Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted the processing of the recursion as a table:

	ε	D	R	E	A	D
ε						
D						
E						
E						
D						

Is there an easier way to get the minimum alignment without having to calculate all the values in the cell?

ECE-374-B: Lecture 15 - Graph search

Instructor: Nickvash Kani
March 09, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formalated the processing of the recursion as a table:

	ε	D	R	E	A	D
ε						
D						
E						
E						
D						

Is there an easier way to get the minimum alignment without having to calculate all the values in the cell?

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted the processing of the recursion as a table:

	ε	D	R	E	A	D
ε	A					
D	A					
E						
E						
D						

Look at the flow of the computation!

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted the processing of the recursion as a table:

	ε	D	R	E	A	D
ε						
D						
E						
E						
D						

Look at the flow of the computation!

Pre-lecture brain teaser

Remembering the edit distance example we saw in class last time, we formaluted the processing of the recursion as a table:

	ε	D	R	E	A	D
ε						
D						
E						
E						
D						

We can solve the problem by turning it into a graph

Graph Basics

Why Graphs?

- Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links), and many problems that don't even look like graph problems.
- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep mathematics

Graph

An undirected (simple) graph $G=$
(V, E) is a 2-tuple:

- V is a set of vertices (also referred to as nodes/points)
- E is a set of edges where each edge $e \in E$ is a set of the form
 $\{u, v\}$ with $u, v \in V$ and $u \neq v$.

Example

In figure, $G=(V, E)$ where $V=\{1,2,3,4,5,6,7,8\}$ and
$E=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{2,5\},\{3,5\},\{3,7\}$,
$\{3,8\},\{4,5\},\{5,6\},\{7,8\}\}$.

Example: Modeling Problems as Search

State Space Search

Many search problems can be modeled as search on a graph.
The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

- Three missionaries, three cannibals, one boat, one river
- Boat carries two people, must have at least one person
- Must all get across
- At no time can cannibals outnumber missionaries

How is this a graph search problem?
What are the vertices?
What are the edges?

Cannibals and Missionaries: Is the language empty?

Problems goes back to 800 CE
Versions with brothers and sisters. Jealous Husbands. Lions and buffalo All bad names to a simple problem...

Problems on DFAs and NFAs sometimes are just problems on graphs

- M: DFA/NFA is $L(M)$ empty? $\xrightarrow{\text { stant }}$ (20) $\xrightarrow{0,1}$ Cinc,
- M : DFA is $L(M)=\Sigma^{*}$?
- M : DFA, and a string w. Does M accepts w ?
- N: NFA, and a string w. Does N accepts w?

Graph notation and representation

Notation and Convention

Notation

An edge in an undirected graphs is an unordered pair of nodes and hence it is a set. Conventionally we use uv for $\{u, v\}$ when it is clear from the context that the graph is undirected.

- u and v are the end points of an edge $\{u, v\}$
- Multi-graphs allow
- loops which are edges with the same node appearing as both end points
- multi-edges: different edges between same pairs of nodes
- In this class we will assume that a graph is a simple graph unless explicitly stated otherwise.

Graph Representation I

Adjacency Matrix

Represent $G=(V, E)$ with n vertices and m edges using a $n \times n$ adjacency matrix A where

- $A[i, j]=A[j, i]=1$ if $\{i, j\} \in E$ and $A[i, j]=A[j, i]=0$ if $\{i, j\} \notin E$.
- Advantage: can check if $\{i, j\} \in E$ in $O(1)$ time
- Disadvantage: needs $\Omega\left(n^{2}\right)$ space even when $m \ll n^{2}$

Graph adjacency matrix example [10 vertices]

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	0	0	0	1	0
2	0	0	0	0	0	0	1	1	0	1
3	1	0	0	0	1	1	1	0	0	0
4	1	0	0	0	0	1	0	0	0	1
5	0	0	1	0	0	1	0	1	1	0
6	0	0	1	1	1	0	1	0	0	0
7	0	1	1	0	0	1	0	0	0	1
8	0	1	0	0	1	0	0	0	1	0
9	1	0	0	0	1	0	0	1	0	0
10	0	1	0	1	0	0	1	0	0	0

Graph Representation II

Adjacency Lists

Represent $G=(V, E)$ with n vertices and m edges using adjacency lists:

- For each $u \in V, \operatorname{Adj}(u)=\{v \mid\{u, v\} \in E\}$, that is neighbors of u. Sometimes $\operatorname{Adj}(u)$ is the list of edges incident to u.
- Advantage: space is $O(m+n)$
- Disadvantage: cannot "easily" determine in O(1) time whether $\{i, j\} \in E$
- By sorting each list, one can achieve $O(\log n)$ time
- By hashing "appropriately", one can achieve O (1) time

Note: In this class we will assume that by default, graphs are represented using plain vanilla (unsorted) adjacency lists.

Graph adjacency list example [10 vertices]

vertex	adjacency list
1	$3,4,9$
2	$7,8,10$
3	$1,5,6,7$
4	$1,6,10$
5	$3,6,8,9$
6	$3,4,5,7$
7	$2,3,6,10$
8	$2,5,9$
9	$1,5,8$
10	$2,4,7$

Graph adjacency matrix+list example [10 vertices]

vertex	adjacency list
1	$3,4,9$
2	$7,8,10$
3	$1,5,6,7$
4	$1,6,10$
5	$3,6,8,9$
6	$3,4,5,7$
7	$2,3,6,10$
8	$2,5,9$
9	$1,5,8$
10	$2,4,7$

	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	0	0	0	1	0
2	0	0	0	0	0	0	1	1	0	1
3	1	0	0	0	1	1	1	0	0	0
4	1	0	0	0	0	1	0	0	0	1
5	0	0	1	0	0	1	0	1	1	0
6	0	0	1	1	1	0	1	0	0	0
7	0	1	1	0	0	1	0	0	0	1
8	0	1	0	0	1	0	0	0	1	0
9	1	0	0	0	1	0	0	1	0	0
10	0	1	0	1	0	0	1	0	0	0

Graph adjacency matrix example [20 vertices]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1
2	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
3	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0
5	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0
7	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0
8	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
9	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	1	0
10	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	1
11	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0
12	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0
14	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
15	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0
16	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0
17	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0
18	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
19	0	1	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0
20	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0

Graph adjacency matrix example [40 vertices]

Graph adjacency list example [40 vertices]

A Concrete Representation

- Assume vertices are numbered arbitrarily as $\{1,2, \ldots, n\}$.
- Edges are numbered arbitrarily as $\{1,2, \ldots, m\}$.
- Edges stored in an array/list of size $m . E[j]$ is $j^{\text {th }}$ edge with info on end points which are integers in range 1 to n.
- Array Adj of size n for adjacency lists. Adj[i] points to adjacency list of vertex i. Adj[i] is a list of edge indices in range 1 to m.

A Concrete Representation

Array of edges E

Array of adjacency lists

A Concrete Representation: Advantages

- Edges are explicitly represented/numbered. Scanning/processing all edges easy to do.
- Representation easily supports multigraphs including self-loops.
- Explicit numbering of vertices and edges allows use of arrays: $O(1)$-time operations are easy to understand.
- Can also implement via pointer based lists for certain dynamic graph settings.

Connectivity

Connectivity

Given a graph $G=(V, E)$:

$$
k \leqslant m
$$

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from v_{1} to v_{k}. Note: a single vertex u is a path of length 0 . Base Case

Connectivity

Given a graph $G=(V, E)$:

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from v_{1} to v_{k}. Note: a single vertex u is a path of length 0 .
- cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition. simple graplus
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.

Cycle
Tow

Connectivity

Given a graph $G=(V, E)$:

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from v_{1} to v_{k}. Note: a single vertex u is a path of length 0 .
- cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.
- A vertex u is connected to v if there is a path from u to v.

Connectivity

Given a graph $G=(V, E)$:

- path: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $v_{i} v_{i+1} \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ (the number of edges in the path) and the path is from v_{1} to v_{k}. Note: a single vertex u is a path of length 0 .
- cycle: sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$ for $1 \leq i \leq k-1$ and $\left\{v_{1}, v_{k}\right\} \in E$. Single vertex not a cycle according to this definition.
Caveat: Some times people use the term cycle to also allow vertices to be repeated; we will use the term tour.
- A vertex u is connected to v if there is a path from u to v.
- The connected component of u, con (u), is the set of all vertices connected to u. Is $u \in \operatorname{con}(u)$?

Connectivity contd

Define a relation C on $V \times V$ as $u C v$ if u is connected to v

- In undirected graphs, connectivity is a reflexive, fhen v symmetric, and transitive relation. Connected components are the equivalence classes.

- Graph is connected if there is only one connected component.

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v ?
- Given G and node u, find all nodes that are connected to u.
- Find all connected components of G.

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v ?
- Given G and node u, find all nodes that are connected to u.
- Find all connected components of G.

Can be accomplished in $O(m+n)$ time using BFS or DFS. BFS and DFS are refinements of a basic search procedure which is good to understand on its own.

Computing connected components in undirected graphs using basic graph search

Basic Graph Search in Undirected Graphs

Given $G=(V, E)$ and vertex $u \in V$. Let $n=|V|$.

Rennin Time: $O(m+m) O(m)$

Example

$$
\begin{array}{|c}
\text { CExdomy } \\
7 \\
\not x \\
3 \\
4 \\
5 \\
\hline 6 \\
7 \\
4
\end{array}\left|\begin{array}{l}
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array}\right|
$$

Properties of Basic Search

Running Time:

Properties of Basic Search

Running Time:

BFS and DFS are special case of BasicSearch.

- Breadth First Search (BFS): use queue data structure to implementing the list ToExplore
- Depth First Search (DFS): use stack data structure to implement the list ToExplore

Search Tree

One can create a natural search tree T rooted at u during search.

Explore (G, u) :
array Visited[1..n]
Initialize: Visited $[\mathrm{i}] \leftarrow$ FALSE for $i=1, \ldots, n$
List: ToExplore, S
Add u to ToExplore and to S, Visited[$[u] \leftarrow T R U E$
Make tree T with root as u
while (ToExplore is non-empty) do
Remove node x from ToExplore for each edge (x, y) in $\operatorname{Adj}(x)$ do if (Visited[y] = FALSE)

Visited[y] \leftarrow TRUE
Add y to ToExplore Add y to S
Add y to T with x as its parent
四utput S

Finding all connected components

Modify Basic Search to find all connected components of a given graph G in $O(m+n)$ time.
while ($\exists x \in V_{i s i t e d ~ w h e r e ~} V[x]=$ False) Add x to To Explore

Directed Graphs and Directed
Connectivity

Directed Graphs

Definition
A directed graph $G=(V, E)$
consists of

- set of vertices/nodes V and
- a set of edges/arcs $E \subseteq V \times V$.

An edge is an ordered pair of vertices. (u, v) different from (v, u).

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- Web-link graph: vertices are web-pages and there is an edge from page p to page p^{\prime} if p has a link to p^{\prime}. Web graphs used by Google with PageRank algorithm to rank pages.
- Dependency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.
- Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

Directed Graph Representation

Graph $G=(V, E)$ with n vertices and m edges:

$$
u \rightarrow v
$$

- Adjacency Matrix: $n \times n$ asymmetric matrix A. $A[u, v]=1$ if $(u, v) \in E$ and $A[u, v]=0$ if $(u, v) \notin E . A[u, v]$ is not same as $A[v, u]$.
- Adjacency Lists: for each node u, Out(u) (also referred to as $\operatorname{Adj}(u))$ and $\operatorname{In}(u)$ store out-going edges and in-coming edges from u.

Default representation is adjacency lists. Out (ω)

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

Array of edges E

Array of adjacency lists

Directed Connectivity

Given a graph $G=(V, E)$:

- A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_{1} to v_{k}. By convention, a single node u is a path of length 0 .

Directed Connectivity

Given a graph $G=(V, E)$:

- A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_{1} to v_{k}. By convention, a single node u is a path of length 0 .
- A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$. By convention, a single node u is not a cycle.

Directed Connectivity

Given a graph $G=(V, E)$:

- A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_{1} to v_{k}. By convention, a single node u is a path of length 0 .
- A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$. By convention, a single node u is not a cycle.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u

Directed Connectivity

Given a graph $G=(V, E)$:

- A (directed) path is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$. The length of the path is $k-1$ and the path is from v_{1} to v_{k}. By convention, a single node u is a path of length 0 .
- A cycle is a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $1 \leq i \leq k-1$ and $\left(v_{k}, v_{1}\right) \in E$. By convention, a single node u is not a cycle.
- A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u
- Let $\operatorname{rch}(u)$ be the set of all vertices reachable from u.

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Questions:

- Is there a notion of connected components?
- How do we understand connectivity in directed graphs?

Strong connected components

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach v and v can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach $v \underline{\text { and }} v$ can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $u C v$ if u is (strongly) connected to v.

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach $v \underline{\text { and }} v$ can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $u C v$ if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Connectivity and Strong Connected Components

Definition
Given a directed graph G, u is strongly connected to v if u can reach $v \underline{\text { and }} v$ can reach u. In other words $v \in \operatorname{rch}(u)$ and $u \in \operatorname{rch}(v)$.

Define relation C where $u C v$ if u is (strongly) connected to v.

Proposition

C is an equivalence relation, that is reflexive, symmetric and transitive.

Equivalence classes of C : strong connected components of G. They partition the vertices of G.
SCC(u): strongly connected component containing u.

Strongly Connected Components: Example

Strongly Connected Components: Example

Strongly Connected Components: Example

Strongly Connected Components: Example

Strongly Connected Components: Example

Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v ?
- Given G and u, compute $\operatorname{rch}(u)$.
- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
- Find the strongly connected component containing node u, that is $\operatorname{SCC}(u)$.
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

Graph exploration in directed graphs

Basic Graph Search in Directed Graphs

Given $G=(V, E)$ a directed graph and vertex $u \in V$. Let $n=|V|$.

```
Explore(G,u):
        array Visited[1..n]
    Initialize: Set Visited[i] \leftarrowFALSE for 1\leqi\leqn
    List: ToExplore, S
    Add u to ToExplore and to S, Visited[u]}\leftarrowTRU
    Make tree T with root as u
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge (x,y) in Adj(x) do
            if (Visited[y] = FALSE)
            Visited[y]}\leftarrow TRU
            Add y to ToExplore
            Add y to S
            Add y to T with edge ( }x,y\mathrm{ )
    Output S
```


Example

Example

$$
U=B
$$

Example

Example

$\operatorname{rch}(B)$

Properties of Basic Search

Proposition

Explore (G, u) terminates with $S=\operatorname{rch}(u)$.
Proof Sketch.

- Once Visited[i] is set to TRUE it never changes. Hence a node is added only once to ToExplore. Thus algorithm terminates in at most n iterations of while loop.
- By induction on iterations, can show $v \in S \Rightarrow v \in \operatorname{rch}(u)$
- Since each node $v \in S$ was in ToExplore and was explored, no edges in G leave S. Hence no node in $V-S$ is in $\operatorname{rch}(u)$. Caveat: In directed graphs edges can enter S.
- Thus $S=\operatorname{rch}(u)$ at termination.

Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v ?
- Given G and u, compute rch(u).

$$
\begin{aligned}
& \text { If } v \in \text { fo Explore }(G, u) \\
& \text { u reach } v \text { ? } \\
& \text { " } O(u+m)
\end{aligned}
$$

- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$. $\quad n \cdot \sigma_{0}$ Explore $(3) \quad 1000(n+m)$
- Find the strongly connected component containing node u, that is $\operatorname{SCC}(u)$.
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

Directed Graph Connectivity Problems

- Given G and nodes u and v, can u reach v ?
- Given G and u, compute $\operatorname{rch}(u)$.
- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.
- Find the strongly connected component containing node u, that is $\operatorname{SCC}(u)$.
- Is G strongly connected (a single strong component)?
- Compute all strongly connected components of G.

First five problems can be solved in $O(n+m)$ time by via Basic Search (or BFS/DFS). The last one can also be done in linear time but requires a rather clever DFS based algorithm (next lecture).

Algorithms via Basic Search

Algorithms via Basic Search - I

- Given G and nodes u and v, can u reach v ?
- Given G and u, compute rch(u).

Algorithms via Basic Search - I

- Given G and nodes u and v, can u reach v ?
- Given G and u, compute rch(u).

Use Explore (G, u) to compute $r(u)$ in $O(n+m)$ time.

Algorithms via Basic Search - II

- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$.

To Explore $(G, u) \longrightarrow \operatorname{reh}(u)$

Algorithms via Basic Search - II

- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$. Naive: $O(n(n+m))$

Algorithms via Basic Search - II

- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$. \quad Naive: $O(n(n+m))$

Definition (Reverse graph.)
Given $G=(V, E), G^{r e V}$ is the graph with edge directions reversed $G^{r e v}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Algorithms via Basic Search - II

- Given G and u, compute all v that can reach u, that is all v such that $u \in \operatorname{rch}(v)$. \quad Naive: $O(n(n+m))$

Definition (Reverse graph.)
Given $G=(V, E), G^{r e V}$ is the graph with edge directions reversed $G^{r e v}=\left(V, E^{\prime}\right)$ where $E^{\prime}=\{(y, x) \mid(x, y) \in E\}$

Compute rch(u) in $G^{r e v!}$

- Running time: $O(n+m)$ to obtain $G^{r e v}$ from G and $O(n+m)$ time to compute rch(u) via Basic Search. If both Out (v) and $\operatorname{In}(v)$ are available at each v then no need to explicitly compute $G^{r e v}$. Can do Explore (G, u) in $G^{r e v}$ implicitly.

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$

- Find the strongly connected component containing node u. That is, compute $\operatorname{SCC}(G, u)$.

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$

- Find the strongly connected component containing node u. That is, compute $\operatorname{SCC}(G, u)$.
$\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$

Algorithms via Basic Search - III

$\operatorname{SCC}(G, u)=\{v \mid u$ is strongly connected to $v\}$

- Find the strongly connected component containing node u. That is, compute $\operatorname{SCC}(G, u)$.
$\operatorname{SCC}(G, u)=\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$
Hence, $\operatorname{SCC}(G, u)$ can be computed with Explore (G, u) and Explore $\left(G^{r e v}, u\right)$. Total $O(n+m)$ time.

Why can $\operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ be done in $O(n)$ time?

SCC I

Graph G and its reverse graph $G^{r e v}$

Graph G

Reverse graph Grev

SCC II

Graph G a vertex F and its reachable set

Graph G

SCC III

Graph G a vertex F and the set of vertices that can reach it in $G: \operatorname{rch}\left(G^{r e v}, F\right)$

Graph G

SCC IV: ...

Graph G a vertex F and its strong connected component in G :

Graph G

Algorithms via Basic Search - IV

- Is G strongly connected?

Algorithms via Basic Search - IV

- Is G strongly connected?

Pick arbitrary vertex u. Check if $\operatorname{SCC}(G, u)=V$.

Algorithms via Basic Search - V

- Find all strongly connected components of G.

Algorithms via Basic Search - V

- Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node
    find S = SCC(G,u)
    Remove S from G
```


Algorithms via Basic Search - V

- Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Algorithms via Basic Search - V

- Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $O(n(n+m))$.

Algorithms via Basic Search - V

- Find all strongly connected components of G.

```
While G is not empty do
    Pick arbitrary node u
    find S = SCC(G,u)
    Remove S from G
```

Question: Why doesn't removing one strong connected components affect the other strong connected components?

Running time: $O(n(n+m))$.
Question: Can we do it in $O(n+m)$ time?

Find out next time.....

