
1

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore(G,u):

Visited[1 . . n] FALSE
Add u to S
Visited[u] TRUE
ExploreStep(G,u,Visited, S)
Output S

ExploreStep(G,x,Visited, S):
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
ExploreStep(G,x,Visited, S):

return

We said that if ToExplore was a:
• Stack, the algorithm is
equivalent to DFS

• Queue, the algorithm is
equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you
recursively call explore). What would the algorithm be equivalent to?

1

ECE-374-B: Lecture 15 - Directed Graphs (DFS, DAGs,
Topological Sort)

Instructor: Nickvash Kani
October 21, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore(G,u):

Visited[1 . . n] FALSE
Add u to S
Visited[u] TRUE
ExploreStep(G,u,Visited, S)
Output S

ExploreStep(G,x,Visited, S):
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
ExploreStep(G,x,Visited, S):

return

We said that if ToExplore was a:
• Stack, the algorithm is
equivalent to DFS

• Queue, the algorithm is
equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you
recursively call explore). What would the algorithm be equivalent to?

2

y

Directed Acyclic Graphs - definition
and basic properties

Directed Acyclic Graphs

Definition
A directed graph G is a directed
acyclic graph (DAG) if there is no
directed cycle in G. 1

2 3

4

3

Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

4

Is this a DAG?

a

c

b

g

v

d

s

i

f

wu

k

tm

o

l

n

p

q

r

h

j

e

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

4

Sources and Sinks

Definition
• A vertex u is a source if it has no in-coming edges.
• A vertex u is a sink if it has no out-going edges.

5

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a source and vk is a
sink. Suppose not. Then v1 has an incoming edge which either creates a cycle or a
longer path both of which are contradictions. Similarly if vk has an outgoing
edge.

6

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a source and vk is a
sink. Suppose not. Then v1 has an incoming edge which either creates a cycle or a
longer path both of which are contradictions. Similarly if vk has an outgoing
edge.

6

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation � on X, such that

• Transitivity: 8x.y, z 2 X x � y and y � z =) x � z.
• For any x, y 2 X, exactly one of the following holds:
x � y, y � x or x = y.

7

Convention about writing edges

• Undirected graph edges:

uv = {u, v} = vu 2 E

• Directed graph edges:

u! v ⌘ (u, v) ⌘ (u! v)

8

Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V, E) is an ordering � on V
such that if (u! v) 2 E then u � v.

Informal equivalent definition: One can order the vertices of the graph along a
line (say the x-axis) such that all edges are from left to right.

9

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m+ n) time.

Simple Algorithm:

1. Count the in-degree of each vertex
2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort
2.2 Lower degree of vertices v is connected to. 1

10

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m+ n) time.

Simple Algorithm:

1. Count the in-degree of each vertex
2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort
2.2 Lower degree of vertices v is connected to. 1

10

Topological Sort: Example

a b c

d e

f g

h

Adjacency List:
Node Neighbors
a d e
b e
c
d f
e h g
f h
g
h

Generate
degin(v):
Degree Vertices
0 a, b, c
1 d, f, g
2 e, h

Topological Ordering:

a b c d e f g h

11

0

Ted

a b c d e f g h

Topological Sort: Example

a b c

d e

f g

h

Adjacency List:
Node Neighbors
a d e
b e
c
d f
e h g
f h
g
h

Generate
degin(v):
Degree Vertices
0 a, b, c
1 d, f, g
2 e, h

Topological Ordering:

a b c d e f g h

11

Multiple possible topological orderings

a b c

d e

f g

h

a b c d e f g h

c b a e d f h g

a d f b e g h c

12

DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct topological sorts for
a given number n of vertices?

• Exercise: What is a DAG with the least number of distinct topological sorts for
a given number n of vertices?

13

Direct Topological ordering - code

TopSort(G):
Sorted NULL
degin[1 . . n] �1
Tdegin[1 . . n] NULL
Generate in-degree for each vertex
for each edge xy in G do

degin[y] + +

for each vertex v in G do
Tdegin[degin[v]].append(v)

Next we recursively add vertices
with in-degree = 0 to the sort list
while (Tdegin[0] is non-empty) do

Remove node x from Tdegin[0]
Sorted.append(x)
for each edge xy in Adj(x) do

degin[y]��
move y to Tdegin[degin[y]]

Output Sorted 14

JOE
Octa

JOG

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =) G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering �.
G has a cycle

C = u1 ! u2 ! · · · ! uk ! u1.

Then u1 � u2 � . . . � uk � u1

=) u1 � u1.

A contradiction (to � being an order). Not possible to topologically order the
vertices.

15

DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =) G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering �.
G has a cycle

C = u1 ! u2 ! · · · ! uk ! u1.

Then u1 � u2 � . . . � uk � u1
=) u1 � u1.

A contradiction (to � being an order). Not possible to topologically order the
vertices.

15

An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a topological ordering of a graph is a numbering
⇡ : V ! {1, 2, . . . ,n}, such that

8 (u! v) 2 E(G) =) ⇡(u) < ⇡(v).

(That is, ⇡ is one-to-one, and n = |V|)

16

Example...

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Assuming:

V = {a, . . .w}
⇡ = {1, . . . 23}

17

Example...

k

p

r

j

m

o

g

ih

q

s

t

n

l

v

wu

f

e

c

a

b

d

Assuming:

V = {a, . . .w}
⇡ = {1, . . . 23}

17

8

Depth First Search (DFS)

Depth First Search (DFS) in
Undirected Graphs

Depth First Search

• DFS special case of Basic Search.
• DFS is useful in understanding graph structure.
• DFS used to obtain linear time (O(m+ n)) algorithms for

• Finding cut-edges and cut-vertices of undirected graphs
• Finding strong connected components of directed graphs

• ...many other applications as well.

18

Mets

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u 2 V(G) do

Mark u as unvisited
Set pred(u) to null

T is set to ;
while 9 unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited
for each uv in Out(u) do

if v is not visited then
add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.

T is the search tree/forest.
19

Example

1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv 2 E is a

• tree edge: belongs to T
• non-tree edge: does not belong to T

20

1rad I

Example

1

2 3

4 5

6

7

8

9

10

Edges classified into two types: uv 2 E is a

• tree edge: belongs to T
• non-tree edge: does not belong to T

21

DFS with pre-post numbering

DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u 2 V(G) do

Mark u as unvisited
T is set to ;
time = 0
while 9 unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time

22

Animation

time = 0
vertex [pre,post]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 1
vertex [pre,post]
1 [1,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 1
vertex [pre,post]
1 [1,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 2
vertex [pre,post]
1 [1,]
2 [2,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 2
vertex [pre,post]
1 [1,]
2 [2,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 3
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 4
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 5
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 6
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 7
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 8
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 9
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 10
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 11
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 12
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 13
vertex [pre,post]
1 [1,]
2 [2,]
4 [3,]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 14
vertex [pre,post]
1 [1,]
2 [2,]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 15
vertex [pre,post]
1 [1,]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 16
vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 17
vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 18
vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17,]
10 [18,]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 19
vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17,]
10 [18, 19]

1

2 3

4 5

6

7

8

9

10

23

Animation

time = 20
vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]
10 [18, 19]

1

2 3

4 5

6

7

8

9

10

23

Animation

vertex [pre,post]
1 [1, 16]
2 [2, 15]
4 [3, 14]
5 [4, 13]
6 [5, 6]
3 [7, 12]
7 [8, 11]
8 [9, 10]
9 [17, 20]
10 [18, 19]

1

2 3

4 5

6

7

8

9

10

23

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition
For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)]
are disjoint or one is contained in the other.

pre and post numbers useful in several applications of DFS

24

DFS in Directed Graphs

DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited
T is set to ;
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited
pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited
add edge (u, v) to T
DFS(v)

post(u) = ++time
25

Example of DFS in directed graph

AB C

DE F

G H

26

Example of DFS in directed graph

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

26

y
1

1T

DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.

• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

27

DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.
• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

27

DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.
• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

27

DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.
• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

27

DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.
• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

27

DFS tree and related edges

Edges of G can be classified with respect to the
DFS tree T as:
• Tree edges that belong to T

• A forward edge is a non-tree edges (x, y)
such that y is a descendant of x .

• A backward edge is a non-tree edge (x, y)
such that y is an ancestor of x.

• A cross edge is a non-tree edges (x, y) such
that they don’t have a ancestor/descendant
relationship between them.

A

C D
Cross

Forward
Backward

B

28aÉÉÉ

DFS tree and related edges

Edges of G can be classified with respect to the
DFS tree T as:
• Tree edges that belong to T

• A forward edge is a non-tree edges (x, y)
such that
pre(x) < pre(y) < post(y) < post(x).

• A backward edge is a non-tree edge (x, y)
such that .

• A cross edge is a non-tree edges (x, y) such
that

A

C D
Cross

Forward
Backward

B

28

Y

po
of

pre y pre x post x posty

pret post e apr 4st
pre y postcy 2 pre

x port x

Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges:
• Forward edges:
• Cross edges:

29

Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges:
• Forward edges:
• Cross edges: 29

F B 0 A

28,11
G H F G

DFS and cycle detection: Topological
sorting using DFS

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output
one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and
output one if it has one?

30

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output
one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and
output one if it has one?

30

Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C.

31

Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G)
• If there is a back edge e = (v,u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v,u).

• Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time. Correctness is not so obvious. See next two

propositions.

32

Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G)
• If there is a back edge e = (v,u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v,u).

• Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time.

Correctness is not so obvious. See next two

propositions.

32

Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G)
• If there is a back edge e = (v,u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v,u).

• Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time. Correctness is not so obvious. See next two

propositions.

32

Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in post-number
decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33

Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in post-number
decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33

Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in post-number
decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h

33

Back edge and Cycles

Proposition
G has a cycle () there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u
in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 ! v2 ! . . . ! vk ! v1.

Let vi be first node in C visited in DFS.

All other nodes in C are descendants of vi since they are reachable from vi.

Therefore, (vi�1, vi) (or (vk, v1) if i = 1) is a back edge.

34

Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

Proof.
Assume post(u) < post(v) and (u! v) is an edge in G.

One of two holds:

• Case 1: [pre(u),post(u)] is contained in [pre(v),post(v)].
• Case 2: [pre(u),post(u)] is disjoint from [pre(v),post(v)].

35

Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

Proof.
Assume post(u) < post(v) and (u! v) is an edge in G. One of two holds:

• Case 1: [pre(u),post(u)] is contained in [pre(v),post(v)].
• Case 2: [pre(u),post(u)] is disjoint from [pre(v),post(v)].

35

Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

Proof.
Assume post(u) < post(v) and (u! v) is an edge in G. One of two holds:

• Case 1: [pre(u),post(u)] is contained in [pre(v),post(v)]. Implies that u is
explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a
cycle in G but G is assumed to be DAG!

• Case 2: [pre(u),post(u)] is disjoint from [pre(v),post(v)]. This cannot
happen since v would be explored from u.

35

Translation

We just proved:

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

=) sort the vertices of a DAG by decreasing post nubmering in decreasing order,
then this numbering is valid.

36

Topological sorting

Theorem
G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n+m) time.

That is, compute a numbering ⇡ : V ! {1, 2, . . . ,n}, such that

(u! v) 2 E(G) =) ⇡(u) < ⇡(v).

37

The meta graph of strong connected
components

Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.
Previous lecture:
Saw an O(n · (n+m)) time algorithm.
This lecture: sketch of a O(n+m) time algorithm.

AB C

DE F

G H

38

Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs
Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs) of G. The graph of
SCCs is GSCC

• Vertices are S1, S2, . . . Sk
• There is an edge (Si, Sj) if there is some u 2 Si and v 2 Sj such that (u, v) is an
edge in G. 39

The meta graph of SCCs is a DAG...

Proposition
For any graph G, the graph GSCC has no directed cycle.

Proof.
If GSCC has a cycle S1, S2, . . . , Sk then S1 [S2 [· · ·[Sk should be in the same SCC in
G.

40

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be
computed in O(m+ n) time.

Directed graph: the meta-graph GSCC of G can be computed in O(m+ n) time. GSCC
gives information on the partition of V into strong connected components and
how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

41

Linear time algorithm for finding all
SCCs

Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex u 2 V not visited yet do

find SCC(G,u) the strong component of u:
Compute rch(G,u) using DFS(G,u)
Compute rch(Grev,u) using DFS(Grev,u)
SCC(G,u)(rch(G,u) \ rch(Grev,u)
8u 2 SCC(G,u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

42

Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex u 2 V not visited yet do

find SCC(G,u) the strong component of u:
Compute rch(G,u) using DFS(G,u)
Compute rch(Grev,u) using DFS(Grev,u)
SCC(G,u)(rch(G,u) \ rch(Grev,u)
8u 2 SCC(G,u): Mark u as visited.

Running time: O(n(n+m))

Is there an O(n+m) time algorithm?

42

Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex u 2 V not visited yet do

find SCC(G,u) the strong component of u:
Compute rch(G,u) using DFS(G,u)
Compute rch(Grev,u) using DFS(Grev,u)
SCC(G,u)(rch(G,u) \ rch(Grev,u)
8u 2 SCC(G,u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

42

Structure of a Directed Graph

AB C

DE F

G H

Graph G

B, E, F

G H

A, C,D

Graph of SCCs GSCC

ReminderGSCC is created by collapsing every strong connected component to a
single vertex.

Proposition
For a directed graph G, its meta-graph GSCC is a DAG.

43

DV

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)
• Remove SCC(u) and repeat

Justification
• DFS(u) only visits vertices (and edges) in SCC(u)
• ... since there are no edges coming out a sink!
• DFS(u) takes time proportional to size of SCC(u)
• Therefore, total time O(n+m)!

44

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

45

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

45

Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(Grev). Then v is in a SCC
S, such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum
post numbering, is in a sink of the meta graph).

46

The linear-time SCC algorithm itself

Linear Time Algorithm: An Example - Initial steps 1

Graph G:

G

FE

B C

D

H

A

Reverse graph Grev :

G

FE

B C

D

H

A

DFS of reverse graph:

G

FE

B C

D

H

A

Pre/Post DFS
numbering of
reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A

47

Linear Time Algorithm: An Example

Original graph G with rev post num-
bers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =)

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

48

Linear Time Algorithm: An Example

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=)

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

49

Linear Time Algorithm: An Example

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=)

Do DFS from vertex B
Remove visited vertices:
{F,B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B, E}

50

Linear Time Algorithm: An Example

Do DFS from vertex F
Remove visited vertices:
{F,B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B, E}

=)

Do DFS from vertex A
Remove visited vertices:
{A, C,D}.

SCC computed:
{G}, {H}, {F,B, E}, {A, C,D}

51

Linear Time Algorithm: An Example

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F,B, E}, {A, C,D}
Which is the correct answer!

52

Linear Time Algorithm

do DFS(Grev) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do

if u is not visited then
DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component
Remove Su from G

Theorem
Algorithm runs in time O(m+ n) and correctly outputs all the SCCs of G.

53

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

• Is the problem solvable when G is strongly connected?
• Is the problem solvable when G is a DAG?
• If the above two are feasible then is the problem solvable in a general
directed graph G by considering the meta graph GSCC?

54

Summary

Take away Points

• DAGs
• Topological orderings.
• DFS: pre/post numbering.
• Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC
give a structural decomposition of G that should be kept in mind.

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph. Properties of DFS crucial for the algorithm.

• DAGs arise in many application and topological sort is a key property in
algorithm design. Linear time algorithms to compute a topological sort
(there can be many possible orderings so not unique).

55

