Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

```
Explore (G,u):
    Visited \([1 . . n] \leftarrow\) FALSE
    Add \(u\) to \(S\)
    Visited \([u] \leftarrow\) TRUE
    ExploreStep(G,u,Visited, S)
    Output S
```

ExploreStep (G,x,Visited, S):
for each edge $x y$ in $\operatorname{Adj}(x)$ do
if (Visited[y] = FALSE)
Visited[y] \leftarrow TRUE
ExploreStep (G,x,Visited, S):
return

We said that if ToExplore was a:

- Stack, the algorithm is equivalent to DFS
- Queue, the algorithm is equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

ECE-374-B: Lecture 16 - Directed Graphs (DFS, DAGs, Topological Sort)

Instructor: Nickvash Kani

March 21, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

Add u to S
Visited $[u] \leftarrow$ TRUE
ExploreStep (G,u,Visited, S)
Output S

ExploreStep (G,x, Visited, S):
for each edge $x y$ in $\operatorname{Adj}(x)$ do if (Visited $[y]=$ FALSE $)$

Visited[y] \leftarrow TRUE
ExploreStep (G, x, Visited, S):
return

We said that if ToExplore was a:

- Stack, the algorithm is equivalent to DFS
- Queue, the algorithm is

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

Directed Acyclic Graphs - definition and basic properties

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Is this a DAG?

Is this a DAG?

Sources and Sinks

Definition

- A vertex u is a source if it has no in-coming edges.
- A vertex u is a sink if it has no out-going edges.

Simple DAG Properties

Proposition
Every DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P=v_{1}, v_{2}, \ldots, v_{k}$ be a longest path in G. Claim that v_{1} is a source and v_{k} is a sink. Suppose not. Then v_{1} has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_{k} has an outgoing edge.

Topological ordering

Total recall: Order on a set

Order or strict total order on a set X is a binary relation \prec on X, such that

- Transitivity: $\forall x \cdot y, z \in X \quad x \prec y$ and $y \prec z \Longrightarrow x \prec z$.
- For any $x, y \in X$, exactly one of the following holds: $x \prec y, y \prec x$ or $x=y$.
increasing orle
- trans: tine
if $a<b$ ' $b<c$ then $a<c$
- For any a, b either $a<b$ or $b \subset c$ or $a=b$

Convention about writing edges

- Undirected graph edges:

$$
u v=\{u, v\}=v u \in E
$$

- Directed graph edges:

$$
u \rightarrow v \quad \equiv \quad(u, v) \equiv(u \rightarrow v)
$$

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of $G=(V, E)$ is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition: One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

Topological ordering in linear time

for a DAG
Exercise: show algorithm can be implemented in $O(m+n)$ time.

Topological ordering in linear time

Exercise: show algorithm can be implemented in $O(m+n)$ time.

Simple Algorithm:

1. Count the in-degree of each vertex
2. For each vertex that is source $\left(\operatorname{deg}_{i n}(v)=0\right)$:
2.1 Add v to the topological sort
2.2 Lower degree of vertices v is connected to. ${ }^{1}$

Topological Sort: Example

Adjacency List:

Node	Neighbors	
a	d	e
b	e	
c		
d	f	
e	h	g
f	h	
g		
h		

Generate $\operatorname{deg}_{i n}(v)$:

a

Topological Sort: Example

Adjacency List:

Node	Neighbors		
a	d e	Generate $\operatorname{deg}_{\text {in }}(\mathrm{V})$:	
b	e	Degree	Vertices
C	f	0	a, b, c
d		1	d, f, g
f	h h	2	
g			
h			

Topological Ordering:

Multiple possible topological orderings

DAGs and Topological Sort

- Note: A DAG G may have many different topological sorts.
- Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

$$
\begin{aligned}
& \text { - No edges } \\
& \text { - } \Delta l l \\
& \text { dis connected }
\end{aligned}
$$

- Exercise: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?
(a) \rightarrow (b) \rightarrow (c) o path

Direct Topological ordering - code

```
TopSort(G) :
    Sorted }\leftarrowNUL
    deg}\mp@subsup{\mp@code{in}[1..n]}{\leftarrow}{~
    Tdegin[1..n]}\leftarrowNUL
    Generate in-degree for each vertex
    for each edge xy in G do
        degin}[y]+
    for each vertex v in G do
        Tdeg}\mp@subsup{g}{in}{[deg}\mp@subsup{g}{in}{[v]].append(v)
    Next we recursively add vertices
    with in-degree = 0 to the sort list
    while (Tdegin[0] is non-empty) do
        Remove node x from Tdegin[0]
        Sorted.append(x)
        for each edge xy in Adj(x) do
        degin}[y] - -
        move y to Tdegin[degin[y]]
    Output Sorted
```


DAGs and Topological Sort

Lemma
A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $u_{1} \prec u_{2} \prec \ldots \prec u_{k} \prec u_{1}$

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered $\Longrightarrow G$ is a DAG.

Proof.
Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec. G has a cycle

$$
C=u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow u_{1} .
$$

Then $u_{1} \prec u_{2} \prec \ldots \prec u_{k} \prec u_{1}$

$$
\Longrightarrow u_{1} \prec u_{1} .
$$

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

An explicit definition of what topological ordering of a graph is

For a graph $G=(V, E)$ a topological ordering of a graph is a numbering $\pi: V \rightarrow\{1,2, \ldots, n\}$, such that

$$
\forall(u \rightarrow v) \in \mathrm{E}(\mathrm{G}) \Longrightarrow \pi(u)<\pi(v) .
$$

(That is, π is one-to-one, and $n=|V|$)

Example...

Example...

Assuming:

$$
\begin{aligned}
V & =\{a, \ldots w\} \\
\pi & =\{1, \ldots 23\}
\end{aligned}
$$

Depth First Search (DFS)

Depth First Search (DFS) in Undirected Graphs

Depth First Search

- DFS special case of Basic Search.
- DFS is useful in understanding graph structure.
- DFS used to obtain linear time $(O(m+n))$ algorithms for
- Finding cut-edges and cut-vertices of undirected graphs
- Finding strong connected components of directed graphs
- ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
DFS(G)
for all u\inV(G) do
    Mark u as unvisited
    Set pred(u) to null
    T is set to \emptyset
    while \exists unvisited u do
        DFS(u)
    Output T
```

```
DFS(u)
Mark u as visited
    for each uv in Out(u) do
    if v is not visited then
        add edge uv to T
        set pred(v) to u
    DFS(v)
```

Implemented using a global array Visited for all recursive calls.
T is the search tree/forest.

Example

Edges classified into two types: $u v \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

Example

Edges classified into two types: $u v \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

DFS with pre-post numbering

with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
for all u\inV(G) do
    Mark u as unvisited
    T is set to \emptyset
    time = 0
    while \exists unvisited u do
        DFS(u)
    Output T
```

```
DFS(u)
```

 Mark u as visited
 pre(u) \(=++\) time
 for each uv in Out(u) do
 if \(v\) is not marked then
 add edge uv to \(T\)
 DFS(\(v\))
 \(\operatorname{post}(u)=++\) time

Animation

Animation

Animation

Animation

Animation

Animation

Animation

$\operatorname{tim}=$	$=4$
vertex	$[$ pre, post $]$
1	$[1]$,
2	$[2]$,
4	$[3]$,
5	$[4]$,

Animation

Animation

Animation

Animation

Animation

time $=9$

vertex	[pre, post]	(1) 7 (9)
1	[1,]	1
2	[2,]	(2) (3)
4	[3,]	(4)
5	[4,]	(4)-5 (10)
6	[5, 6]	
3	[7,]	(6)
7	[8,]	
8	[9,]	

Animation

time $=10$

vertex	[pre, post]	(1) 7 (9)
1	[1,]	1
2	[2,]	(2) 3
4	[3,]	,
5	[4,]	4) 8 (10)
6	[5, 6]	
3	[7,]	(6)
7	[8,]	
8	[9, 10]	

Animation

time $=11$

vertex	[pre, post]	(1) 7 (9)
1	[1,]	
2	[2,]	(2) 3
4	[3,])
5	[4,]	(4)-5 (10)
6	[5,6]	
3	[7,]	(6)
7	[8, 11]	
8	[9, 10]	

Animation

time $=12$

vertex	[pre, post]	(1) 7 (9)
1	[1,]	1
2	[2,]	(2) 3
4	[3,]]
5	[4,]	(4)-5 (10)
6	[5,6]	
3	[7, 12]	(6)
7	[8, 11]	
8	[9, 10]	

Animation

time $=13$

vertex	[pre, post]	(1) 7 (9)
1	[1,]	1
2	[2,]	(2) 3
4	[3,]	(1)
5	[4, 13]	(4)-5 (10)
6	[5,6]	
3	[7, 12]	(6)
7	[8, 11]	
8	[9, 10]	

Animation

time $=14$

vertex	[pre, post]	(1) 7 (9
1	[1,]	1
2	[2,]	(2) 3
4	[3, 14]]
5	[4, 13]	(4)-5 (10)
6	[5,6]	
3	[7, 12]	(6)
7	[8, 11]	
8	[9, 10]	

Animation

time $=15$

vertex	[pre, post]	(1) 7 (9
1	[1,]	1)
2	[2, 15]	(2) 3
4	[3, 14]	d
5	[4, 13]	(4)-5 (10)
6	[5,6]	
3	[7, 12]	(6)
7	[8, 11]	
8	[9, 10]	

Animation

time $=16$

vertex	$[$ pre, post $]$
1	$[1,16]$
2	$[2,15]$
4	$[3,1]$
5	$[4,13]$
6	$[5,6]$
3	$[7,12]$
7	$[8,1]$
8	$[9,10]$

Animation

time $=17$

vertex	[pre, post]	(1) 9
1	[1, 16]	1
2	[2, 15]	() 3
4	[3, 14]	-
5	$[4,13]$	(4) (5) (8) (10
6 3	$[5,6]$ $[7,12]$	
7	[8,11]	(0)
8	[9, 10]	
9	[17,]	

Animation

time $=18$

vertex	[pre, post])
1	[1, 16]	1
2	[2, 15]	(2) 3
4	[3, 14]	
5	$[4,13]$	(4)-(5) (8) (10)
6 3	$[5,6]$	
	[8,11]	(6)
	[9, 10]	
9	[17,]	
10	[18,]	

Animation

time $=19$

vertex	[pre, post]	(1) 9
1	[1, 16]	11
2	[2, 15]	(2) 3
4	[3, 14]	
5	$[4,13]$ $[5,6]$ $[7,12$	(4) (5) 8 (10)
3	[7, 12]	(6)
7	[8, 11]	(b)
8	[9, 10]	
9	[17,]	
10	[18, 19]	

Animation

time $=20$

vertex	[pre, post]	(1) 9
1	[1, 16]	1 (3)
2	[2, 15]	(2) (3)
4	[3, 14]	
5	$[4,13]$	(4) ${ }^{(5) 10}$
6 3	$[5,6]$ $[7,12]$	
7	[8,11]	
8	[9, 10]	
9	[17, 20]	
10	[18, 19]	

Animation

vertex	$[$ pre, post $]$		
1	$[1,16]$		
2	$[2,15]$		
4	$[3,14]$		
5	$[4,13]$		
6	$[5,6]$		
3	$[7,12]$		
7	$[8,11]$		
8	$[9,10]$		
9	$[17,20]$		
10	$[18,19]$		

pre and post numbers

Node u is active in time interval [pre(u), post(u)]
Proposition
For any two nodes u and v, the two intervals [pre(u), post(u)] and $[\operatorname{pre}(v), \operatorname{post}(v)]$ are disjoint or one is contained in the other.
pre and post numbers useful in several applications of DFS

DFS in Directed Graphs

DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited
T is set to \emptyset
time $=0$
while there is an unvisited node u do DFS(u)
Output T

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each edge (u,v) in Out(u) do
        if v is not visited
        add edge (u,v) to T
        DFS(v)
    post(u) = ++time
```


Example of DFS in directed graph

Example of DFS in directed graph

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of DFS(G) depends on the order in which vertices are considered.

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of DFS (G) depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of DFS (G) depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[p r e(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

Properties

Generalizing ideas from undirected graphs:

- DFS (G) takes $O(m+n)$ time.
- Edges added form a branching: a forest of out-trees. Output of DFS (G) depends on the order in which vertices are considered.
- If u is the first vertex considered by $\operatorname{DFS}(G)$ then $\operatorname{DFS}(u)$ outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in \operatorname{rch}(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[p r e(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

tree and related edges

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that y is a descendant of x.
- A backward edge is a non-tree edge (x, y) such that y is an ancestor of x.

- A cross edge is a non-tree edges (x, y) such that they don't have a ancestor/descendant relationship between them.

DFS tree and related edges

Edges of G can be classified with respect to the DFS tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that $\operatorname{pre}(x)<$ $\operatorname{pre}(y)<\operatorname{post}(y)<\operatorname{post}(x)$.
- A backward edge is a non-tree edge (x, y) such that . pres $(y)<$ pred (x)

- A cross edge is a non-tree edges (x, y) such that the intervals are disjoint $\operatorname{pre}(x)<\operatorname{post}(x)<\operatorname{pre}(y)<\operatorname{post}(y)<D-D B$ or $\operatorname{pre}(y)<\operatorname{post}(y) \geq \operatorname{pre}(x)<\operatorname{post}(x) \rightleftharpoons A$

Types of Edges

Types of Edges

- Back edges:
- Forward edges:
- Cross edges:

DFS and cycle detection: Topological sorting using DFS

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output one if it has one? If any edge isn't in T
then there has to be a cycle

Cycles in graphs

Given an undirected graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

IE we have a back edge (uv)
Cycle $=$ tree ellges from $u \infty v$ (set this from pre/postordering)

$$
+(u, v)
$$

Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?
If it is, compute a topological sort.
If it fails, then output the cycle C.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $O(n+m)$ time.

Topological sort a graph using

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge $e=(v, u)$ then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in $O(n+m)$ time. Correctness is not so obvious.
See next two propositions.

Example
[13, 14]

(-)

Example

[13, 14]

Listing out the vertices in post-number decreasing gives:

c, b, a, e, g, d, f, h

Remind you of anything?

Example

Back edge and Cycles

Proposition

G has a cycle \Longleftrightarrow there is a back-edge in DFS(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C=v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k} \rightarrow v_{1}$. Let v_{i} be first node in C visited in DFS.

All other nodes in C are descendants of v_{i} since they are reachable from v_{i}.

Therefore, $\left(v_{i-1}, v_{i}\right)$ (or $\left(v_{k}, v_{1}\right)$ if $\left.i=1\right)$ is a back edge.

Decreasing post numbering is valid

Proposition
 If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G.

Decreasing post numbering is valid

Proposition

If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.

Proof.

Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: $[$ pre(u), post(u)] is contained in $[p r e(v), \operatorname{post}(v)]$.
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid

Proposition

If G is a DAG and post $(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.
Proof.
Assume post $(u)<\operatorname{post}(v)$ and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during $\operatorname{DFS}(v)$ and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Translation

We just proved:
Proposition
If G is a DAG and $\operatorname{post}(v)>\operatorname{post}(u)$, then $(u \rightarrow v)$ is not in G.
\Longrightarrow sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Topological sorting

Theorem

$G=(V, E):$ Graph with n vertices and m edges.
Comptue a topological sorting of G using DFS in $O(n+m)$ time.
That is, compute a numbering $\pi: V \rightarrow\{1,2, \ldots, n\}$, such that

$$
(u \rightarrow v) \in E(G) \Longrightarrow \pi(u)<\pi(v)
$$

The meta graph of strong connected components

Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.
Previous lecture:
Saw an $O(n \cdot(n+m))$ time algorithm.
This lecture: sketch of a $O(n+m)$ time algorithm.

Graph of SCCs

Graph of SCCs G ${ }^{\text {SCC }}$
Meta-graph of SCCs
Let $S_{1}, S_{2}, \ldots S_{k}$ be the strong connected components (i.e.,
SCCs) of G. The graph of SCCs is $G^{S C C}$

- Vertices are $S_{1}, S_{2}, \ldots S_{k}$
- There is an edge $\left(S_{i}, S_{j}\right)$ if there is some $u \in S_{i}$ and $v \in S_{j}$ such that (u, v) is an edge in G.

The meta graph of SCCs is a DAG...

Proposition

For any graph G, the graph $G^{S C C}$ has no directed cycle.
Proof.
If $G^{\text {SCC }}$ has a cycle $S_{1}, S_{2}, \ldots, S_{k}$ then $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ should be
in the same SCC in G .

To Remember: Structure of Graphs

Undirected graph: connected components of $G=(V, E)$ partition V and can be computed in $O(m+n)$ time.

Directed graph: the meta-graph $G^{S C C}$ of G can be computed in $O(m+n)$ time. $G^{S C C}$ gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Linear time algorithm for finding all

 SCCs
Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find $\operatorname{SCC}(G, u)$ the strong component of u :

Compute $\operatorname{rch}(G, u)$ using $\operatorname{DFS}(G, u)$ Compute rch $\left(G^{r e v}, u\right)$ using $\operatorname{DFS}\left(G^{\text {rev }}, u\right)$ $\operatorname{SCC}(G, u) \Leftarrow \operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ $\forall u \in \operatorname{SCC}(G, u):$ Mark u as visited.

Running time: $O(n(n+m))$

Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G=(V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find $\operatorname{SCC}(G, u)$ the strong component of u :

Compute $\operatorname{rch}(G, u)$ using $\operatorname{DFS}(G, u)$ Compute rch $\left(G^{r e v}, u\right)$ using $\operatorname{DFS}\left(G^{\text {rev }}, u\right)$ $\operatorname{SCC}(G, u) \Leftarrow \operatorname{rch}(G, u) \cap \operatorname{rch}\left(G^{r e v}, u\right)$ $\forall u \in \operatorname{SCC}(G, u):$ Mark u as visited.

Running time: $O(n(n+m))$ Is there an $O(n+m)$ time algorithm?

Structure of a Directed Graph

\Leftarrow Graph of JCs G ${ }^{\text {SOC }}$ D, A, C, E, \ldots
Reminder ${ }^{\text {SOC }}$ is created by collapsing every strong connected component to a single vertex.

Proposition
For a directed graph G, its meta-graph $G^{S C C}$ is a DAG.

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in $\operatorname{SCC}(u)$

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G ${ }^{\text {SCC }}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in $\operatorname{SCC}(u)$
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of $G^{S C C}$
- Do DFS(u) to compute $\operatorname{SCC}(u)$
- Remove $\operatorname{SCC}(u)$ and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- ... since there are no edges coming out a sink!
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time $O(n+m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of $G^{S C C}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\mathrm{SCC}}$?

Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Big Challenge(s)

How do we find a vertex in a sink SCC of $\mathrm{G}^{\text {SCC }}$?

Can we obtain an implicit topological sort of $\mathrm{G}^{\text {SCC }}$ without computing $\mathrm{G}^{\mathrm{SCC}}$?

Answer: DFS(G) gives some information!

Maximum post numbering and the source of the meta-graph

Post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in DFS(G). Then v is in a SCC S, such that S is a source of $G^{S C C}$.

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in $\operatorname{DFS}\left(G^{r e v}\right)$. Then v is in a SCC S, such that S is a sink of $G^{S C C}$.

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in DFS $\left(G^{\text {rev }}\right)$. Then v is in a SCC S, such that S is a sink of $G^{S C C}$.

Holds even after we delete the vertices of S (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

The linear-time SCC algorithm itself

Linear Time Algorithm

do DFS($\left.G^{\text {rev }}\right)$ and output vertices in decreasing post order. Mark alt podes as unvisited $O(n)$ for each u in the computed order do $O(a)$
if u is not visited then DFS(u) O(un+m)
Ohem Let sube the nodes reached by u Output S_{u} as a strong connected component Remove S_{u} from G

Theorem
Algorithm runs in time $O(m+n)$ and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps 1

Graph G:

Reverse graph $\mathrm{G}^{\text {rev }}$:

DFS of reverse graph:

Pre/Post DFS numbering of reverse graph:

Linear Time Algorithm: An Example

Original graph G with rev post numbers:

$D F S(G, g)$
$D F S\left(G^{\text {re/ }}, g\right)$

Do DFS from vertex G remove it.

SCC computed:
\{G\}

Linear Time Algorithm: An Example

Do DFS from vertex G remove it.

SCC computed:
\{G\}

Do DFS from vertex H, remove it.

SCC computed:
$\{G\},\{H\}$

Linear Time Algorithm: An Example

Do DFS from vertex B

Do DFS from vertex H, remove it.

Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\}$
SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Linear Time Algorithm: An Example

Do DFS from vertex F
Remove visited vertices:
$\{F, B, E\}$.

SCC computed:
$\{G\},\{H\},\{F, B, E\}$

Do DFS from vertex A
Remove visited vertices:
$\{A, C, D\}$.

Linear Time Algorithm: An Example

SCC computed:
$\{G\},\{H\},\{F, B, E\},\{A, C, D\}$
Which is the correct answer!

Obtaining the meta-graph...

Exercise:

Given all the strong connected components of a directed graph $G=(V, E)$ show that the meta-graph $G^{S C C}$ can be obtained in $O(m+n)$ time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph $\mathrm{G}^{\mathrm{SCC}}$?

Summary

Take away Points

- DAGs
- Topological orderings.
- DFS: pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph $G^{S C C}$ give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCS and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Scratch Figures

