

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore(G,u):
Visited[1 .. n] < FALSE

Add u to S We said that if ToExplore
V[s/ted[u] <+~ TRUE was a:

ExploreStep(G,u, Visited, S))
output S - Stack, the algorithm

is equivalent to DFS
ExploreStep(G,x, Visited, S):

for each edge xy in Adj(x) do) Queu_e' th?
if (Visited]y] = FALSE) algorithm is
Visited[y] < TRUE equivalent to BFS

ExploreStep(G,x, Visited, S):

return

What if the algorithm was written recursively (instead of the
while loop, you recursively call explore). What would the
algorithm be equivalent to?

ECE-374-B: Lecture 16 - Directed Graphs (DFS,
DAGs, Topological Sort)

Instructor: Nickvash Kani
March 21, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:
Explore(G,u):
Visited[1 .. n] < FALSE

Add u to S We said that if ToExplore
V[s/ted[u] <+~ TRUE was a:

ExploreStep(G,u, Visited, S))
output S - Stack, the algorithm

is equivalent to DFS
ExploreStep(G,x, Visited, S):

for each edge xy in Adj(x) do) Queu_e' th?
if (Visited]y] = FALSE) algorithm is
Visited[y] < TRUE equivalent to BFS

ExploreStep(G,x, Visited, S):

return

What if the algorithm was written recursively (instead of the
while loop, you recursively call explore). What would the
algorithm be equivalent to?

Directed Acyclic Graphs - definition
and basic properties

Directed Acyclic Graphs

Definition .
A directed graph G is a

directed acyclic graph (DAG)
if there is no directed cycle
in G.

.
()
<<
o

©
oL
e
s}
L

Sources and Sinks

Definition
- Avertex u is a source if it has no in-coming edges.

- Avertex u is a sink if it has no out-going edges.

Simple DAG Properties

Proposition .
Every DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition .
Every DAG G has at least one source and at least one sink.

Proof.

Let P = vq,Vy,...,V, be a longest path in G. Claim that v; is a
source and vy is a sink. Suppose not. Then v; has an incoming
edge which either creates a cycle or a longer path both of
which are contradictions. Similarly if v, has an outgoing

edge. O]

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation < on X,
such that

- Transitivity: ¥x.y,z € X Xx<yandy <z = x <2z

- For any x,y € X, exactly one of the following holds:
X<y, y<xorx=y.

Convention about writing edges

- Undirected graph edges:
uv=A{u,v}i=vu et
- Directed graph edges:

u—v

Il
—~~
<

<
~

I

= (u—v)

Topological Ordering/Sorting
2) 3

Topological Ordering of G

Graph G

Definition
A topological ordering/topological sorting of G = (V, E) is an

ordering < on V such that if (u — v) € Ethenu < v.

Informal equivalent definition: One can order the vertices of
the graph along a line (say the x-axis) such that all edges are
from left to right.

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n)
time.

10

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n)
time.

Simple Algorithm:
1. Count the in-degree of each vertex

2. For each vertex that is source (deg;,(v) = 0):

21 Add v to the topological sort
2.2 Lower degree of vertices v is connected to. '

10

Topological Sort: Example

N

@ Adjacency List:

Node | Neighbors

a d e Generate degj,(v):
@ o € Degree ‘ Vertices

; ¢ 0 a, b, c

1 dfg

e h g . H

f h =

g
O, “

n

Topological Sort: Example

g\;

Topo ogical Ordering:

Adjacency List:

Node | Neighbors
a d e Generate degj,(v):
o € Degree ‘ Vertices
; ¢ 0 a, b c
1 dfg
e h g . H
f h =
g
h

Biogejosorosorcy

QO O CTOTEET®
@ﬁ ofogo=on0s050¥0
oejojorc¥orofe

DAGs and Topological Sort

- Note: A DAG G may have many different topological sorts.

- Exercise: What is a DAG with the most number of distinct
topological sorts for a given number n of vertices?

- Exercise: What is a DAG with the least number of distinct
topological sorts for a given number n of vertices?

13

Direct Topological ordering - code

TopSort(G):
Sorted < NULL
deg;,[1..n] < —1
Tdeg;,[1.. n] < NULL
Generate in-degree for each vertex
for each edge xy in G do
deg/'n[y]++
for each vertex v in G do
Tdeg,, [deg;,[vI].append(v)
Next we recursively add vertices
with in-degree = 0 to the sort list
while (Tdeg, [0] is non-empty) do
Remove node x from Tdeg,,[0]
Sorted.append(x)
for each edge xy in Adj(x) do
deg;,[y] — —
move y to Tdeg,,[deg,,[y]]
Output Sorted 14

DAGs and Topological Sort

Lemma . .
A directed graph G can be topologically ordered = G Is a

DAG.

Proof. o _
Proof by contradiction. Suppose G is not a DAG and has a

topological ordering <. G has a cycle
C=U1—=Uy— - — Up — Uj.

Thenus < Uy < ... < Uk < U

15

DAGs and Topological Sort

Lemma . .
A directed graph G can be topologically ordered = G Is a

DAG.

Proof. o _
Proof by contradiction. Suppose G is not a DAG and has a

topological ordering <. G has a cycle
C=U1—=Uy— - — Up — Uj.

Thenus < Uy < ... < Uk < U
— Uq < U1.

A contradiction (to < being an order). Not possible to
topologically order the vertices. O

15

An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a topological ordering of a graph is a
numbering 7 : V — {1,2,...,n}, such that

V(u—v)eEG) = n(u) <n(v).

(That is, 7 is one-to-one, and n = |V/)

Assuming:

V=A{a,.. w}
m={1,...23}

Depth First Search (DFS)

Depth First Search (DFS) in
Undirected Graphs

Depth First Search

- DFS special case of Basic Search.

- DFS is useful in understanding graph structure.

- DFS used to obtain linear time (O(m + n)) algorithms for
- Finding cut-edges and cut-vertices of undirected graphs
- Finding strong connected components of directed graphs

- ..many other applications as well.

in Undirected Graphs

Recursive version. Easier to understand some properties.

DFS(G) DFS(u)
for all v e Vv(G) do Mark u as visited
Mark u as unvisited for each uv in Out(u) do
Set pred(u) to null if v is not visited then
T is set to 0 add edge uv to T
while 3 unvisited v do set pred(v) to u
DFS(u) DFS(v)
Output T

Implemented using a global array Visited for all recursive calls.

T is the search tree/forest.

19

Joac

@*C?
©

Edges classified into two types: uv € Eis a

- tree edge: belongsto T
- non-tree edge: does not belongto T

20

Joao

@7(?
©

Edges classified into two types: uv € Eis a

- tree edge: belongsto T
- non-tree edge: does not belongto T

21

DFS with pre-post numbering

with Visit Times

Keep track of when nodes are visited.

DFS(G) DFS(u)
for all v e V(G) do Mark u as visited
Mark u as unvisited pre(u) = ++time
T is set to 0 for each uv in Out(u) do
time =0 if v is not marked then
while 3 unvisited u do add edge uv to T
DFS(u) DFS(v)
Output T post(u) = ++time

22

time =0
vertex \ [pre, post]

23

time =1
vertex \ [pre, post]
1 1]

23

time =1
vertex \ [pre, post]
1 1]

23

time =2
vertex ‘ [pre, post]

1 [1,]

2 (2.]

23

time =2
vertex ‘ [pre, post]

1 [1,]

2 (2.]

23

time =3
vertex | [pre, post]

1]

2 [2,]

b [3,]

23

time = 4
vertex | [pre, post]
il [1,]

2 [2,]
4 [3,]
5 [4,]

23

time =5
vertex | [pre, post]

1 [1,]

2 [2,]

4 3,]

5 [4,]

6 [5:]

23

time =6
vertex | [pre, post]

1 [1,]

2 [2.]

b [3:]

5 [4,]

6 [5, 6]

23

time =7/
vertex | [pre, post]
1 [1,]
2 [2,]
4 [3:]
5 [4,]
6 [5, 6]
3 [7,]

23

time =8
vertex | [pre, post]
1 [1,]

[2,]
[3:]
[4,]
[5, 6]
[7,]
[8:]

~N W oo U1

23

time =9
vertex | [pre, post]
1 [1,]
2 (2,]
& 3]
5 [4,]
6 5, 6]
3 7,1
7 [8,]
8 [9,]

23

time =10
vertex | [pre, post]
[1,]
(2,]
3]
[4,]

[5, 6]
[7:]
[8,]

[9,10]

m\l(.k)oju'l-l-\[\)H

23

time =11
vertex | [pre, post]
1 [1,]
2 [2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,]
7 [8,11]
8 [9,10]

23

time =12
vertex | [pre, post]
1]
2 2,]
4 [3,]
5 [4,]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]

23

time =13
vertex | [pre, post]
1]
2 2,]
4 [3,]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]

23

time =14
vertex | [pre, post]
1]
2 2,]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]

23

time =15
vertex | [pre, post]
1 [1.]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]

23

time = 16
vertex | [pre, post]
1 [1,16]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]

23

time =1/
vertex | [pre, post]
1 [1,16]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]
9 17,]

23

time =18
vertex | [pre, post]

1 [1,16]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]
9 17,]
10 [18,]

23

time =19

vertex | [pre, post]

T el Oy Y4©
2 | 73] @‘9

4 [3,14] A'

5 [4,13]

. 56 o ® OND
3 [7,12] (6)

7 [8,11]

8 [9,10]

9 [17,]

10 [18,19]

time = 20
vertex | [pre, post]

1 [1,16]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]
9 [17,20]
10 [18,19]

23

vertex | [pre, post]
1 [1,16]
2 [2,15]
4 [3,14]
5 [4,13]
6 [5, 6]
3 [7,12]
7 [8,11]
8 [9,10]
9 [17,20]
10 [18,19]

pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition .
For any two nodes u and v, the two intervals [pre(u), post(u)]

and [pre(v), post(v)] are disjoint or one is contained in the
other.

pre and post numbers useful in several applications of DFS

2%

DFS in Directed Graphs

in Directed Graphs

DFS(G)
Mark all nodes u as unvisited
T is set to 0
time =0
while there is an unvisited node u do
DFS(u)
Output T

DFS(u)

Mark u as visited

pre(u) = ++time

for each edge (u,v) in Out(u) do

if v is not visited

add edge (u,v) to T
DFS(v)

post(u) = ++time

25

Example of in directed graph

26

Example of in directed graph

[1,16]

26

Generalizing ideas from undirected graphs:

- DFS(G) takes O(m + n) time.

27

Generalizing ideas from undirected graphs:

- DFS(G) takes O(m + n) time.

- Edges added form a branching: a forest of out-trees.
Output of DFS(G) depends on the order in which vertices

are considered.

27

Generalizing ideas from undirected graphs:

- DFS(G) takes O(m + n) time.

- Edges added form a branching: a forest of out-trees.
Output of DFS(G) depends on the order in which vertices
are considered.

- If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is
in T if and only if v € rch(u)

27

Generalizing ideas from undirected graphs:

- DFS(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees.

Output of DFS(G) depends on the order in which vertices
are considered.

- If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is
in T if and only if v € rch(u)

- For any two vertices x,y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in
the other.

27

Generalizing ideas from undirected graphs:

- DFS(G) takes O(m + n) time.
- Edges added form a branching: a forest of out-trees.

Output of DFS(G) depends on the order in which vertices
are considered.

- If u is the first vertex considered by DFS(G) then DFS(u)
outputs a directed out-tree T rooted at u and a vertex v is
in T if and only if v € rch(u)

- For any two vertices x,y the intervals [pre(x), post(x)] and
[pre(y), post(y)] are either disjoint or one is contained in
the other.

27

tree and related edges

Edges of G can be classified with re-
spect to the DFS tree T as:

- Tree edges that belongto T

- Aforward edge is a non-tree
edges (x,y) such thaty is a
descendant of x .

- A backward edge is a non-tree
edge (x,y) such thaty is an
ancestor of x.

Cross

- A cross edge is a non-tree edges
(x,y) such that they don’t have a
ancestor/descendant
relationship between them. 28

tree and related edges

Edges of G can be classified with re-
spect to the DFS tree T as:

- Tree edges that belongto T

- A forward edge is a non-tree
edges (x,y) such that pre(x) <
pre(y) < post(y) < post(x).

- A backward edge is a non-tree
edge (x,y) such that .

- A cross edge is a non-tree edges
(x,y) such that

28

Types of Edges

29

Types of Edges

- Back edges:
- Forward edges:
- Cross edges:

29

DFS and cycle detection: Topological
sorting using DFS

Cycles in graphs

Given an undirected graph how do we check whether it has a
cycle and output one if it has one?

30

Cycles in graphs

Given an undirected graph how do we check whether it has a
cycle and output one if it has one?

Question: Given an directed graph how do we check whether it
has a cycle and output one if it has one?

30

Cycle detection in directed graph using topological sorting

Question
Given G, Is It a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle C.

31

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)

- If there is a back edge e = (v, u) then G is not a DAG.
Output cycle C formed by path from uto v in T plus edge
(v,u).

- Otherwise output nodes in decreasing post-visit order.
Note: no need to sort, DFS(G) can output nodes in this
order.

32

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)

- If there is a back edge e = (v, u) then G is not a DAG.
Output cycle C formed by path from uto v in T plus edge
(v,u).

- Otherwise output nodes in decreasing post-visit order.
Note: no need to sort, DFS(G) can output nodes in this
order.

Computes topological ordering of the vertices.

Algorithm runs in O(n 4+ m) time.

32

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)

- If there is a back edge e = (v, u) then G is not a DAG.
Output cycle C formed by path from uto v in T plus edge
(v,u).

- Otherwise output nodes in decreasing post-visit order.
Note: no need to sort, DFS(G) can output nodes in this
order.

Computes topological ordering of the vertices.

Algorithm runs in O(n 4+ m) time. Correctness is not so obvious.

See next two propositions.
2

[13,14]

02 (a @ @ [15,16]

33

[13,14]

02 (a @ @ [15,16]

Listing out the vertices in
post-number decreasing gives:

¢,baegdfh

Remind you of anything?

33

[13,14]

1,12 (a @ [15, 16] Listing out the vertices in
post-number decreasing gives:
[2,7] d) (8,11]

¢,baegdfh

Remind you of anything?
(4,51 (h

0505030700050

3

Back edge and Cycles

Proposition . ,
G has a cycle < there is a back-edge in DFS(G).

Proo.f.
If: (u,v) is a back edge implies there is a cycle C consisting of

the path from v to u in DFS search tree and the edge (u, V).

Only if: Suppose thereisacycle C=vy — V) — ... — Vp — Vq.
Let v; be first node in C visited in DFS.

All other nodes in C are descendants of v; since they are
reachable from v;.

Therefore, (vi_s,V;) (or (vg,vq) if i = 1) is a back edge. O

34

Decreasing post numbering is valid

Proposition . '
If Gis a DAG and post(v) > post(u), then (u — v) is not in G.

Proof. . .
Assume post(u) < post(v) and (u — v) is an edge in G.

35

Decreasing post numbering is valid

Proposition . '
If Gis a DAG and post(v) > post(u), then (u — v) is not in G.

Proof.
Assume post(u) < post(v) and (u — v) is an edge in G. One of

two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
0l

35

Decreasing post numbering is valid

Proposition ‘ ‘
If G is a DAG and post(v) > post(u), then (u — v) is not in G.

Proof.
Assume post(u) < post(v) and (u — v) is an edge in G. One of
two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
Implies that u is explored during DFS(v) and hence is a
descendent of v. Edge (u,v) implies a cycle in G but G is
assumed to be DAG!

- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
This cannot happen since v would be explored from u.

35

We just proved:

Proposition . _
If Gis a DAG and post(v) > post(u), then (u — v) is not in G.

= sort the vertices of a DAG by decreasing post nubmering
in decreasing order, then this numbering is valid.

36

Topological sorting

Theorem , .
G = (V,E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering = : V. — {1,2,...,n}, such that

(Uu—v)€eE(G) = w(u) <m(v).

37

The meta graph of strong connected
components

Strong Connected Components (SCCs)

Algorithmic Problem
Find all s of a given directed

graph.

Previous lecture:

Saw an O(n - (n + m)) time algorithm.
This lecture: sketch of a O(n + m)
time algorithm.

38

Graph of SCCs

B,E,F A, C,D

Graph of SCCs G°¢¢

G:
Meta-graph of SCCs
Let Sq,S,,... Sy, be the strong connected components (i.e,,

SCCs) of G. The graph of SCCs is G>¢

- Vertices are S1,5,... 5,

- There is an edge (S;,S)) if there is some u € S;and v € §;

such that (u,v) is an edge in G.
39

The meta graph of SCCs is a DAG...

Proposition
For any graph G, the graph G°“ has no directed cycle.

Proof.
If G>C has a cycle Sy, S, ..., Sp then S;US; U+ - - U Sy, should be

in the same SCC in G. O

40

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E)
partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G°C of G can be computed in
O(m + n) time. G gives information on the partition of V into
strong connected components and how they form a DAG
structure.

Above structural decomposition will be useful in several
algorithms

41

Linear time algorithm for finding all
SCCs

Finding all SCCs of a Directed Graph

Problem .
Given a directed graph G = (V, E), output all its strong

connected components.

42

Finding all SCCs of a Directed Graph

Problem .
Given a directed graph G = (V, E), output all its strong

connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex ucV not visited yet do

find SCC(G,u) the strong component of u:

Compute rch(G,u) using DFS(G,u)
Compute rch(G™,u) using DFS(G™,u)
SCC(G,u) < rch(G,u) Nrch(G™, u)
Yu € SCC(G,u): Mark u as visited.

Running time: O(n(n + m))

42

Finding all SCCs of a Directed Graph

Problem .
Given a directed graph G = (V, E), output all its strong

connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex ucV not visited yet do

find SCC(G,u) the strong component of u:

Compute rch(G,u) using DFS(G,u)
Compute rch(G™,u) using DFS(G™,u)
SCC(G,u) < rch(G,u) Nrch(G™, u)
Yu € SCC(G,u): Mark u as visited.

Running time: O(n(n + m)) Is there an O(n + m) time

algorithm?
42

Structure of a Directed Graph

Graph of SCCs G°¢¢
Graph G

ReminderG>“C is created by collapsing every strong connected
component to a single vertex.

Proposition
For a directed graph G, its meta-graph G°¢ is a DAG.

43

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G>¢
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

44

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G>¢
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)

44

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G>¢
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!

44

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G>¢
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)

44

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm
- Let u be a vertex in a sink SCC of G°¢¢
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification
- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

44

Big Challenge(s)

. . SCCo
How do we find a vertex in a sink SCC of G>-*7

45

Big Challenge(s)

How do we find a vertex in a sink SCC of G2

Can we obtain an implicit topological sort of G°C without
computing G>*¢?

45

Big Challenge(s)

How do we find a vertex in a sink SCC of G2

Can we obtain an implicit topological sort of G°C without
computing G>*¢?

Answer: DFS(G) gives some information!

45

Maximum post numbering and the
source of the meta-graph

Post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G).

Then v is in a SCCS, such that S is a source of G>°C.

46

Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G"™").

Then v is in a SCC S, such that S is a sink of G°°C.

47

Reverse post numbering and the meta graph

Claim
Let v be the vertex with maximum post numbering in DFS(G"™").

Then v is in a SCC S, such that S is a sink of G°°C.

Holds even after we delete the vertices of S (i.e, the vertex with
the maximum post numbering, is in a sink of the meta graph).

47

The linear-time SCC algorithm itself

Linear Time Algorithm

do DFS(G™) and output vertices in decreasing post order.
Mark all nodes as unvisited
for each u in the computed order do
if u is not visited then
DFS(u)
Let S, be the nodes reached by u
Output S, as a strong connected component

Remove S, from G

Theorem o
Algorithm runs in time O(m + n) and correctly outputs all the

SCCs of G.

48

Linear Time Algorithm: An Example - Initial steps 1

DFS of reverse

R h G™:
everse grap S~

(14, 15] 49

Linear Time Algorithm: An Example

. , Do DFS from vertex G
Original graph G with rev

remove it.
post numbers: 12
IRV
10 ®—(® (©)5

{G}

50

Linear Time Algorithm: An Example

Do DFS from vertex G Do DFS from vertex H,
remove it. remove it.
12 6 12 6
ANV ANON
10 ®—®) OF 10E—®1 ©5
—
@ 15
SCC computed: SCC computed:

{G} {G} {H}

51

Linear Time Algorithm: An Example

Do DFS from vertex B

Do DFS from vertex H, Remove visited vertices:

remove it.
12 6 {F,B, E}.
Er—@—(9)4 ¢
RS
1E—®I11 ©5
f— 5

SCC computed:

SCC computed:
(G}, {H} £

{G}, {H}, {F, B, E}

52

Linear Time Algorithm: An Example

Do DFS from vertex F Do DFS from vertex A
Remove visited vertices: Remove visited vertices:
{F, B, E}. {A, C, D}.
6
‘Di..ﬁif
5 —
SCC computed: SCC computed:

{G}, {H},{F,B,E} {G},{H}, {F,B,E},{A,C,D}

53

Linear Time Algorithm: An Example

SCC computed:

{G}, {H}, {F,B,E}, {A,C, D}
Which is the correct answer!

54

Obtaining the meta-graph...

Exercise:
Given all the strong connected components of a directed graph

G = (V, E) show that the meta-graph G°C can be obtained in
O(m + n) time.

55

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?

- If the above two are feasible then is the problem solvable
in a general directed graph G by considering the meta
graph G2

56

Summary

Take away Points

- DAGs

- Topological orderings.

- DFS: pre/post numbering.

- Given a directed graph G, its SCCs and the associated
acyclic meta-graph G°“€ give a structural decomposition of
G that should be kept in mind.

- There is a DFS based linear time algorithm to compute all
the SCCs and the meta-graph. Properties of DFS crucial for
the algorithm.

- DAGs arise in many application and topological sort is a
key property in algorithm design. Linear time algorithms
to compute a topological sort (there can be many possible
orderings so not unique).

57

Scratch Figures

SN

58
TN TN

	Directed Acyclic Graphs - definition and basic properties
	Topological ordering
	Depth First Search (DFS)
	Depth First Search (DFS) in Undirected Graphs
	DFS with pre-post numbering
	DFS in Directed Graphs
	DFS and cycle detection: Topological sorting using DFS
	The meta graph of strong connected components
	Linear time algorithm for finding all SCCs
	Maximum post numbering and the source of the meta-graph
	The linear-time SCC algorithm itself
	Summary

