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Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore(G,u):

Visited[1 . . n] FALSE
Add u to S
Visited[u] TRUE
ExploreStep(G,u,Visited, S)
Output S

ExploreStep(G,x,Visited, S):
for each edge xy in Adj(x) do

if (Visited[y] = FALSE)
Visited[y] TRUE
ExploreStep(G,x,Visited, S):

return

We said that if ToExplore was a:
• Stack, the algorithm is
equivalent to DFS

• Queue, the algorithm is
equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you
recursively call explore). What would the algorithm be equivalent to?
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Directed Acyclic Graphs - definition
and basic properties



Directed Acyclic Graphs

Definition
A directed graph G is a directed
acyclic graph (DAG) if there is no
directed cycle in G. 1
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Sources and Sinks

Definition
• A vertex u is a source if it has no in-coming edges.
• A vertex u is a sink if it has no out-going edges.
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Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Proof.
Let P = v1, v2, . . . , vk be a longest path in G. Claim that v1 is a source and vk is a
sink. Suppose not. Then v1 has an incoming edge which either creates a cycle or a
longer path both of which are contradictions. Similarly if vk has an outgoing
edge.
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Topological ordering



Total recall: Order on a set

Order or strict total order on a set X is a binary relation � on X, such that

• Transitivity: 8x.y, z 2 X x � y and y � z =) x � z.
• For any x, y 2 X, exactly one of the following holds:
x � y, y � x or x = y.
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Convention about writing edges

• Undirected graph edges:

uv = {u, v} = vu 2 E

• Directed graph edges:

u! v ⌘ (u, v) ⌘ (u! v)
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Topological Ordering/Sorting

1

2 3

4

Graph G

1 2 3 4

Topological Ordering of G

Definition
A topological ordering/topological sorting of G = (V, E) is an ordering � on V
such that if (u! v) 2 E then u � v.

Informal equivalent definition: One can order the vertices of the graph along a
line (say the x-axis) such that all edges are from left to right.
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Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m+ n) time.

Simple Algorithm:

1. Count the in-degree of each vertex
2. For each vertex that is source (degin(v) = 0):

2.1 Add v to the topological sort
2.2 Lower degree of vertices v is connected to. 1
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Topological Sort: Example

a b c

d e

f g

h

Adjacency List:
Node Neighbors
a d e
b e
c
d f
e h g
f h
g
h

Generate
degin(v):
Degree Vertices
0 a, b, c
1 d, f, g
2 e, h

Topological Ordering:

a b c d e f g h
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Multiple possible topological orderings

a b c
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DAGs and Topological Sort

• Note: A DAG G may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct topological sorts for
a given number n of vertices?

• Exercise: What is a DAG with the least number of distinct topological sorts for
a given number n of vertices?
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Direct Topological ordering - code

TopSort(G):
Sorted NULL
degin[1 . . n] �1
Tdegin[1 . . n] NULL
Generate in-degree for each vertex
for each edge xy in G do

degin[y] + +

for each vertex v in G do
Tdegin[degin[v]].append(v)

Next we recursively add vertices
with in-degree = 0 to the sort list
while (Tdegin[0] is non-empty) do

Remove node x from Tdegin[0]
Sorted.append(x)
for each edge xy in Adj(x) do

degin[y]��
move y to Tdegin[degin[y]]

Output Sorted 14
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DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered =) G is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering �.
G has a cycle

C = u1 ! u2 ! · · · ! uk ! u1.

Then u1 � u2 � . . . � uk � u1

=) u1 � u1.

A contradiction (to � being an order). Not possible to topologically order the
vertices.
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An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a topological ordering of a graph is a numbering
⇡ : V ! {1, 2, . . . ,n}, such that

8 (u! v) 2 E(G) =) ⇡(u) < ⇡(v).

(That is, ⇡ is one-to-one, and n = |V|)
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Example...
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Depth First Search (DFS)



Depth First Search (DFS) in
Undirected Graphs



Depth First Search

• DFS special case of Basic Search.
• DFS is useful in understanding graph structure.
• DFS used to obtain linear time (O(m+ n)) algorithms for

• Finding cut-edges and cut-vertices of undirected graphs
• Finding strong connected components of directed graphs

• ...many other applications as well.
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DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G)
for all u 2 V(G) do

Mark u as unvisited
Set pred(u) to null

T is set to ;
while 9 unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited
for each uv in Out(u) do

if v is not visited then
add edge uv to T
set pred(v) to u
DFS(v)

Implemented using a global array Visited for all recursive calls.

T is the search tree/forest.
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Example
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Edges classified into two types: uv 2 E is a

• tree edge: belongs to T
• non-tree edge: does not belong to T
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DFS with pre-post numbering



DFS with Visit Times

Keep track of when nodes are visited.

DFS(G)
for all u 2 V(G) do

Mark u as unvisited
T is set to ;
time = 0
while 9 unvisited u do

DFS(u)
Output T

DFS(u)
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do

if v is not marked then
add edge uv to T
DFS(v)

post(u) = ++time
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Animation
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pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition
For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)]
are disjoint or one is contained in the other.

pre and post numbers useful in several applications of DFS
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DFS in Directed Graphs



DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited
T is set to ;
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited
pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited
add edge (u, v) to T
DFS(v)

post(u) = ++time
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Example of DFS in directed graph

AB C
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G H
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Example of DFS in directed graph

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H
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DFS Properties

Generalizing ideas from undirected graphs:

• DFS(G) takes O(m+ n) time.

• Edges added form a branching: a forest of out-trees. Output of DFS(G)
depends on the order in which vertices are considered.

• If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v 2 rch(u)

• For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.
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DFS tree and related edges

Edges of G can be classified with respect to the
DFS tree T as:
• Tree edges that belong to T

• A forward edge is a non-tree edges (x, y)
such that y is a descendant of x .

• A backward edge is a non-tree edge (x, y)
such that y is an ancestor of x.

• A cross edge is a non-tree edges (x, y) such
that they don’t have a ancestor/descendant
relationship between them.

A

C D
Cross

Forward
Backward

B
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DFS tree and related edges

Edges of G can be classified with respect to the
DFS tree T as:
• Tree edges that belong to T

• A forward edge is a non-tree edges (x, y)
such that
pre(x) < pre(y) < post(y) < post(x).

• A backward edge is a non-tree edge (x, y)
such that .

• A cross edge is a non-tree edges (x, y) such
that

A

C D
Cross

Forward
Backward

B
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Types of Edges

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

• Back edges:
• Forward edges:
• Cross edges:
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Types of Edges
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DFS and cycle detection: Topological
sorting using DFS



Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output
one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and
output one if it has one?
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Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C.
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Topological sort a graph using DFS

DFS based algorithm:

• Compute DFS(G)
• If there is a back edge e = (v,u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v,u).

• Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n+m) time. Correctness is not so obvious. See next two

propositions.
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Example

a b c

d e

f g

h

[1, 12]

[2, 7]

[3, 6]

[4, 5]

[13, 14]

[8, 11]

[9, 10]

[15, 16]

Listing out the vertices in post-number
decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

c b a e g d f h
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Back edge and Cycles

Proposition
G has a cycle () there is a back-edge in DFS(G).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u
in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 ! v2 ! . . . ! vk ! v1.

Let vi be first node in C visited in DFS.

All other nodes in C are descendants of vi since they are reachable from vi.

Therefore, (vi�1, vi) (or (vk, v1) if i = 1) is a back edge.
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Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

Proof.
Assume post(u) < post(v) and (u! v) is an edge in G.

One of two holds:

• Case 1: [pre(u),post(u)] is contained in [pre(v),post(v)].
• Case 2: [pre(u),post(u)] is disjoint from [pre(v),post(v)].
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Decreasing post numbering is valid

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

Proof.
Assume post(u) < post(v) and (u! v) is an edge in G. One of two holds:

• Case 1: [pre(u),post(u)] is contained in [pre(v),post(v)]. Implies that u is
explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a
cycle in G but G is assumed to be DAG!

• Case 2: [pre(u),post(u)] is disjoint from [pre(v),post(v)]. This cannot
happen since v would be explored from u.
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Translation

We just proved:

Proposition
If G is a DAG and post(v) > post(u), then (u! v) is not in G.

=) sort the vertices of a DAG by decreasing post nubmering in decreasing order,
then this numbering is valid.
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Topological sorting

Theorem
G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n+m) time.

That is, compute a numbering ⇡ : V ! {1, 2, . . . ,n}, such that

(u! v) 2 E(G) =) ⇡(u) < ⇡(v).
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The meta graph of strong connected
components



Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.
Previous lecture:
Saw an O(n · (n+m)) time algorithm.
This lecture: sketch of a O(n+m) time algorithm.

AB C

DE F

G H
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Graph of SCCs

G:

AB C

DE F

G H

B,E, F

G H

A,C,D

Graph of SCCs GSCC

Meta-graph of SCCs
Let S1, S2, . . . Sk be the strong connected components (i.e., SCCs) of G. The graph of
SCCs is GSCC

• Vertices are S1, S2, . . . Sk
• There is an edge (Si, Sj) if there is some u 2 Si and v 2 Sj such that (u, v) is an
edge in G. 39



The meta graph of SCCs is a DAG...

Proposition
For any graph G, the graph GSCC has no directed cycle.

Proof.
If GSCC has a cycle S1, S2, . . . , Sk then S1 [ S2 [ · · ·[ Sk should be in the same SCC in
G.
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To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be
computed in O(m+ n) time.

Directed graph: the meta-graph GSCC of G can be computed in O(m+ n) time. GSCC
gives information on the partition of V into strong connected components and
how they form a DAG structure.

Above structural decomposition will be useful in several algorithms
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Linear time algorithm for finding all
SCCs



Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex u 2 V not visited yet do

find SCC(G,u) the strong component of u:
Compute rch(G,u) using DFS(G,u)
Compute rch(Grev,u) using DFS(Grev,u)
SCC(G,u)( rch(G,u) \ rch(Grev,u)
8u 2 SCC(G,u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?
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Problem
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Running time: O(n(n+m))

Is there an O(n+m) time algorithm?
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Finding all SCCs of a Directed Graph

Problem
Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex u 2 V not visited yet do

find SCC(G,u) the strong component of u:
Compute rch(G,u) using DFS(G,u)
Compute rch(Grev,u) using DFS(Grev,u)
SCC(G,u)( rch(G,u) \ rch(Grev,u)
8u 2 SCC(G,u): Mark u as visited.

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?
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Structure of a Directed Graph

AB C

DE F

G H

Graph G

B, E, F

G H

A, C,D

Graph of SCCs GSCC

ReminderGSCC is created by collapsing every strong connected component to a
single vertex.

Proposition
For a directed graph G, its meta-graph GSCC is a DAG.
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Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

• Let u be a vertex in a sink SCC of GSCC

• Do DFS(u) to compute SCC(u)
• Remove SCC(u) and repeat

Justification
• DFS(u) only visits vertices (and edges) in SCC(u)
• ... since there are no edges coming out a sink!
• DFS(u) takes time proportional to size of SCC(u)
• Therefore, total time O(n+m)!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!
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Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!
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Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(Grev). Then v is in a SCC
S, such that S is a sink of GSCC.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum
post numbering, is in a sink of the meta graph).
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The linear-time SCC algorithm itself



Linear Time Algorithm: An Example - Initial steps 1

Graph G:

G

FE

B C

D

H

A

Reverse graph Grev :

G

FE

B C

D

H

A

DFS of reverse graph:

G

FE

B C

D

H

A

Pre/Post DFS
numbering of
reverse graph:

6][1,

[7, 12]

[9, 10] [8, 11]

[13, 16]

[14, 15]

[2, 5]

[3, 4]

G

FE

B C

D

H

A
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Linear Time Algorithm: An Example

Original graph G with rev post num-
bers:

G

FE

B C

D

H

A

16

11

612

10

15

5

4 =)

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}
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Linear Time Algorithm: An Example

Do DFS from vertex G
remove it.

FE

B C

D

H

A

11

612

10

15

5

4

SCC computed:
{G}

=)

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}
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Linear Time Algorithm: An Example

Do DFS from vertex H, remove it.

FE

B C

D

A

11

612

10 5

4

SCC computed:
{G}, {H}

=)

Do DFS from vertex B
Remove visited vertices:
{F,B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B, E}
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Linear Time Algorithm: An Example

Do DFS from vertex F
Remove visited vertices:
{F,B, E}.

C

D

A

6

5

4

SCC computed:
{G}, {H}, {F,B, E}

=)

Do DFS from vertex A
Remove visited vertices:
{A, C,D}.

SCC computed:
{G}, {H}, {F,B, E}, {A, C,D}
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Linear Time Algorithm: An Example

G

FE

B C

D

H

A

SCC computed:
{G}, {H}, {F,B, E}, {A, C,D}
Which is the correct answer!
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Linear Time Algorithm

do DFS(Grev) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do

if u is not visited then
DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component
Remove Su from G

Theorem
Algorithm runs in time O(m+ n) and correctly outputs all the SCCs of G.
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Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

• Is the problem solvable when G is strongly connected?
• Is the problem solvable when G is a DAG?
• If the above two are feasible then is the problem solvable in a general
directed graph G by considering the meta graph GSCC?
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Summary



Take away Points

• DAGs
• Topological orderings.
• DFS: pre/post numbering.
• Given a directed graph G, its SCCs and the associated acyclic meta-graph GSCC
give a structural decomposition of G that should be kept in mind.

• There is a DFS based linear time algorithm to compute all the SCCs and the
meta-graph. Properties of DFS crucial for the algorithm.

• DAGs arise in many application and topological sort is a key property in
algorithm design. Linear time algorithms to compute a topological sort
(there can be many possible orderings so not unique).
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