


Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is
contained within the source SCC of the meta-graph of G.
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Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is
contained within the source SCC of the meta-graph of G.




Breadth First Search



Breadth First Search (

Overview Erple v
(A) BFS is obtained frorr/asu:Search by processing edees using a queue data
yp g edsg g a queue gdﬁ

structure.

(B) It processes the vertices in the graph in the order of their shortes

from the vertex s (the start vertex).

As such...
- DFS good for exploring graph structure

- BFS good for exploring distances




Queue Data Structure

Queues . .
A queue Is a list of elements which supports the operations:

- enqueue: Adds an element to the end of the list

- dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in
the order in which they were inserted.




Given (undirected or directed) graph G = (V,E) and node s € V

BFS(s)
Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue
enqueue(Q,s)
while Q is nonempty do
u = dequeue(Q)
for each vertex v e Adj(u)
if v is not visited then
add edge (u,v) to T
Mark v as visited and enqueue(v)

Proposition |
BFS(s) runs in O(n 4+ m) time. 5



: An Example in Undirected Graphs
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: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8]
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T1. [1] T4, [4,5,7,8]
T2. [2,3] T5. [5,7,8]



: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8]
T2. [2,3] T5. [5,7,8]
T3. [3,4,5] T6. [7,8,6]



: An Example in Undirected Graphs

T1. [1] T4, [4,578] T7. [8,6]
T2. [23] T5. [5,7.,8]
T3. [3,4,5] T6. [7,8,6]



: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [8,6]
T2. [23] T5. [5,7.,8] T8. [6]
T3. [3,4,5] T6. [7,8,6]



: An Example in Undirected Graphs
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BFS tree is the set of purple edges.
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: An Example in Undirected Graphs

T1. [1] T4, [4,5,7,8] T7. [86]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.



: An Example in Directed Graphs
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: An Example in Directed Graphs













: An Example in Directed Graphs



: An Example in Directed Graphs

T1. [A] T4, [FE,D] T7.
T2. [B,CF] T5. [ED,G] T8.
73. [CFE] T6. [D,G,H]



: An Example in Directed Graphs

&
/@‘—G
Fot

T1. [A] T4, [FED] T7. |
T2. [B,CF] T5. [ED,G] T8. |
T3. [CFE] T6. [D,G,H] T9. |



BFS with distances and layers




with distances

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) =0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do
u = dequeue(Q)
for each vertex v e Adj(u) do
if v is not visited do
add edge (u,v) to T
Mark v as visited, enqueue(v)
and set dist(v) = dist(u) + 1




Properties of = : Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the connected component of
S.

(B) If dist(u) < dist(v) then u is visited before v.

(C) For every vertex u, dist(u) is the length of a shortest path (in terms of number
of edges) from s to u.

(D) If u,v are in connected component of s and e = {u, v} is an edge of G, then
dist(u) — dist(v)] < 1.

10



Properties of = : Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices reachable from s
(B) If dist(u) < dist(v) then u is visited before v
(C)
(D)

C) For every vertex u, dist(u) is indeed the length of shortest path from s to u

D) If uis reachable from s and e = (u,Vv) Is an edge of G, then (

dist(v) — dist(u) < 1. Not necessarily the case that dist(u) — dist(v) < 1.

7\ ﬁf\

HO— ©
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with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set Ly = {s}
i=0
while L; is not empty do
initialize L, to be an empty list
for each u in L; do
for each edge (u,v) € Adj(u) do
if v 1s not visited
mark v as visited
add (u,v) to tree T
add v to L

=1+

12



with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set Ly = {s}
i=0
while L; is not empty do
initialize L, to be an empty list
for each u in L; do
for each edge (u,v) € Adj(u) do
if v 1s not visited
mark v as visited
add (u,v) to tree T
add v to L

=1+

Running time: O(n + m)
12



Layer 0: 1

Layer 1: 2,3
Layer 2: 4,5,7,8
Layer 3: 6

13



with Layers: Properties

Proposition
The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree

- L; Is the set of vertices at distance exactly | from s

- If G Is undirected, each edge e = {u, v} is one of three types:
- tree edge between two consecutive layers
- non-tree forward/backward edge between two consecutive layers
- non-tree cross-edge with both u,v in same layer

— Every edge in the graph is either between two vertices that are either (i) in
the same layer, or (ii) in two consecutive layers.

14



Example

Layer O: A
Layer 1. B, F,C
Layer 2: £,G,D

Layer 3: H 15




with Layers: Properties for directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if G is directed.

For each edge e = (u,Vv) Is one of four types:
* a tree edge between consecutive layers, u € Lj,v € Li,, for some | > 0

- a hon-tree forward edge between consecutive layers

- a hon-tree backward edge

- a cross-edge with both u,v in same layer

16



Shortest Paths and Dijkstra’s
Algorithm




Problem definition




Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

17



Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

Many applications!

17



Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

18



Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems

- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?

@__"_ O @/_3 D

<

18



Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph G = (V, E) with non-negative edge
lengths. For edge e = (u, V), ¢(e) = £(u, V) Is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph G, create a new directed graph G’ by replacing each edge
{u,v}in G by (u,v) and (v,u) in G
- set l(u,v) =4(v,u) =L({u,v})
- Exercise: show reduction works. Relies on non-negativity!

18



Shortest path in the weighted case
using BFS




Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

19



Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.

19



Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.

- Special case: Suppose £(e) is an integer for all e?
Can we use BFS?

19



Single-Source Shortest Paths via

- Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- O(m + n) time algorithm.
- Special case: Suppose £(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by placing ¢(e) — 1
dummy nodes on e.

19



Example of edge refinement
O > D?
5

20



Example of edge refinement

20



Example of edge refinement
pH—1—p—»1—»l1
BB j ¥

O0¢—¢—e—«

p—el]

u::u::u::.OQ—E

20



Shortest path using BFS

Let L = maxe ¢(e). New graph has O(mL) edges and O(mL + n) nodes. BFS takes
O(mL + n) time. Not efficient if L is large.

21



On the hereditary nature of shortest
paths




You can not shortcut a shortest path

Lemma ‘ .
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

Ifs=vy — Vi — Vo — ... — Vg, Shortest path from s to v, then for any
0<i<j<k:

Vi = Viy1 — ... — Vj IS shortest path from v; to v;

22



A proof by picture

Shortest path
from Vo to V10

23



A proof by picture

Shorter  path
from v, to vg

\ Shortest path

from Vo to V10

23



A proof by picture

A shorter path
from Vo to U10-
A contradic-
tion.

Shortest path

from vy to vy
23



What we really need...

Corollary .
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s=Vvg — V1 — Vu» — ... — Vp Shortest path from s to v, then for any 0 < | < k:

- S=Vy—V; = Vo —...— VIS shortest path from s to v;

- dist(s, v;) < dist(s, vg). Relies on non-neg edge lengths.

24



The basic algorithm: Find the it
closest vertex




A Basic Strategy

Explore vertices in increasing order of distance from s: Q\ Voo
(For simplicity assume that nodes are at different distances from s and tMex N
edge has zero length)

\O
Initialize for each node v, di#t(S,v) =
Initialize X = {s}, - {i S

for i=2 to |v| do /

Among nodes in V —X, find the nod
ibclosest to s

Update dist(s,V)

X =XU{v}




A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no
edge has zero length)

Initialize for each node v, dist(s,v) =0
Initialize X = {s},
for i=2 to |v| do
(*# Invariant: X contains the i—1 closest nodes to s =)
Among nodes in V —X, find the node v that is the
ibclosest to s
Update dist(s,V)
X =XU{v}

How can we implement the step in the for loop?

25



Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

26



Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

Claim
Let P be a shortest path from s to v where v is the it" closest node. Then, all

intermediate nodes in P belong to X.

26



Finding the i’ closest node

- X contains the | — 1 closest nodes to s

- Want to find the it closest node from V — X.

What do we know about the it closest node?

Claim
Let P be a shortest path from s to v where v is the it" closest node. Then, all
intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer to s than v. Implies

v is not the it closest node to s - recall that X already has the i — 1 closest
nodes. ]

26



Finding the i’ closest node repeatedly

27



Finding the i’ closest node repeatedly
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Finding the i’ closest node repeatedly
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Finding the i’ closest node repeatedly
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Finding the i’ closest node repeatedly




Finding the i’ closest node repeatedly
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Finding the i’ closest node repeatedly

27



Finding the i closest node repeatedly

27



Finding the i closest node repeatedly

27



Finding the it" closest node

Corollary
The it closest node is adjacent to X.

28



Initialize for each node v: dist(s,v) = o0
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(* Invariant: X contains the i—1 closest nodes to s x)
(* Invariant: d'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d’'(s,v) = minyev—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = mincex (dist(s, t) + £(t, u))

29



Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(* Invariant: X contains the i—1 closest nodes to s x)
(* Invariant: d'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

29



Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(*# Invariant: X contains the /i—1 closest nodes to s *)
(* Invariant: d’'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

Running time:

29



Initialize for each node v: dist(s,v) = oo
Initialize X=0, d'(s,s)=0
for i=1 to |v| do
(*# Invariant: X contains the /i—1 closest nodes to s *)
(* Invariant: d’'(s,u) is shortest path distance from u to s
using only X as intermediate nodesx)
Let v be such that d'(s,v) = minseyv—_xd'(s,u)
dist(s,v) = d'(s, V)
X =XU{v}
for each node u in V—-X do
d'(s, u) = minex (dist(s, £) + £(t, u))

Running time: O(n - (n 4+ m)) time.
- n outer iterations. In each iteration, d’(s, u) for each u by scanning all edges
out of nodes in X; O(m + n) time/iteration. 2



Dijkstra’s algorithm




Example: Dijkstra algorithm in action
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Example: Dijkstra algorithm in action

30
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Example: Dijkstra algorithm in action
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Example: Dijkstra algorithm in action
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Improved Algorithm

- Main work is to compute the d’(s, u) values in each iteration
- d'(s,u) changes from iteration i to i + 1 only because of the node v that is
added to X in iteration I.

31



Improved Algorithm

- Main work is to compute the d’(s, u) values in each iteration
- d'(s,u) changes from iteration i to i + 1 only because of the node v that is

added to X in iteration I.
Initialize for each node v, dist(s,v) =d'(s,v) = o0
Initialize X=0, d'(s,s)=0
for i=1 to |V| do
// X contains the i—1 closest nodes to s,
// and the values of d'(s,u) are current
Let v be node realizing d’(s,v) = minyey_xd'(s,u)
dist(s,v) = d'(s, V)
X=XU{v}
Update d'(s,u) for each u in V—X as follows:
d'(s,u) = min (d’(s, u), dist(s, v) + (v, u))

Running time: 31



Improved Algorithm

Initialize for each node v, dist(s,v)=d'(s,v) =
Initialize X=0, d'(s,s)=0
for i=1 to |V| do
// X contains the i—1 closest nodes to s,
// and the values of d'(s,u) are current
Let v be node realizing d'(s,Vv) = min,ev—xd'(s, u)
dist(s,v) = d'(s, V)
X=XU{v}
Update d’(s,u) for each u in V—X as follows:
d'(s,u) = min (d’(s, u), dist(s,v) + £(v, u))

Rurmmg time: O(m + n?) time.
n outer iterations and in each iteration following steps

- updating d’(s, u) after v is added takes O(deg(v)) time so total work is O(m)
since a node enters X only once

+ Finding v from d’(s, u) values is O(n) time g



Dijkstra’s Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s,v) =
Initialize X =10, dist(s,s)=0
for i=1 to |V| do
Let v be such that dist(s,Vv) = minyey_x dist(s, u)
X=XU{v}
for each u in Adj(v) do
dist(s, u) = min (dist(s, u), dist(s, v) + £(v, u))

Priority Queues to maintain dist values for faster running time

32



Dijkstra’s Algorithm

- eliminate d'(s, u) and let dist(s, u) maintain it
- update dist values after adding v by scanning edges out of v

Initialize for each node v, dist(s,v) =
Initialize X =10, dist(s,s)=0
for i=1 to |V| do
Let v be such that dist(s,Vv) = minyey_x dist(s, u)
X=XU{v}
for each u in Adj(v) do
dist(s, u) = min (dist(s, u), dist(s, v) + £(v, u))

Priority Queues to maintain dist values for faster running time
- Using heaps and standard priority queues: O((m + n) log n)

+ Using Fibonacci heaps: O(m + nlogn).
32



Dijkstra using priority queues




Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.
- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

33



Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.

- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

- decreaseKey(v, R'(v)): decrease key of v from Rk(v) (current key) to K'(v) (new
key). Assumption: R'(v) < R(Vv).

- meld: merge two separate priority queues into one.

33



Priority Queues

Data structure to store a set S of n elements where each elementv € S has an
associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.

- findMin: find the minimum key in S.

- extractMin: Remove v € S with smallest key and return it.

- insert(v, R(v)): Add new element v with key k(v) to S.

- delete(v): Remove element v from S.

- decreaseKey(v, R'(v)): decrease key of v from Rk(v) (current key) to K'(v) (new
key). Assumption: R'(v) < R(Vv).

- meld: merge two separate priority queues into one.

All operations can be performed in O(logn) time.

decreaseKey is implemented via delete and insert. 33



Dijkstra’s Algorithm using Priority Queues

Q + makePQ()
insert(Q, (s,0))
for each node u#s do
insert(Q, (u,oc0))
X<+ 0
for i=1 to |V| do
(v, dist(s,Vv)) = extractMin(Q)
X =XU{v}
for each u in Adj(v) do
decreasel(ey(Q, (u, min(dist(s, u), dist(s,v) + £(v, u)))) .

Priority Queue operations:

+ O(n) insert operations
- O(n) extractMin operations
+ O(m) decreaseKey operations 34



Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in O(log n) time

35



Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m)log n) time.

35



Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time:

36



Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

36



Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

+ Dijkstra’s algorithm can be implemented in O(nlogn + m) time. If m = Q(nlog n),
running time is linear in input size.

36



Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in O(log n) time

- decreaseKey in O(1) amortized time: ¢ decreaseKey operations for £ > n take
together O(¢) time

- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not
necessary for Dijkstra’s algorithm)

+ Dijkstra’s algorithm can be implemented in O(nlogn + m) time. If m = Q(nlog n),
running time is linear in input size.

- Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in

practice. Rank-Pairing Heaps, .....

- Boost library implements both Fibonacci heaps and rank-pairing heaps. 3



Shortest path trees and variants




Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?
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Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

Q = makePQ()

insert(Q, (s,0))

prev(s) < null

for each node u#s do
insert(Q, (u,o0) )
prev(u) < null

X=10
for i=1 to |vV| do
(v, dist(s, v)) = extractMin(Q)
X =XU{v}
for each u in Adj(v) do
if (dist(s,v) + £(v,u) < dist(s,u)) then
decreaseKey(Q, (u,dist(s,v)+£(v,u)))

prev(u) = Vv 37




Shortest Path Tree

Lemma
The edge set (u, prev(u)) Is the reverse of a shortest path tree rooted at s. For each

u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.

+ The edge set {(u,prev(u)) | u € V} induces a directed in-tree rooted at s
(Why?)

+ Use induction on |X]| to argue that the tree is a shortest path tree for nodes in
V.

[
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Shortest pathsto s

Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?
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Shortest pathsto s

Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u Is a shortest path from u to s
so there is no need to distinguish.

- In directed graphs, use Dijkstra’s algorithm in G™"!
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