) 37

Output S
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Properties of Basic Search

Proposition ' _
Explore(G, u) terminates with S = rch(u).

Proof Sketch.

+ Once Visited|l] is set to TRUE it never changes. Hence a node is added only
once to ToExplore. Thus algorithm terminates in at most n iterations of while
loop.

+ By induction on iterations, can show v € S = v € rch(u)

- Since each node v € Swas in ToExplore and was explored, no edges in G
leave S. Hence no node in V — Sis in rch(u). Caveat: In directed graphs edges
can enter S.

+ Thus S = rch(u) at termination.



Directed Graph Connectivity Problems

[ 3 Sw s
- Given G and nodes u and v, can u reach v?f"r‘“"’/ v ¥ v
- Given G and u, compute rch(u). E’T"”‘" Foarma S

- Glvges=ad u, compute all v that can reach u, that is all v such that
-
w &r,q’w-y L&Vw, "‘3

+ Find the strongly connected component containing node u, that is SCC(u).

- |Is G strongly connected (a single strong component)?

+ Compute all strongly connected components of G.

Grw = A ot all  He C‘l3¢$
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Directed Graph Connectivity Problems

- Glven G and nodes u and v, can u reach v?

+ Given G and u, compute rch(u).

- Given G and u, compute all v that can reach u, that is all v such that
u € rch(v).

+ Find the strongly connected component containing node u, that is SCC(u).
- |Is G strongly connected (a single strong component)?

+ Compute all strongly connected components of G.

First five problems can be solved in O(n + m) time by via Basic Search (or
BFS/DFS). The last one can also be done in linear time but requires a rather
clever DFS based algorithm (next lecture).

40



Algorithms via Basic Search




Algorithms via Basic Search - |

- Glven G and nodes u and v, can u reach v?

+ Given G and u, compute rch(u).

41



Algorithms via Basic Search - |

- Glven G and nodes u and v, can u reach v?

+ Given G and u, compute rch(u).

Use Explore(G, u) to compute rch(u) in O(n + m) time.

41



Algorithms via Basic Search -

- Given G and u, compute all v that can reach u, that is all v such that
u € rch(v).

42



Algorithms via Basic Search -
- Glven G and u, compute all v that can reach u, that is all v such that
u € rch(v). Naive: Ofh(n + m))

\
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Algorithms via Basic Search -

- Given G and u, compute all v that can reach u, that is all v such that
u € rch(v). Naive: O(n(n +m))

Definition (Reverse gra ph.)
Given G = (V,E), G Is the graph with edge directions reversed

G = (V,E) vvhere E={(v,x) | (x,y) € E}

G \ rém' B
O,

4




Algorithms via Basic Search -

- Given G and u, compute all v that can reach u, that is all v such that
u € rch(v). Naive: O(n(n +m))

Definition (Reverse grap ph.)
Given G = (V,E), G Is the graph with edge directions reversed

G = (V,E) vvhere E={(v,x) | (x,y) € E}
Compute rch(u) in G™V!

- Running time: O(n + m) to obtain G from G and O(n + m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute G™. Can do Explore(G, u) in G"™" implicitly.
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Algorithms via Basic Search - |lI

SCC(G,u) ={v | uisstrongly connected to v}

g‘l"ow éé/ w> = e €
) gopre (6%, =D =15 ek (b = )

e (e
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Algorithms via Basic Search - |lI

SCC(G,u) ={v | uisstrongly connected to v}

- Find the strongly connected component containing node u. That is, compute
SCC(G, u).
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- Find the strongly connected component containing node u. That is, compute
SCC(G, u).

SCC(G, u) = rch(G,u) Nrch(G™Y, u)
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Algorithms via Basic Search - |lI

SCC(G,u) ={v | uisstrongly connected to v}

- Find the strongly connected component containing node u. That is, compute
SCC(G, u).

SCC(G, u) = rch(G,u) Nrch(G™Y, u)

Hence, SCC(G, u) can be computed with Explore(G, u) and Explore(G™Y, u). Total
O(n + m) time.

Why can rch(G, u) N rch(G™",u) be done in O(n) time?
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SCC |

Graph  and its reverse graph
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SCC I

Graph = avertex and its reachable set
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SCC I

Graph G a vertex F and the set of vertices that can reach it in “:rch(G"™", F)
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SCCIV: ...

Graph = avertex —and its strong connected component in

rch(G™Y, F)

SCC(G, F) = rch(G, F) Nnrch(G™, F)
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Algorithms via Basic Search - |V

- Is G strongly connected?
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Algorithms via Basic Search - |V

- Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G,u) = V.
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Algorithms via Basic Search -V

- Find all strongly connected components of G.
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Algorithms via Basic Search -V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G
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Algorithms via Basic Search -V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?
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Algorithms via Basic Search -V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n + m)).
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Algorithms via Basic Search -V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the
other strong connected components?

Running time: O(n(n + m)).
Question: Can we do it in O(h + m) time?
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Find out next time.....




