

Pre-lecture brain teaser

Remembering the edit distance example we saw In class last
time, we formaluted the processing of the recursion as a table:

Is there an easier way to get
the minimum alignment
without having to calculate all
the values in the cell?

S/ m m S oM

ECE-374-B: Lecture 15 - Graph search

Instructor: Nickvash Kani
March 09, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Remembering the edit distance example we saw In class last
time, we formalated the processing of the recursion as a table:

Is there an easier way to get
the minimum alignment
without having to calculate all
the values in the cell?

S/ m m S oM

Pre-lecture brain teaser

Remembering the edit distance example we saw In class last
time, we formaluted the processing of the recursion as a table:

>0

e DI R|E|A|D

a

>0

AaVa%a

OIm m| O M

7
aaara

Look at the flow of the computation!

Pre-lecture brain teaser

Remembering the edit distance example we saw In class last
time, we formaluted the processing of the recursion as a table:

>0

>0

A aVa%a

avava’a

avaVar
s

Look at the flow of the computation!

Pre-lecture brain teaser

Remembering the edit distance example we saw In class last
time, we formaluted the processing of the recursion as a table:

R

i
LY

R
g
8
8
g
/!

>0

7
%A%

O/ m m| Sl M

We can solve the problem by turning it into a graph!

Graph Basics

Why Graphs?

- Graphs help model networks which are ubiquitous:
transportation networks (rail, roads, airways), social
networks (interpersonal relationships), information
networks (web page links), and many problems that don't
even look like graph problems.

- Fundamental objects in Computer Science, Optimization,
Combinatorics

- Many important and useful optimization problems are
graph problems

- Graph theory: elegant, fun and deep mathematics

An undirected (simple) graph G =
(V,E) Is a2-tuple:
-V is a set of vertices (also
referred to as nodes/points)

- EI1s a set of edges where each
edge e € E Is a set of the form
{u,viwithu,veVandu#v.

Example
In figure, G = (V, E) where V=1{1,2,3,4,5,6,7,8} and

2 = {1, 205 {1 30 425 3o 125 855 125 3l 1S5 Bl 185 7
{3,8},{4,5},{5,6},{7,8}}.

Example: Modeling Problems as Search

State Space Search
Many search problems can be modeled as search on a graph.

The trick is figuring out what the vertices and edges are.

Missionaries and Cannibals

- Three missionaries, three cannibals, one boat, one river
- Boat carries two people, must have at least one person
- Must all get across

- At no time can cannibals outnumber missionaries

How Is this a graph search problem?
What are the vertices?
What are the edges?

Cannibals and Missionaries: Is the language empty?

CCCb_ MMM)< -

_ @
>
C
J
CC
>

*Omitted states where cannibals out-
number missionaries

Problems goes back to
800 CE

Versions with brothers
and sisters.

Jealous Husbands.

Lions and buffalo

All bad names to a simple
problem...

Problems on DFAs and s sometimes are just problems on
graphs

%.f'jiv >@ r

- M: DFA/NFA is L(M) empty?

+ M: DFA IS L(M) = X*7?
- M: DFA, and a string w. Does M accepts w?

- N: NFA, and a string w. Does N accepts w?

Graph notation and representation

Notation and Convention

Notation | | |
An edge In an undirected graphs is an unordered pair of nodes

and hence it is a set. Conventionally we use uv for {u, v} when
It Is clear from the context that the graph Is undirected.

- U and v are the end points of an edge {u, v}

- Multi-graphs allow
- loops which are edges with the same node appearing as

both end points
- multi-edges: different edges between same pairs of nodes

- In this class we will assume that a graph is a simple graph
unless explicitly stated otherwise.

Graph Representation |

Adjacency Matrix | | |
Represent G = (V, E) withn vertices and m edges usinga n x n
adjacency matrix A where

Al = A, 11 =11t {1,j} € Eand A[i,j)] =A[),i] =0 if
1y ¢ E
- Advantage: can check if {i,j} € E in O(1) time

- Disadvantage: needs Q(n?) space even when m < n?

10

Graph adjacency matrix example [10 vertices]

Slo|lv|o|d|lo|lo|+|o|o|o
alld|lo|lolo|d|lo|lo|«|o|o
ol|lo|ld|lolo|lvd|lo|lo|lo|«|o
~Nllo|ld | |lolo|ld|o|lolo|«
Ollolo|d|d|d|o|d|o|o|o
nilo|lo|ld|lolo|d|o|«|«|o
Tl |o|lojlo|lo|d|o|lo|o |«
il |lo|lolo|ld|ld|d|lololo
N|o|lo|lolo|lo|lo|d|d|o |-
—Al|lo|lold|w|lo|lo|lo|lo|«|o

AN |T|bvw|o |~ |G

1

Graph Representation Il

Adjacency Lists | | |
Represent G = (V, E) with n vertices and m edges using

adjacency lists:

- For each u € V, Adj(u) = {v | {u,v} € E}, that is neighbors
of u. Sometimes Adj(u) is the list of edges incident to u.
- Advantage: space is O(m + n)

- Disadvantage: cannot “easily” determine in O(1) time
whether {i,j} € E

+ By sorting each list, one can achieve O(logn) time
- By hashing “appropriately”, one can achieve O(1) time

Note: In this class we will assume that by default, graphs are
represented using plain vanilla (unsorted) adjacency lists.

12

Graph adjacency list example [10 vertices]

adjacency list
1 3, 4,9
2 /7,8, 10
3 1,5,06, 7
4 1, 6, 10
5 3,6,8,9
6 3,4,5,7
/ 2, 3,06, 10
3 2,59
9 1,5, 8
10 2,4 7

13

‘n
Q
=
=)
—
Q
>
o
.
o
o
&
C
x
Q
=)
&
=
s
—
=)
(ge]
&
>\
o
-
Q
o
.5
o)
©
-
o
C
—
O

Slo|—|o|l-|lo|lo|—|o|o|o

olld|lolo|lo|lv|o|lo|ld|o|o

ol|l|lolv|lo|lold|o|lo|lo|d|o

~Nllold|ld|lolold|lolo|lo |«

Ollojlojld|d | |o|ld|o|lo|o

OO O |+ | OO || |O

S| | O OO |O (|| |O |

mlld|lolo|lojld|d|ld|o|lo|o

Nl|lolojlo|lolojlo|d | |o |«

Allolo|ld|d|lo|lo|lo|lo|d|o
AN |;nw|o|~|o | |G
+—

N2

& o

c N~ O\ [P | v

S ol o . 7.

Llov | |O | |0 |15 |S|on |0 |~
..W Flo|w|o|o|F Moo
Sl | N[||
P

<) o
||| [w|Oo|~|0|o g
@

s

14

‘n
Q
=
=)
|
Q
>
(@)
A
i
o
&
L)
x
Q
R
—
)
(ge]
&
>\
@)
-
Q
o
.5
o)
©
-
o
C
—
O

l1]2]3]4]5]6]7[8]9]10]11]12]13]14]15[16]17]18]19]20]

0
0
1
0

0
0

0

0

0
0
0
0

1
0

0

1

0
0

0
0
0
0

0
1

1
0

0
1
0
1

0

0

0

1

0
1

0|00

0

0|00

1

1

1

0/]0]|0]0
0j]0]0]0

1

1
1
1

0/0]0]0

0/]0]0]0

1
1

0
1

1

1

0|0|0|0]0]O

00|10

0]1]0]0

0|0|0|0|0]0]O

0|1{1{0]0]0j0]0]O0
0/0|{0|0j0]0]|0]0O]12

1/0(0(0lOJO|0OfO|O
0|0|0|1]0]0]j0]0]1

0|0|0]0]0

0|0|0|0|0O]0O|0O|0O]O
0|0|0|0|0O]0|0O]0O]O

0|0|0|0]|0]O0

0|1|0[0|0]0]0

1/0/(0(0lOJO|0OfO|O
001|000
0/0|0]|0]0

0]0]0

0]0]|0]|1

0|1{1{0]0j0j0]0]1

110010

5
6
7
8

10
11
12
13
14
15
16
17
18
19
20

15

‘n
Q
=
)
|
Q
>
o
=
i
o
&
go]
x
Q
X
o
)
(ge]
&
>\
@)
-
Q
o
.5
o)
©
-
o
C
—
O

192021

18

17

16

0

0

0

0

0

0

0

0

0

ofo]o

1[oJoJo
olo]o]o

1][o]o]o

1

of[ofofo

ofo]o

olofo]o

ofofofo

0o

ofofofo
ofofofo

olo]o]o

ofofofo

ofo]o]o

0o

ofofofo

ofofofo

ofo]o]o
ojojofo

ofo]o

ofo]o]o
olofo]o

ofo]ofo

0

0

0

0

1

1

0

0

0|0

0

1]{o]o]o

0j0]0

oJofoJoJo
ofo]o]o]o

oJofo]o]o

ololo]o

oJofofofo
oJofofo]o
ofo]o]o]o

oJofofofo

ololo]o

oJofo]ofo
oJofofofo

ololo]o

1]o]o]o

oJofofo

oJofofofo

oJofo]o]o

oJofofofo

oJofofo]o
ololo]o

oJofoJoJo

11

13

16
17

20

24

34

38

40

16

Graph adjacency list example [40 vertices]

vertex H adjacency list

1 6, 24, 34, 36
2 12,22, 23,29
3 14, 15, 21

4 8,19, 28, 36
5 6, 24, 25, 27
6 1,5,7,23

7 6,25, 32, 39
8 4,19, 30

9 10, 16, 28, 35
10 | 925,27, 35
11 || 13,15, 33, 34
12 |/ 233,37, 38
13 || 11,15, 17, 25
14 | 3,22,40

15 | 3,11, 13,22
16 | 9,20,23,33
17 |/ 13,20,32, 34
18 || 20, 30, 34, 40
19 | 4,8,31,37
20 | 16,17, 18,35
21 | 3,31,38

22 | 2 14,15

23 | 2,6 16,26
24 | 1,5 31,38
25 | 57,10, 13
26 | 23,29

27 |5, 10, 40

28 | 4,9, 30,36
29 | 226

30 | 8 18 28

31 | 19,21, 24, 37
32 |7,17,37,39
33 | 11,12, 16,39
34 | 1,11, 17,18
35 |9, 10,20, 36
36 | 1,4 2835
37 | 12,1931, 32
38 | 12,21, 24, 39
39 | 7,32,33 38
40 | 14,18, 27

17

A Concrete Representation

- Assume vertices are numbered arbitrarily as {1,2,...,n}.
- Edges are numbered arbitrarily as {1,2,...,m}.

- Edges stored in an array/list of size m. E[j] is j* edge with
Info on end points which are integers in range 1to n.

- Array Adj of size n for adjacency lists. Adj[i] points to

adjacency list of vertex 1. Adj[i] is a list of edge indices In
range 1 to m.

18

A Concrete Representation

Array of edges E

________ ?.

information including end point indices

Array of adjacency lists

List of edges (indices) that are incident to v;

19

A Concrete Representation: Advantages

- Edges are explicitly represented/numbered.
Scanning/processing all edges easy to do.

- Representation easily supports multigraphs including
self-loops.

- Explicit numbering of vertices and edges allows use of
arrays: O(1)-time operations are easy to understand.

- Can also implement via pointer based lists for certain
dynamic graph settings.

20

Connectivity

Connectivity

Given a graph G = (V, E): 2 v
- path: sequence ofdistinct vertices vq, Vo, ...,V such that

ViVipq € Efor1 <1 < R—1. The length of the pathis kR —1
(the number of edges in the path) and the path is from v;
to vi,. Note: a single vertex u is a path of length 0. ‘Bage Cose

21

Connectivity

Given a graph G = (V, E):

+ path: sequence of distinct vertices vq, Vo, ...,V such that
ViVipq € Efor1 <1 < R—1. The length of the pathis kR —1
(the number of edges in the path) and the path is from v;
to v,. Note: a single vertex u 1s a path of length 0.
+ cycle: sequence of distinct vertices vq, Vy,...,V, such that
{vi,viz.} e Efor1 <i<k—1and {v;,vx} € E. Single
vertex not a cycle according to this definition. 4“‘7'4"0 >me'&
Caveat: Some times people use the term cycle to also
allow vertices to be repeated; we will use the term tour.

N’

21

Connectivity

Given a graph G = (V, E):

- path: sequence of distinct vertices vq, Vo, ...,V such that
ViVipq € Efor1 <1 < R—1. The length of the pathis kR —1
(the number of edges in the path) and the path is from v;
to v,. Note: a single vertex u 1s a path of length 0.

+ cycle: sequence of distinct vertices vq, vy, ...,V such that
{vi,viz.} e Efor1 <i<k—1and {v;,vx} € E. Single
vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also
allow vertices to be repeated; we will use the term tour.

- A vertex u Is connected to v if there Is a path from u to v.

21

Connectivity

Given a graph G = (V, E):

- path: sequence of distinct vertices vq, Vo, ...,V such that
ViVipq € Efor1 <1 < R—1. The length of the pathis kR —1
(the number of edges in the path) and the path is from v;
to v,. Note: a single vertex u 1s a path of length 0.

+ cycle: sequence of distinct vertices vq, vy, ...,V such that
{vi,viz.} e Efor1 <i<k—1and {v;,vx} € E. Single
vertex not a cycle according to this definition.

Caveat: Some times people use the term cycle to also
allow vertices to be repeated; we will use the term tour.

- A vertex u Is connected to v if there Is a path from u to v.

+ The connected component of u, con(u), Is the set of all
vertices connected to u. Is u € con(u)?

21

Connectivity contd

Define a relation C on V x V as uCv If
u 1S connected to v ‘
- In undirected graphs, LR
connectivity is a reflexive, flen v
symmetric, and transitive
relation. Connected components

are the equivalence classes.

- Graph Is connected If there Is
only one connected component.

22

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?

- Glven G and node u, find all nodes that are connected to u.

- Find all connected components of G.

23

Connectivity Problems

Algorithmic Problems

- Given graph G and nodes u and v, is u connected to v?

- Glven G and node u, find all nodes that are connected to u.

- Find all connected components of G.

Can be accomplished in O(m + n) time using BFS or DFS.
BFS and DFS are refinements of a basic search procedure
which 1s good to understand on Its own.

23

Computing connected components
In undirected graphs using basic
graph search

Basic Graph Search in Undirected Graphs

Given G = (V,E) and vertex u € V. Let n = |V|.

Explore(G, &) : \/e/'lﬁws HF
Visited[1 .. n] < FALSE led 60 B
// ToExplore, S: Li/ _Q/f“qu«k
Add u to ToExplore and to S
Visited[u] < TRUE \\ o/
ns while (ToExplore is non-empty) do o
J@fk‘c’ Remove node x from ToExplore Co ™ v
Wz/ﬁ}" for each edge xy in Adj(x) do 10
) \é\ if (Visited[y] = FALSE)
w- - Visited[y] < TRUE
Add y to ToExplore
Add y to S
Output S

Rz, Toos" O(RERD) D
O 4D 24

Properties of Basic Search

Running Time:

26

Properties of Basic Search

Running Time:

BFS and DFS are special case of BasicSearch.

- Breadth First Search (BFS): use queue data structure to
Implementing the list ToExplore

- Depth First Search (DFS): use stack data structure to
Implement the list ToExplore

26

One can create a natural search tree T rooted at u during

search.
Explore(G,u):
array Visited[1..n]
Initialize: Visited[i] «+ FALSE for i=1,...,n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] +- TRUE
Make tree T with root as u
‘while (ToFxplore is non-empty) do
Remove node x from ToExplore
for each edge (x,y) in Adj(x) do
if (Visited[y] = FALSE)
Visited|y] «+— TRUE
Add y to ToExplore

Add y to S
Add yv to T with x as 1ts parent

27

Hutput S

Finding all connected components

Modify Basic Search to find all connected components of a
given graph G in O(m + n) time.

ile (I € Vs e UGS Folse)
ME o ToErphre

—t

Directed Graphs and Directed
Connectivity

Directed Graphs

Definition
A directed graph G = (V, E)
consists of
- set of vertices/nodes V
and

- a set of edges/arcs
ECV xV.

An edge Is an ordered pair of verticeﬁerent from

(v, u).

29

Examples of Directed Graphs

In many situations relationship between vertices Is
asymmetric:

- Road networks with one-way streets.

- Web-link graph: vertices are web-pages and there is an
edge from page p to page p’ if p has a link to p’. Web
graphs used by Google with PageRank algorithm to rank
pages.

- Dependency graphs in variety of applications: link from x
to y If y depends on x. Make files for compiling programs.

- Program Analysis: functions/procedures are vertices and
there is an edge from x to y if x calls y.

30

Directed Graph Representation

Graph G = (V, E) with n vertices and m edges: ==

- Adjacency Matrix: n x n asymmetric matrix A. Alu,v] =11f
(u,v) € Eand Alu,v] =0 If (u,v) & E. Alu,Vv] Is not same as
Alv, ul.

- Adjacency Lists: for each node u, Out(u) (also referred to
as Adj(u)) and In(u) store out-going edges and in-coming
edges from u.

Default representation Is adjacency lists. Op% (w\

3

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected
graphs easily extends to directed graphs.

Array of edges E

________ ?.

information including end point indices

Array of adjacency lists

List of edges (indices) that are incident to v;

32

Directed Connectivity

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices
Vi, Vo, ..., Ve Such that (vj,viq) € Efor1 <1 < RkR—1 The
length of the path is kR — 1 and the path Is from v; to v.
By convention, a single node u Is a path of length 0.

33

Directed Connectivity

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices
Vi, Vo, ..., Ve Such that (vj,viq) € Efor1 <1 <RkR—1 The
length of the path is kR — 1 and the path Is from v; to v.
By convention, a single node u Is a path of length 0.

- A cycle Is a sequence of distinct vertices vq, vy, ...,V such
that (V,’,V,'_H) c Efor1<i<kR-—1Tand (V;?,V1) e E.
By convention, a single node u Is not a cycle.

33

Directed Connectivity

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices
Vi, Vo, ..., Ve Such that (vj,viq) € Efor1 <1 < RkR—1 The
length of the path is kR — 1 and the path Is from v; to v.
By convention, a single node u Is a path of length 0.

- A cycle Is a sequence of distinct vertices vq, vy, ...,V such
that (V,’,V,'_H) c Efor1<i<RkR-—1Tand (V;?,V1) e L.
By convention, a single node u Is not a cycle.

- A vertex u can reach v If there is a path from u to v.
Alternatively v can be reached from u

33

Directed Connectivity

Given a graph G = (V, E):

- A (directed) path is a sequence of distinct vertices
Vi, Vo, ..., Ve Such that (vj,viq) € Efor1 <1 < RkR—1 The
length of the path is kR — 1 and the path Is from v; to v.
By convention, a single node u Is a path of length 0.

- A cycle Is a sequence of distinct vertices vq, vy, ...,V such
that (V,’,V,'_H) c Efor1<i<RkR-—1Tand (V;?,V1) e L.
By convention, a single node u Is not a cycle.

- A vertex u can reach v If there is a path from u to v.
Alternatively v can be reached from u

- Let rch(u) be the set of all vertices reachable from u.

33

Connectivity contd

D can reach B but B cannot reach D

34

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Questions:

- |s there a notion of connected components?

- How do we understand connectivity in directed graphs?
34

Strong connected components

Connectivity and Strong Connected Components

Definition | |
Given adirected graph G, u is strongly connected to v If u can

reach v and v can reach u. In other words v € rch(u) and
u € rch(v).

35

Connectivity and Strong Connected Components

Definition | |
Given a directed graph G, u Is strongly connected to v If u can

reach v and v can reach u. In other words v € rch(u) and
u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

35

Connectivity and Strong Connected Components

Definition | |
Given a directed graph G, u Is strongly connected to v If u can

reach v and v can reach u. In other words v € rch(u) and
u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.

Proposition | | | |
C is an equivalence relation, that is reflexive, symmetric and

transitive.

35

Connectivity and Strong Connected Components

Definition | |
Given a directed graph G, u Is strongly connected to v If u can

reach v and v can reach u. In other words v € rch(u) and
u € rch(v).

Define relation C where uCv if u is (strongly) connected to v.
Proposition | | | |

C is an equivalence relation, that is reflexive, symmetric and
transitive.

Equivalence classes of C: strong connected components of G.
They partition the vertices of G.
SCC(u): strongly connected component containing u.

35

Strongly Connected Components: Example

36

Strongly Connected Components: Example

36

Strongly Connected Components: Example

36

Strongly Connected Components: Example

36

Strongly Connected Components: Example

36

Directed Graph Connectivity Problems

- Glven G and nodes u and v, can u reach v?
- Given G and u, compute rch(u).

- Given G and u, compute all v that can reach u, that is all v
such that u € rch(v).

- Find the strongly connected component containing node
u, that 1s SCC(u).

- |Is G strongly connected (a single strong component)?

+ Compute all strongly connected components of G.

37

Graph exploration in directed graphs

Basic Graph Search in Directed Graphs

Given G = (V, E) a directed graph and vertex u € V. Let n = |V|.

Explore(G,u):
array Visited[1..n]
Initialize: Set Visited[i] + FALSE for 1<i<n
List: ToExplore, S
Add u to ToExplore and to S, Visited[u] +- TRUE
Make tree T with root as u
while (ToExplore is non-empty) do
Remove node x from ToExplore
for each edge (x,y) in Adj(x) do
if (Visited[y] = FALSE)
Visited|y] <— TRUE
Add y to ToExplore
Add y to S
Add y to T with edge (x,y)

Output S

38

@8@‘@

@8@‘@

@8@‘@

7

@8@‘@

@8@‘@

@8@‘@

@
O

Properties of Basic Search

Proposition | |
Explore(G, u) terminates with S = rch(u).

Proof Sketch.

- Once Visited[i] Is set to TRUE it never changes. Hence a
node Is added only once to ToExplore. Thus algorithm
terminates in at most n iterations of while loop.

- By induction on iterations, can show v € S = v € rch(u)

- Since each node v € S was In ToExplore and was explored,
no edges in G leave S. Hence no node in V — S is in rch(u).
Caveat: In directed graphs edges can enter S.

- Thus S = rch(u) at termination.

40

Directed Graph Connectivity Problems

it v < <rogycrlof‘€,<,6'/ "“B

- Glven G and nodes u and v, can u reach v?
- Given G and u, compute rch(u). !/ O (=

- Glven G and u, compute all v that can reach u, thatis all v
such that u € rch(v). n Fo Eqlore O o ® 0Lt

- Find the strongly connected component containing node
u, that is SCC(u).

- |Is G strongly connected (a single strong component)?
+ Compute all strongly connected components of G.

41

Directed Graph Connectivity Problems

- Glven G and nodes u and v, can u reach v?
+ Given G and u, compute rch(u).

- Glven G and u, compute all v that can reach u, thatis all v
such that u € rch(v).

- Find the strongly connected component containing node
u, that is SCC(u).

- |s G strongly connected (a single strong component)?

- Compute all strongly connected components of G.

First five problems can be solved in O(n 4+ m) time by via Basic
Search (or BFS/DFS). The last one can also be done in linear
time but requires a rather clever DFS based algorithm (next
lecture).

41

Algorithms via Basic Search

Algorithms via Basic Search - |

- Glven G and nodes u and v, can u reach v?

- Given G and u, compute rch(u).

42

Algorithms via Basic Search - |

- Glven G and nodes u and v, can u reach v?

- Given G and u, compute rch(u).

Use Explore(G, u) to compute rch(u) in O(n + m) time.

42

Algorithms via Basic Search - Il

- Given G and u, compute all v that can reach u, that is all v
such that u € rch(v).

/Z; EEFV('W@ <G/ "“\ — ek éﬁw

43

Algorithms via Basic Search - Il

- Given G and u, compute all v that can reach u, that is all v
such that u € rch(v). Naive: O(n(n + m))

43

Algorithms via Basic Search - Il

- Given G and u, compute all v that can reach u, that is all v
such that u € rch(v). Naive: O(n(n + m))

Definition (Reverse graph.) | -
Given G = (V,E), G is the graph with edge directions reversed

G = (V,E") where E' ={(y,x) | (x,y) € E}

G (@
e @

Algorithms via Basic Search - Il

- Given G and u, compute all v that can reach u, that is all v
such that u € rch(v). Naive: O(n(n + m))
Definition (Reverse graph.) | -
Given G = (V,E), G is the graph with edge directions reversed
G = (V,E") where E' ={(y,x) | (x,y) € E}

Compute rch(u) in G™"!

- Running time: O(n + m) to obtain G from G and
O(n 4+ m) time to compute rch(u) via Basic Search. If both
Out(v) and In(v) are available at each v then no need to
explicitly compute G'. Can do Explore(G, u) in G
implicitly.

43

Algorithms via Basic Search - Il

SCC(G,u) ={v | uisstrongly connected to v}

bty

Algorithms via Basic Search - Il

SCC(G,u) ={v | uisstrongly connected to v}

- Find the strongly connected component containing node
u. That is, compute SCC(G, u).

bty

Algorithms via Basic Search - Il

SCC(G,u) ={v | uisstrongly connected to v}

- Find the strongly connected component containing node
u. That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) N rch(G™®, u)

bty

Algorithms via Basic Search - Il

SCC(G,u) ={v | uisstrongly connected to v}

- Find the strongly connected component containing node
u. That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) N rch(G™®, u)

Hence, SCC(G, u) can be computed with Explore(G, u) and
Explore(G™Y, u). Total O(n + m) time.

Why can rch(G, u) N rch(G'™Y, u) be done in O(n) time?

bty

SCC |

Graph and its reverse graph

Reverse graph G *

SCC I

Graph avertex = and Its reachable set

& —C
@‘@ D)
Cpr)

N

46
Reachable set of vertices from F

SCC I

Graph G a vertex F and the set of vertices that can reach it In
:rch(G™Y, F)

47

SCCIV: ...

Graph avertex and Its strong connected component in

rch(G', F) "

Algorithms via Basic Search - IV

- |Is G strongly connected?

49

Algorithms via Basic Search - IV

- |Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G,u) = V.

49

Algorithms via Basic Search - V

- Find all strongly connected components of G.

50

Algorithms via Basic Search - V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

_

50

Algorithms via Basic Search - V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected
components affect the other strong connected components?

50

Algorithms via Basic Search - V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected
components affect the other strong connected components?

Running time: O(n(n + m)).

50

Algorithms via Basic Search - V

- Find all strongly connected components of G.

While G 1s not empty do
Pick arbitrary node u
find S = SCC(G,u)
Remove S from G

Question: Why doesn’t removing one strong connected
components affect the other strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

50

Find out next time.....

