

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is
contained within the source SCC of the meta-graph of G.

ECE-374-B: Lecture 16 - Shortest Paths [BFS, Djikstral]

Instructor: Nickvash Kani
October 23, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is
contained within the source SCC of the meta-graph of G.

Breadth First Search

Breadth First Search (

Overview Erple v
(A) BFS is obtained frorr/asu:Search by processing edees using a queue data
yp g edsg g a queue gdﬁ

structure.

(B) It processes the vertices in the graph in the order of their shortes

from the vertex s (the start vertex).

As such...
- DFS good for exploring graph structure

- BFS good for exploring distances

Queue Data Structure

Queues . .
A queue Is a list of elements which supports the operations:

- enqueue: Adds an element to the end of the list

- dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in
the order in which they were inserted.

Given (undirected or directed) graph G = (V,E) and node s € V

BFS(s)
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue
enqueue(Q,s)
while Q is nonempty do
u = dequeue(Q)
for each vertex v e Adj(u)
if v is not visited then
add edge (u,v) to T
Mark v as visited and enqueue(v)

Proposition |
BFS(s) runs in O(n 4+ m) time. 5

: An Example in Undirected Graphs

: An Example in Undirected Graphs

: An Example in Undirected Graphs

: An Example in Undirected Graphs

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8]

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8]
T2. [2,3] T5. [5,7,8]

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8]
T2. [2,3] T5. [5,7,8]
T3. [3,4,5] T6. [7,8,6]

: An Example in Undirected Graphs

T1. [1] T4, [4,578] T7. [8,6]
T2. [23] T5. [5,7.,8]
T3. [3,4,5] T6. [7,8,6]

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [8,6]
T2. [23] T5. [5,7.,8] T8. [6]
T3. [3,4,5] T6. [7,8,6]

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [86]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

: An Example in Directed Graphs

B

©
S

006
W\w@

n
=

o

©

)

© AHV|V

Q

o+

— —
= / _ =<
[=)

c @ —
o— —
Q

o

=

(go]

M (=) —

Ll

c

<

2
WW@

wn

<

o

O

| -

S U

d | |
Q L
(s g
g e
()

c — N
N @ —l —|
Q

(@

=

(go]

B (=) —

Ll

-

<C

2
WW@

wn

<

o

O

| -

S U

d | |
Q L
(s g
g e
()

c — N
N @ —l —|
Q

(@

=

(go]

B (=) —

Ll

-

<C

: An Example in Directed Graphs

: An Example in Directed Graphs

: An Example in Directed Graphs

T1. [A] T4, [FE,D] T7.
T2. [B,CF] T5. [ED,G] T8.
73. [CFE] T6. [D,G,H]

: An Example in Directed Graphs

&
/@‘—G
Fot

T1. [A] T4, [FED] T7. |
T2. [B,CF] T5. [ED,G] T8. |
T3. [CFE] T6. [D,G,H] T9. |

BFS with distances and layers

with distances

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) =0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do
u = dequeue(Q)
for each vertex v e Adj(u) do
if v is not visited do
add edge (u,v) to T
Mark v as visited, enqueue(v)
and set dist(v) = dist(u) + 1

Properties of = : Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the connected component of
S.

(B) If dist(u) < dist(v) then u is visited before v.

(C) For every vertex u, dist(u) is the length of a shortest path (in terms of number
of edges) from s to u.

(D) If u,v are in connected component of s and e = {u, v} is an edge of G, then
dist(u) — dist(v)] < 1.

10

Properties of = : Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices reachable from s
(B) If dist(u) < dist(v) then u is visited before v
(C)
(D)

C) For every vertex u, dist(u) is indeed the length of shortest path from s to u

D) If uis reachable from s and e = (u,Vv) Is an edge of G, then (

dist(v) — dist(u) < 1. Not necessarily the case that dist(u) — dist(v) < 1.

7\ ﬁf\

HO— ©

1

with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set Ly = {s}
i=0
while L; is not empty do
initialize L, to be an empty list
for each u in L; do
for each edge (u,v) € Adj(u) do
if v 1s not visited
mark v as visited
add (u,v) to tree T
add v to L

=1+

12

with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set Ly = {s}
i=0
while L; is not empty do
initialize L, to be an empty list
for each u in L; do
for each edge (u,v) € Adj(u) do
if v 1s not visited
mark v as visited
add (u,v) to tree T
add v to L

=1+

Running time: O(n + m)
12

Layer 0: 1

Layer 1: 2,3
Layer 2: 4,5,7,8
Layer 3: 6

13

with Layers: Properties

Proposition
The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree

- L; Is the set of vertices at distance exactly | from s

- If G Is undirected, each edge e = {u, v} is one of three types:
- tree edge between two consecutive layers
- non-tree forward/backward edge between two consecutive layers
- non-tree cross-edge with both u,v in same layer

— Every edge in the graph is either between two vertices that are either (i) in
the same layer, or (ii) in two consecutive layers.

14

Example

Layer O: A
Layer 1. B, F,C
Layer 2: £,G,D

Layer 3: H 15

with Layers: Properties for directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if G is directed.

For each edge e = (u,Vv) Is one of four types:
* a tree edge between consecutive layers, u € Lj,v € Li,, for some | > 0

- a hon-tree forward edge between consecutive layers

- a hon-tree backward edge

- a cross-edge with both u,v in same layer

16

Shortest Paths and Dijkstra’s
Algorithm

Problem definition

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

17

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

Many applications!

17

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems

- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?

@__"_ O @/_3 D

<

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph G, create a new directed graph G’ by replacing each edge
{u,v}in G by (u,v) and (v,u) in G
- set l(u,v) =4(v,u) =L({u,v})
- Exercise: show reduction works. Relies on non-negativity!

18

Shortest path in the weighted case
using BFS

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

19

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.

19

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.

- Special case: Suppose £(e) is an integer for all e?
Can we use BFS?

19

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.
- Special case: Suppose £(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing ¢(e) — 1
dummy nodes on e.

19

Example of edge refinement
O > D?
5

20

Example of edge refinement

20

Example of edge refinement
pH—1—p—»1—»l1
BB j ¥

O0¢—¢—e—«

p—el]

u::u::u::.OQ—E

20

Shortest path using BFS

Let L = maxe ¢(e). New graph has O(mL) edges and O(mL + n) nodes. BFS takes
O(mL + n) time. Not efficient if L is large.

21

On the hereditary nature of shortest
paths

You can not shortcut a shortest path

Lemma ‘ .
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

Ifs=vy — Vi — Vo — ... — Vg, Shortest path from s to v, then for any
0<i<j<k:

Vi = Viy1 — ... — Vj IS shortest path from v; to v;

22

A proof by picture

Shortest path
from Vo to V10

23

A proof by picture

Shorter path
from v, to vg

\ Shortest path

from Vo to V10

23

A proof by picture

A shorter path
from Vo to U10-
A contradic-
tion.

Shortest path

from vy to vy
23

What we really need...

Corollary .
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s=Vvg — V1 — Vu» — ... — Vp Shortest path from s to v, then for any 0 < | < k:

- S=Vy—V; = Vo —...— VIS shortest path from s to v;

- dist(s, v;) < dist(s, vg). Relies on non-neg edge lengths.

24

The basic algorithm: Find the it
closest vertex

A Basic Strategy

Explore vertices in increasing order of distance from s: Q\ Voo
(For simplicity assume that nodes are at different distances from s and tMex N
edge has zero length)

\O
Initialize for each node v, di#t(S,v) =
Initialize X = {s}, - {i S

for i=2 to |v| do /

Among nodes in V —X, find the nod
ibclosest to s

Update dist(s,V)

X =XU{v}

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no
edge has zero length)

Initialize for each node v, dist(s,v) =0
Initialize X = {s},
for i=2 to |v| do
(*# Invariant: X contains the i—1 closest nodes to s =)
Among nodes in V —X, find the node v that is the
ibclosest to s
Update dist(s,V)
X =XU{v}

How can we implement the step in the for loop?

25

Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

26

Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

Claim
Let P be a shortest path from s to v where v is the it" closest node. Then, all

intermediate nodes in P belong to X.

26

Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

Claim
Let P be a shortest path from s to v where v is the it" closest node. Then, all
intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer to s than v. Implies

v is not the it closest node to s - recall that X already has the i — 1 closest
nodes.]

26

Finding the i’ closest node repeatedly

27

Finding the i’ closest node repeatedly

27

Finding the i’ closest node repeatedly

27

Finding the i’ closest node repeatedly

27

Finding the i’ closest node repeatedly

Finding the i’ closest node repeatedly

27

Finding the i’ closest node repeatedly

27

Finding the i closest node repeatedly

27

Finding the i closest node repeatedly

27

Finding the it" closest node

Corollary
The it closest node is adjacent to X.

28

Initialize for each node v: dist(s,v) = o0
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(* Invariant: X contains the i—1 closest nodes to s x)
(* Invariant: d'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d’'(s,v) = minyev—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = mincex (dist(s, t) + £(t, u))

29

Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(* Invariant: X contains the i—1 closest nodes to s x)
(* Invariant: d'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

29

Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(*# Invariant: X contains the /i—1 closest nodes to s *)
(* Invariant: d’'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

Running time:

29

Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(*# Invariant: X contains the /i—1 closest nodes to s *)
(* Invariant: d’'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

Running time: O(n - (n 4+ m)) time.
- n outer iterations. In each iteration, d’(s, u) for each u by scanning all edges
out of nodes in X; O(m + n) time/iteration. 2

Dijkstra’s algorithm

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Example: Dijkstra algorithm in action

30

Improved Algorithm

- Main work is to compute the d’(s, u) values in each iteration
- d'(s,u) changes from iteration i to i + 1 only because of the node v that is
added to X in iteration I.

31

Improved Algorithm

- Main work is to compute the d’(s, u) values in each iteration
- d'(s,u) changes from iteration i to i + 1 only because of the node v that is

added to X in iteration I.
Initialize for each node v, dist(s,v) =d'(s,v) = o0
Initialize X=0, d'(s,s)=0
for i=1 to |V| do
// X contains the i—1 closest nodes to s,
// and the values of d'(s,u) are current
Let v be node realizing d’(s,v) = minyey_xd'(s,u)
dist(s,v) = d'(s, V)
X=XU{v}
Update d'(s,u) for each u in V—X as follows:
d'(s,u) = min (d’(s, u), dist(s, v) + (v, u))

Running time: 31

Improved Algorithm

Initialize for each node v, dist(s,v)=d'(s,v) =
Initialize X=0, d'(s,s)=0
for i=1 to |V| do
// X contains the i—1 closest nodes to s,
// and the values of d'(s,u) are current
Let v be node realizing d'(s,Vv) = min,ev—xd'(s, u)
dist(s,v) = d'(s, V)
X=XU{v}
Update d’(s,u) for each u in V—X as follows:
d'(s,u) = min (d’(s, u), dist(s,v) + £(v, u))

Rurmmg time: O(m + n?) time.
n outer iterations and in each iteration following steps

- updating d’(s, u) after v is added takes O(deg(v)) time so total work is O(m)
since a node enters X only once

+ Finding v from d’(s, u) values is O(n) time g

Dijkstra’s Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s,v) =
Initialize X =10, dist(s,s)=0
for i=1 to |V| do
Let v be such that dist(s,Vv) = minyey_x dist(s, u)
X=XU{v}
for each u in Adj(v) do
dist(s, u) = min (dist(s, u), dist(s, v) + £(v, u))

Priority Queues to maintain dist values for faster running time

32

Dijkstra’s Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s,v) =
Initialize X =10, dist(s,s)=0
for i=1 to |V| do
Let v be such that dist(s,Vv) = minyey_x dist(s, u)
X=XU{v}
for each u in Adj(v) do
dist(s, u) = min (dist(s, u), dist(s, v) + £(v, u))

Priority Queues to maintain dist values for faster running time
- Using heaps and standard priority queues: O((m + n) log n)

+ Using Fibonacci heaps: O(m + nlogn).
32

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.
- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

33

Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.

- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

- decreaseKey(v, R'(v)): decrease key of v from Rk(v) (current key) to K'(v) (new
key). Assumption: R'(v) < R(Vv).

- meld: merge two separate priority queues into one.

33

Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.

- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

- decreaseKey(v, R'(v)): decrease key of v from Rk(v) (current key) to K'(v) (new
key). Assumption: R'(v) < R(Vv).

- meld: merge two separate priority queues into one.

All operations can be performed in O(logn) time.

decreaseKey is implemented via delete and insert. 33

Dijkstra’s Algorithm using Priority Queues

Q + makePQ()
insert(Q, (s,0))
for each node u#s do
insert(Q, (u,oc0))
X<+ 0
for i=1 to |V| do
(v, dist(s,Vv)) = extractMin(Q)
X =XU{v}
for each u in Adj(v) do
decreasel(ey(Q, (u, min(dist(s, u), dist(s,v) + £(v, u)))) .

Priority Queue operations:

+ O(n) insert operations
- O(n) extractMin operations
+ O(m) decreaseKey operations 34

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in O(log n) time

35

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m)log n) time.

35

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time:

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

+ Dijkstra’s algorithm can be implemented in O(nlogn + m) time. If m = Q(nlog n),
running time is linear in input size.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

+ Dijkstra’s algorithm can be implemented in O(nlogn + m) time. If m = Q(nlog n),
running time is linear in input size.

- Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in

practice. Rank-Pairing Heaps,

- Boost library implements both Fibonacci heaps and rank-pairing heaps. 3

Shortest path trees and variants

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

37

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s,0))

prev(s) < null

for each node u#s do
insert(Q, (u,o0))
prev(u) < null

X=10
for i=1 to |vV| do
(v, dist(s, v)) = extractMin(Q)
X =XU{v}
for each u in Adj(v) do
if (dist(s,v) + £(v,u) < dist(s,u)) then
decreaseKey(Q, (u,dist(s,v)+£(v,u)))

prev(u) = Vv 37

Shortest Path Tree

Lemma
The edge set (u, prev(u)) Is the reverse of a shortest path tree rooted at s. For each

u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.

+ The edge set {(u,prev(u)) | u € V} induces a directed in-tree rooted at s
(Why?)

+ Use induction on |X]| to argue that the tree is a shortest path tree for nodes in
V.

[

38

Shortest pathsto s

Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

39

Shortest pathsto s

Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u Is a shortest path from u to s
so there is no need to distinguish.

- In directed graphs, use Dijkstra’s algorithm in G™"!

39

