Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.

ECE-374-B: Lecture 17 - Shortest Paths [BFS, Djikstra]

Instructor: Nickvash Kani
March 23, 2022

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.

Breadth First Search

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a queue data structure.
(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

- DFS good for exploring graph structure
- BFS good for exploring distances

Queue Data Structure

Queues

A queue is a list of elements which supports the operations:

- enqueue: Adds an element to the end of the list
- dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the order in which they were inserted.

Algorithm

Given (undirected or directed) graph $G=(V, E)$ and node $s \in V$

```
BFS(s)
    Mark all vertices as unvisited
    Initialize search tree T to be empty
    Mark vertex s as visited
    set Q to be the empty queue
    enqueue(Q,s)
    while Q is nonempty do
        u= dequeue(Q)
        for each vertex v\in Adj(u)
        if v is not visited then
        add edge (u,v) to T
        Mark v as visited and enqueue(v)
```

Proposition
BFS(s) runs in $O(n+m)$ time.

: An Example in Undirected Graphs

T1. [1]

: An Example in Undirected Graphs

T1. [1]
T2. $[2,3]$

: An Example in Undirected Graphs

T1. [1]
T2. $[2,3]$

: An Example in Undirected Graphs

T1. [1]
T2. $[2,3]$
T3. $[3,4,5]$

: An Example in Undirected Graphs

$\begin{array}{llll}\text { T1. } & {[1]} & \text { T4. } & {[4,5,7,8]} \\ \text { T2. } & {[2,3]} & & \\ \text { T3. } & {[3,4,5]} & & \end{array}$

: An Example in Undirected Graphs

6

$$
\begin{array}{llll}
\text { T1. } & {[1]} & \text { T4. } & {[4,5,7,8]} \\
\text { T2. } & {[2,3]} & \text { T5. } & {[5,7,8]} \\
\text { T3. } & {[3,4,5]} & &
\end{array}
$$

: An Example in Undirected Graphs

$\begin{array}{llll}\text { T1. } & {[1]} & \text { T4. } & {[4,5,7,8]} \\ \text { T2. } & {[2,3]} & \text { T5. } & {[5,7,8]} \\ \text { T3. } & {[3,4,5]} & \text { T6. } & {[7,8,6]}\end{array}$

: An Example in Undirected Graphs

T1. [1]
T2. $[2,3]$
T3. $[3,4,5]$
T4. $[4,5,7,8]$
T7. $[8,6]$
T5. $[5,7,8]$
T6. $[7,8,6]$

: An Example in Undirected Graphs

$\begin{array}{ll}\text { T1. } & {[1]} \\ \text { T2. } & {[2,3]} \\ \text { T3. } & {[3,4,5]}\end{array}$
T4. $[4,5,7,8]$
T5. $[5,7,8]$
T7. $[8,6]$
T8. [6]

: An Example in Undirected Graphs


```
T1. [1]
T2. \([2,3]\)
T3. \([3,4,5]\)
```

$$
\begin{array}{ll}
\text { T4. } & {[4,5,7,8]} \\
\text { T5. } & {[5,7,8]} \\
\text { T6. } & {[7,8,6]}
\end{array}
$$

T7. $[8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

: An Example in Undirected Graphs


```
T1. [1]
T2. \([2,3]\)
T3. \([3,4,5]\)
```

$$
\begin{array}{ll}
\text { T4. } & {[4,5,7,8]} \\
\text { T5. } & {[5,7,8]} \\
\text { T6. } & {[7,8,6]}
\end{array}
$$

T7. $[8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

: An Example in Undirected Graphs


```
T1. [1]
T2. \([2,3]\)
T3. \([3,4,5]\)
```

$$
\begin{array}{ll}
\text { T4. } & {[4,5,7,8]} \\
\text { T5. } & {[5,7,8]} \\
\text { T6. } & {[7,8,6]}
\end{array}
$$

T7. $[8,6]$
T8. [6]
T9. []
BFS tree is the set of purple edges.

BFS: An Example in Directed Graphs

BFS: An Example in Directed Graphs

T1. [A]

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T3. $[C, F, E]$

BFS: An Example in Directed Graphs

T1. [A]
T4. [F,E,D]
T2. $[B, C, F]$
T3. $[C, F, E]$

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T4. $[F, E, D]$
T3. $[C, F, E]$

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T3. $[C, F, E]$
T4. $[F, E, D]$
T5. [E,D,G]
T6. $[\mathrm{D}, \mathrm{G}, \mathrm{H}]$

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T3. $[C, F, E]$
T4. $[F, E, D]$
T7. [G,H]

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T3. $[C, F, E]$

T4. [F,E,D]
T5. [E,D,G]
T6. $[\mathrm{D}, \mathrm{G}, \mathrm{H}]$

T7. [G,H]
T8. [H]

BFS: An Example in Directed Graphs

T1. [A]
T2. $[B, C, F]$
T3. [C,F,E]

T4. [F,E,D]
T5. [E,D,G]
T6. $[\mathrm{D}, \mathrm{G}, \mathrm{H}]$

T7. [G,H]
T8. [H]
T9. []

BFS with distances and layers

BFS with distances

BFS(s)

Mark all vertices as unvisited; for each v set $\operatorname{dist}(v)=\infty$ Initialize search tree T to be empty
Mark vertex s as visited and set $\operatorname{dist}(s)=0$
set Q to be the empty queue enqueue (s)
while Q is nonempty do

$$
u=\operatorname{dequeue}(Q)
$$

for each vertex $v \in \operatorname{Adj}(u)$ do if v is not visited do
add edge (u, v) to T
Mark v as visited, enqueue (v)
and set $\operatorname{dist}(v)=\operatorname{dist}(u)+1$

Properties of BFS: Undirected Graphs

Theorem

The following properties hold upon termination of BFS(s)
(A) Search tree contains exactly the set of vertices in the connected component of s.
(B) If $\operatorname{dist}(u)<\operatorname{dist}(v)$ then u is visited before v.
(C) For every vertex u, $\operatorname{dist}(u)$ is the length of a shortest path (in terms of number of edges) from s to u.
(D) If u, v are in connected component of s and $e=\{u, v\}$ is an edge of G, then $|\operatorname{dist}(u)-\operatorname{dist}(v)| \leq 1$.

Properties of BFS: Directed Graphs

Theorem

The following properties hold upon termination of BFS(s):
(A) The search tree contains exactly the set of vertices reachable from s
(B) If $\operatorname{dist}(u)<\operatorname{dist}(v)$ then u is visited before v
(C) For every vertex u, $\operatorname{dist}(u)$ is indeed the length of shortest path from s to u
(D) If u is reachable from s and $e=(u, v)$ is an edge of G, then $\operatorname{dist}(v)-\operatorname{dist}(u) \leq 1$. Not necessarily the case that $\operatorname{dist}(u)-\operatorname{dist}(v) \leq 1$.

BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty Mark s as visited and set $L_{0}=\{s\}$
$i=0$
while L_{i} is not empty do

$$
\text { initialize } L_{i+1} \text { to be an empty list }
$$ for each u in L_{i} do for each edge $(u, v) \in \operatorname{Adj}(u)$ do if v is not visited mark v as visited add (u, v) to tree T add v to L_{i+1}

$$
i=i+1
$$

BFS with Layers

BFSLayers(s):

Mark all vertices as unvisited and initialize T to be empty Mark s as visited and set $L_{0}=\{s\}$
$i=0$
while L_{i} is not empty do

```
initialize Li+1 to be an empty list
for each }u\mathrm{ in Li do
                for each edge (u,v) \in Adj(u) do
            if v is not visited
                        mark v as visited
                        add (u,v) to tree T
                        add v to Li+1
i=i+1
```

Running time: $O(n+m)$

Example

Example

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

with Layers: Properties

Proposition

The following properties hold on termination of BFSLayers(s).

- BFSLayers(s) outputs a BFS tree
- L_{i} is the set of vertices at distance exactly ifrom s
- If G is undirected, each edge $e=\{u, v\}$ is one of three types:
- tree edge between two consecutive layers
- non-tree forward/backward edge between two consecutive layers
- non-tree cross-edge with both u, v in same layer
- \Longrightarrow Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.

Example

Layer 0: A
Layer 1: B, F, C
Layer 2: E, G, D
Layer 3: H

with Layers: Properties for directed graphs

Proposition

The following properties hold on termination of BFSLayers(s), if G is directed.

For each edge $e=(u, v)$ is one of four types:

- a tree edge between consecutive layers, $u \in L_{i}, v \in L_{i+1}$ for some $i \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u,v in same layer

Shortest Paths and Dijkstra's Algorithm

Problem definition

Shortest Path Problems

Shortest Path Problems

$$
\begin{aligned}
& \text { Input } A \text { (undirected or directed) graph } G=(V, E) \text { with } \\
& \text { edge lengths (or costs). For edge } e=(u, v) \text {, } \\
& \ell(e)=\ell(u, v) \text { is its length. }
\end{aligned}
$$

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Shortest Path Problems

Shortest Path Problems

$$
\begin{aligned}
& \text { Input } A \text { (undirected or directed) graph } G=(V, E) \text { with } \\
& \text { edge lengths (or costs). For edge } e=(u, v) \text {, } \\
& \ell(e)=\ell(u, v) \text { is its length. }
\end{aligned}
$$

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph $G=(V, E)$ with non-negative edge lengths. For edge $e=(u, v)$, $\ell(e)=\ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph $G=(V, E)$ with non-negative edge lengths. For edge $e=(u, v)$, $\ell(e)=\ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- . Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?

Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
- Input: A (undirected or directed) graph $G=(V, E)$ with non-negative edge lengths. For edge $e=(u, v)$, $\ell(e)=\ell(u, v)$ is its length.
- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- . Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph G, create a new directed graph G^{\prime} by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G^{\prime}.
- $\operatorname{set} \ell(u, v)=\ell(v, u)=\ell(\{u, v\})$
- Exercise: show reduction works. Relies on non-negativity!

Shortest path in the weighted case using BFS

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m+n)$ time algorithm.

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m+n)$ time algorithm.
- Special case: Suppose $\ell(e)$ is an integer for all e ?

Can we use BFS?

Single-Source Shortest Paths via

- Special case: All edge lengths are 1.
- Run BFS(s) to get shortest path distances from s to all other nodes.
- $O(m+n)$ time algorithm.
- Special case: Suppose $\ell(e)$ is an integer for all e ?

Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e)-1$ dummy nodes on e.

Example of edge refinement

Example of edge refinement

Example of edge refinement

Shortest path using BFS

Let $L=\max _{e} \ell(e)$. New graph has $O(m L)$ edges and $O(m L+n)$ nodes. BFS takes $O(m L+n)$ time. Not efficient if L is large.

On the hereditary nature of shortest paths

You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.
$\operatorname{dist}(s, v)$: shortest path length from s to v.
If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$ shortest path from s to v_{k} then for any $0 \leq i<j \leq k$:
$v_{i} \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_{j}$ is shortest path from v_{i} to v_{j}

A proof by picture

A proof by picture

A proof by picture

A shorter path from v_{0} to v_{10}. A contradiction.

What we really need...

Corollary

G: directed graph with non-negative edge lengths. $\operatorname{dist}(s, v)$: shortest path length from s to v.

If $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$ shortest path from s to v_{k} then for any $0 \leq i \leq k$:

- $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{i}$ is shortest path from s to v_{i}
- $\operatorname{dist}\left(s, v_{i}\right) \leq \operatorname{dist}\left(s, v_{k}\right)$. Relies on non-neg edge lengths.

The basic algorithm: Find the $i^{\text {th }}$ closest vertex

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node $v, \operatorname{dist}(s, v)=\infty$
Initialize $X=\{s\}$,
for $i=2$ to $|V|$ do
(* Invariant: X contains the i-1 closest nodes to s *)
Among nodes in $V-X$, find the node V that is the ipclosest to s
Update $\operatorname{dist}(\mathrm{s}, \mathrm{v})$
$X=X \cup\{v\}$

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node $v, \operatorname{dist}(s, v)=\infty$
Initialize $X=\{s\}$,
for $i=2$ to $|V|$ do
(* Invariant: X contains the i-1 closest nodes to s *)
Among nodes in $V-X$, find the node V that is the ipclosest to s
Update dist(s,v)
$X=X \cup\{v\}$

How can we implement the step in the for loop?

Finding the $\mathrm{i}^{\text {th }}$ closest node

- X contains the $i-1$ closest nodes to s
- Want to find the $i^{\text {th }}$ closest node from $V-X$.

What do we know about the $i^{\text {th }}$ closest node?

Finding the $\mathrm{i}^{\text {th }}$ closest node

- X contains the $i-1$ closest nodes to s
- Want to find the $i^{\text {th }}$ closest node from $V-X$.

What do we know about the $i^{\text {th }}$ closest node?
Claim
Let P be a shortest path from s to v where v is the $i^{\text {th }}$ closest node. Then, all intermediate nodes in P belong to X.

Finding the $\mathrm{i}^{\text {th }}$ closest node

- X contains the $i-1$ closest nodes to s
- Want to find the $i^{\text {th }}$ closest node from $V-X$.

What do we know about the $i^{\text {th }}$ closest node?
Claim
Let P be a shortest path from s to v where v is the $i^{\text {th }}$ closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the $i^{\text {th }}$ closest node to s - recall that X already has the $i-1$ closest nodes.

Finding the $\mathrm{i}^{\text {th }}$ closest node repeatedly

Finding the $\mathrm{i}^{\text {th }}$ closest node

Corollary
The $i^{\text {th }}$ closest node is adjacent to X.

Algorithm

```
Initialize for each node \(v: \operatorname{dist}(s, v)=\infty\)
Initialize \(X=\emptyset, \quad d^{\prime}(s, s)=0\)
for \(i=1\) to \(|V|\) do
    (* Invariant: \(X\) contains the \(i-1\) closest nodes to \(s\) *)
    (* Invariant: \(d^{\prime}(s, u)\) is shortest path distance from u to s
    using only \(X\) as intermediate nodes*)
    Let \(v\) be such that \(d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    for each node \(u\) in \(V-X\) do
    \(d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))\)
```


Algorithm

```
Initialize for each node \(v: \operatorname{dist}(s, v)=\infty\)
Initialize \(X=\emptyset, \quad d^{\prime}(s, s)=0\)
for \(i=1\) to \(|V|\) do
    (* Invariant: \(X\) contains the \(i-1\) closest nodes to \(s\) *)
    (* Invariant: \(d^{\prime}(s, u)\) is shortest path distance from u to s
    using only \(X\) as intermediate nodes*)
    Let \(v\) be such that \(d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)\)
    \(\operatorname{dist}(s, v)=d^{\prime}(s, v)\)
    \(X=X \cup\{v\}\)
    for each node \(u\) in \(V-X\) do
    \(d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))\)
```


Algorithm

Initialize for each node $v: \operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, d^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: X contains the $i-1$ closest nodes to s *)
(* Invariant: $d^{\prime}(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node u in $V-X$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Running time:

Algorithm

Initialize for each node v : $\operatorname{dist}(s, v)=\infty$
Initialize $X=\emptyset, d^{\prime}(s, s)=0$
for $i=1$ to $|V|$ do
(* Invariant: X contains the $i-1$ closest nodes to s *)
(* Invariant: $d^{\prime}(s, u)$ is shortest path distance from u to s using only X as intermediate nodes*)
Let v be such that $d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u)$
$\operatorname{dist}(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
for each node u in $V-X$ do

$$
d^{\prime}(s, u)=\min _{t \in X}(\operatorname{dist}(s, t)+\ell(t, u))
$$

Running time: $O(n \cdot(n+m))$ time.

- n outer iterations. In each iteration, $d^{\prime}(s, u)$ for each u by scanning all edges out of nodes in $X ; O(m+n)$ time/iteration.

Dijkstra's algorithm

Example: Dijkstra algorithm in action

Improved Algorithm

- Main work is to compute the $d^{\prime}(s, u)$ values in each iteration
- $d^{\prime}(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to X in iteration i.

Improved Algorithm

- Main work is to compute the $d^{\prime}(s, u)$ values in each iteration
- $d^{\prime}(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to X in iteration i.

$$
\begin{aligned}
& \text { Initialize for each node } v, \operatorname{dist}(s, v)=d^{\prime}(s, v)=\infty \\
& \text { Initialize } X=\emptyset, d^{\prime}(s, s)=0 \\
& \text { for } i=1 \text { to }|V| \text { do } \\
& \quad / / X \text { contains the } i-1 \text { closest nodes to } s \text {, } \\
& \text { // and the values of } d^{\prime}(s, u) \text { are current } \\
& \text { Let } v \text { be node realizing } d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u) \\
& \operatorname{dist}(s, v)=d^{\prime}(s, v) \\
& X=X \cup\{v\} \\
& \text { Update } d^{\prime}(s, u) \text { for each } u \text { in } V-X \text { as follows: } \\
& \quad d^{\prime}(s, u)=\min \left(d^{\prime}(s, u), \operatorname{dist}(s, v)+\ell(v, u)\right)
\end{aligned}
$$

Improved Algorithm

$$
\begin{aligned}
& \text { Initialize for each node } v, \operatorname{dist}(s, v)=d^{\prime}(s, v)=\infty \\
& \text { Initialize } X=\emptyset, d^{\prime}(s, s)=0 \\
& \text { for } i=1 \text { to }|V| \text { do } \\
& \quad / / X \text { contains the } i-1 \text { closest nodes to } s \text {, } \\
& \text { // and the values of } d^{\prime}(s, u) \text { are current } \\
& \text { Let } v \text { be node realizing } d^{\prime}(s, v)=\min _{u \in v-x} d^{\prime}(s, u) \\
& \operatorname{dist}(s, v)=d^{\prime}(s, v) \\
& X=X \cup\{v\} \\
& \text { Update } d^{\prime}(s, u) \text { for each } u \text { in } V-X \text { as follows: } \\
& \quad d^{\prime}(s, u)=\min \left(d^{\prime}(s, u), \operatorname{dist}(s, v)+\ell(v, u)\right)
\end{aligned}
$$

Running time: $O\left(m+n^{2}\right)$ time.

- n outer iterations and in each iteration following steps
- updating $d^{\prime}(s, u)$ after v is added takes $O(\operatorname{deg}(v))$ time so total work is $O(m)$ since a node enters X only once
- Finding v from $d^{\prime}(s, u)$ values is $O(n)$ time

Dijkstra's Algorithm

- eliminate $d^{\prime}(s, u)$ and let dist (s, u) maintain it
- update dist values after adding v by scanning edges out of

```
V
Initialize for each node v, dist(s,v)=\infty
Initialize X=\emptyset, dist(s,s)=0
for i=1 to |V| do
    Let v be such that dist(s,v)= min}u\inv-x dist(s,u
    X=X\cup{v}
    for each u in Adj(v) do
        dist}(s,u)=\operatorname{min}(\operatorname{dist}(s,u),\operatorname{dist}(s,v)+\ell(v,u)
```

Priority Queues to maintain dist values for faster running time

Dijkstra's Algorithm

- eliminate $d^{\prime}(s, u)$ and let dist (s, u) maintain it
- update dist values after adding v by scanning edges out of

```
V
Initialize for each node v, dist(s,v)=\infty
Initialize X=\emptyset, dist(s,s)=0
for i=1 to |V| do
    Let v be such that dist(s,v)= min}u\inv-x dist(s,u
    X=X\cup{v}
    for each u in Adj(v) do
        dist}(s,u)=min(\operatorname{dist}(s,u),\operatorname{dist}(s,v)+\ell(v,u)
```

Priority Queues to maintain dist values for faster running time

- Using heaps and standard priority queues: $O((m+n) \log n)$
- Using Fibonacci heaps: $O(m+n \log n)$.

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
- delete(v): Remove element v from S.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
- delete(v): Remove element v from S.
- decreaseKey $\left(v, k^{\prime}(v)\right)$: decrease key of v from $k(v)$ (current key) to $k^{\prime}(v)$ (new key). Assumption: $k^{\prime}(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- extractMin: Remove $v \in S$ with smallest key and return it.
- insert $(v, k(v))$: Add new element v with key $k(v)$ to S.
- delete (v) : Remove element v from S.
- decreaseKey $\left(v, k^{\prime}(v)\right)$ decrease key of v from $k(v)$ (current key) to $k^{\prime}(v)$ (new key). Assumption: $k^{\prime}(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.
decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
\(Q \leftarrow\) makePQ()
insert( \(Q\), \((s, 0)\) )
for each node \(u \neq s\) do
    insert \((Q, \quad(u, \infty))\)
\(X \leftarrow \emptyset\)
for \(i=1\) to \(|V|\) do
    \((v, \operatorname{dist}(s, v))=\operatorname{extractMin}(Q)\)
    \(X=X \cup\{v\}\)
    for each \(u\) in \(\operatorname{Adj}(v)\) do
        \(\operatorname{decreaseKey}(Q,(u, \min (\operatorname{dist}(s, u), \operatorname{dist}(s, v)+\ell(v, u))))\).
```

Priority Queue operations:

- O(n) insert operations
- O(n) extractMin operations
- O(m) decreaseKey operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n+m) \log n)$ time.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time:

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $m=\Omega(n \log n)$, running time is linear in input size.

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- Dijkstra's algorithm can be implemented in $O(n \log n+m)$ time. If $m=\Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,
- Boost library implements both Fibonacci heaps and rank-pairing heaps.

Shortest path trees and variants

Shortest Path Tree

Dijkstra's alg. finds the shortest path distances from s to V. Question: How do we find the paths themselves?

Shortest Path Tree

Dijkstra's alg. finds the shortest path distances from s to V.
Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s,0))
prev(s)}\leftarrow\mathrm{ null
for each node u\not=s do
    insert(Q, (u, \infty) )
    prev(u)}\leftarrow\mathrm{ null
X=\emptyset
for i=1 to |V| do
    (v,\operatorname{dist}(s,v)) = extractMin(Q)
    X=X\cup{v}
    for each }u\mathrm{ in }\operatorname{Adj(v) do
        if (dist(s,v)+\ell(v,u)<\operatorname{dist}(s,u)) then
                decreaseKey(Q, (u, dist(s,v)+\ell(v,u)))
                prev(u)=v
```


Shortest Path Tree

Lemma

The edge set $(u, \operatorname{prev}(u))$ is the reverse of a shortest path tree rooted at s. For each u, the reverse of the path from u to s in the tree is a shortest path from s to u.

Proof Sketch.

- The edge set $\{(u, \operatorname{prev}(u)) \mid u \in V\}$ induces a directed in-tree rooted at s (Why?)
- Use induction on $|X|$ to argue that the tree is a shortest path tree for nodes in V.

Shortest paths to s

Dijkstra's alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s ?

Shortest paths to s

Dijkstra's alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s ?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra's algorithm in Grev!

