
1

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a
vertex that is contained within the source SCC of the
meta-graph of G.

1

ECE-374-B: Lecture 17 - Shortest Paths [BFS,
Djikstra]

Instructor: Nickvash Kani
March 23, 2022

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a
vertex that is contained within the source SCC of the
meta-graph of G.

2

Breadth First Search

Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges
using a queue data structure.

(B) It processes the vertices in the graph in the order of their
shortest distance from the vertex s (the start vertex).

As such...

• DFS good for exploring graph structure
• BFS good for exploring distances

3

Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

• enqueue: Adds an element to the end of the list
• dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are picked in the order in which they were inserted.

4

BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node s ∈ V
BFS(s)

Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue
enqueue(Q, s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v ∈ Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enqueue(v)

Proposition
BFS(s) runs in O(n+m) time.

5

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6

T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6
T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Directed Graphs

AB C

DE F

G H

7

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS with distances and layers

BFS with distances

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =∞
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enqueue(v)
and set dist(v) = dist(u) + 1

9

Properties of BFS: Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the
connected component of s.

(B) If dist(u) < dist(v) then u is visited before v.
(C) For every vertex u, dist(u) is the length of a shortest path

(in terms of number of edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G, then |dist(u)− dist(v)| ≤ 1.

10

Properties of BFS: Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices
reachable from s

(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest

path from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G, then

dist(v)− dist(u) ≤ 1. Not necessarily the case that

dist(u)− dist(v) ≤ 1.

11

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

12

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

12

Example

1

2 3

4 5

6

7

8

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

13

Example

1

2 3

4 5

6

7

8

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

13

BFS with Layers: Properties

Proposition
The following properties hold on termination of BFSLayers(s).

• BFSLayers(s) outputs a BFS tree
• Li is the set of vertices at distance exactly i from s
• If G is undirected, each edge e = {u, v} is one of three
types:

• tree edge between two consecutive layers
• non-tree forward/backward edge between two consecutive
layers

• non-tree cross-edge with both u, v in same layer
• =⇒ Every edge in the graph is either between two vertices
that are either (i) in the same layer, or (ii) in two
consecutive layers.

14

Example

AB C

DE F

G H

Layer 0: A
Layer 1: B, F, C
Layer 2: E,G,D
Layer 3: H 15

BFS with Layers: Properties for directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if
G is directed.

For each edge e = (u, v) is one of four types:

• a tree edge between consecutive layers, u ∈ Li, v ∈ Li+1 for
some i ≥ 0

• a non-tree forward edge between consecutive layers
• a non-tree backward edge
• a cross-edge with both u, v in same layer

16

Shortest Paths and Dijkstra’s
Algorithm

Problem definition

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

Many applications!

17

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

Many applications!

17

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v,u) in G′.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v,u) in G′.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G′ by
replacing each edge {u, v} in G by (u, v) and (v,u) in G′.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Shortest path in the weighted case
using BFS

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)− 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)− 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS?

Reduce to unit edge-length problem by
placing `(e)− 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)− 1 dummy nodes on e.

19

Example of edge refinement

20

Example of edge refinement

20

Example of edge refinement

20

Shortest path using BFS

Let L = maxe `(e). New graph has O(mL) edges and O(mL+ n)
nodes. BFS takes O(mL+ n) time. Not efficient if L is large.

21

On the hereditary nature of shortest
paths

You can not shortcut a shortest path

Lemma
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s = v0 → v1 → v2 → . . . → vk shortest path from s to vk then
for any 0 ≤ i < j ≤ k:

vi → vi+1 → . . . → vj is shortest path from vi to vj

22

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

v3

v4 v6

v5

23

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

Shorter path
from v2 to v8

v3

v4 v6

v5

23

A proof by picture

s = v0

v1

v2

v7

v8

v9

v10

Shortest path
from v0 to v10

A shorter path
from v0 to v10.
A contradic-
tion.

v3

v4 v6

v5

23

What we really need...

Corollary
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s = v0 → v1 → v2 → . . . → vk shortest path from s to vk then
for any 0 ≤ i ≤ k:

• s = v0 → v1 → v2 → . . . → vi is shortest path from s to vi
• dist(s, vi) ≤ dist(s, vk). Relies on non-neg edge lengths.

24

The basic algorithm: Find the ith

closest vertex

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)
Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
Among nodes in V − X, find the node v that is the

iþclosest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?

25

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)
Initialize for each node v, dist(s, v) =∞
Initialize X = {s},
for i = 2 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
Among nodes in V − X, find the node v that is the

iþclosest to s
Update dist(s, v)
X = X ∪ {v}

How can we implement the step in the for loop?

25

Finding the ith closest node

• X contains the i− 1 closest nodes to s
• Want to find the ith closest node from V − X.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i− 1 closest nodes.

26

Finding the ith closest node

• X contains the i− 1 closest nodes to s
• Want to find the ith closest node from V − X.

What do we know about the ith closest node?
Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i− 1 closest nodes.

26

Finding the ith closest node

• X contains the i− 1 closest nodes to s
• Want to find the ith closest node from V − X.

What do we know about the ith closest node?
Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i− 1 closest nodes.

26

Finding the ith closest node repeatedly

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19
f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

38

f

g

h

27

Finding the ith closest node

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

Corollary
The ith closest node is adjacent to X.

28

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
(* Invariant: d′(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
for each node u in V − X do

d′(s,u) = mint∈X
(

dist(s, t) + `(t,u)
)

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d′(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
(* Invariant: d′(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
for each node u in V − X do

d′(s,u) = mint∈X
(

dist(s, t) + `(t,u)
)

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d′(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
(* Invariant: d′(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
for each node u in V − X do

d′(s,u) = mint∈X
(

dist(s, t) + `(t,u)
)

Running time:

O(n · (n+m)) time.

• n outer iterations. In each iteration, d′(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i− 1 closest nodes to s *)
(* Invariant: d′(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
for each node u in V − X do

d′(s,u) = mint∈X
(

dist(s, t) + `(t,u)
)

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d′(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Dijkstra’s algorithm

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

00

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

9

6

13

0

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

3625

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

36

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

38

30

Improved Algorithm

• Main work is to compute the d′(s,u) values in each
iteration

• d′(s,u) changes from iteration i to i+ 1 only because of
the node v that is added to X in iteration i.

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

// X contains the i− 1 closest nodes to s,
// and the values of d′(s,u) are current
Let v be node realizing d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
Update d′(s,u) for each u in V − X as follows:

d′(s,u) = min
(
d′(s,u), dist(s, v) + `(v,u)

)
Running time: O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d′(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d′(s,u) values is O(n) time

31

Improved Algorithm

• Main work is to compute the d′(s,u) values in each
iteration

• d′(s,u) changes from iteration i to i+ 1 only because of
the node v that is added to X in iteration i.
Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

// X contains the i− 1 closest nodes to s,
// and the values of d′(s,u) are current
Let v be node realizing d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
Update d′(s,u) for each u in V − X as follows:

d′(s,u) = min
(
d′(s,u), dist(s, v) + `(v,u)

)
Running time:

O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d′(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d′(s,u) values is O(n) time

31

Improved Algorithm

Initialize for each node v, dist(s, v) = d′(s, v) =∞
Initialize X = ∅, d′(s, s) = 0
for i = 1 to |V| do

// X contains the i− 1 closest nodes to s,
// and the values of d′(s,u) are current
Let v be node realizing d′(s, v) = minu∈V−X d′(s,u)
dist(s, v) = d′(s, v)
X = X ∪ {v}
Update d′(s,u) for each u in V − X as follows:

d′(s,u) = min
(
d′(s,u), dist(s, v) + `(v,u)

)
Running time: O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d′(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d′(s,u) values is O(n) time 31

Dijkstra’s Algorithm

• eliminate d′(s,u) and let dist(s,u) maintain it
• update dist values after adding v by scanning edges out of
v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−X dist(s,u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s,u) = min
(

dist(s,u), dist(s, v) + `(v,u)
)

Priority Queues to maintain dist values for faster running time

• Using heaps and standard priority queues: O((m+n) log n)
• Using Fibonacci heaps: O(m+ n log n).

32

Dijkstra’s Algorithm

• eliminate d′(s,u) and let dist(s,u) maintain it
• update dist values after adding v by scanning edges out of
v

Initialize for each node v, dist(s, v) =∞
Initialize X = ∅, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu∈V−X dist(s,u)
X = X ∪ {v}
for each u in Adj(v) do

dist(s,u) = min
(

dist(s,u), dist(s, v) + `(v,u)
)

Priority Queues to maintain dist values for faster running time
• Using heaps and standard priority queues: O((m+n) log n)
• Using Fibonacci heaps: O(m+ n log n).

32

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each
element v ∈ S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v ∈ S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.

• decreaseKey(v, k′(v)): decrease key of v from k(v) (current
key) to k′(v) (new key). Assumption: k′(v) ≤ k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.

33

Priority Queues

Data structure to store a set S of n elements where each
element v ∈ S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v ∈ S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.
• decreaseKey(v, k′(v)): decrease key of v from k(v) (current
key) to k′(v) (new key). Assumption: k′(v) ≤ k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.

33

Priority Queues

Data structure to store a set S of n elements where each
element v ∈ S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v ∈ S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.
• decreaseKey(v, k′(v)): decrease key of v from k(v) (current
key) to k′(v) (new key). Assumption: k′(v) ≤ k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert. 33

Dijkstra’s Algorithm using Priority Queues

Q← makePQ()
insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))
X ← ∅
for i = 1 to |V| do

(v,dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(
Q,

(
u,min

(
dist(s,u), dist(s, v) + `(v,u)

)))
.

Priority Queue operations:

• O(n) insert operations
• O(n) extractMin operations
• O(m) decreaseKey operations

34

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

• All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n)
time.

35

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

• All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n)
time.

35

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time:

` decreaseKey operations
for ` ≥ n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = Ω(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` ≥ n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = Ω(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` ≥ n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = Ω(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` ≥ n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = Ω(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps. 36

Shortest path trees and variants

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()
insert(Q, (s, 0))
prev(s)← null
for each node u 6= s do

insert(Q, (u,∞))
prev(u)← null

X = ∅
for i = 1 to |V| do

(v,dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v,u) < dist(s,u)) then
decreaseKey(Q, (u, dist(s, v) + `(v,u)))
prev(u) = v

37

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()
insert(Q, (s, 0))
prev(s)← null
for each node u 6= s do

insert(Q, (u,∞))
prev(u)← null

X = ∅
for i = 1 to |V| do

(v,dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

if (dist(s, v) + `(v,u) < dist(s,u)) then
decreaseKey(Q, (u, dist(s, v) + `(v,u)))
prev(u) = v 37

Shortest Path Tree

Lemma
The edge set (u,prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in
the tree is a shortest path from s to u.

Proof Sketch.

• The edge set {(u,prev(u)) | u ∈ V} induces a directed
in-tree rooted at s (Why?)

• Use induction on |X| to argue that the tree is a shortest
path tree for nodes in V .

38

Shortest paths to s

Dijkstra’s alg. gives shortest paths from s to all nodes in V .

How do we find shortest paths from all of V to s?

• In undirected graphs shortest path from s to u is a shortest
path from u to s so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in Grev !

39

Shortest paths to s

Dijkstra’s alg. gives shortest paths from s to all nodes in V .

How do we find shortest paths from all of V to s?

• In undirected graphs shortest path from s to u is a shortest
path from u to s so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in Grev !

39

	Breadth First Search
	BFS with distances and layers
	Shortest Paths and Dijkstra's Algorithm
	Problem definition
	Shortest path in the weighted case using BFS
	On the hereditary nature of shortest paths
	The basic algorithm: Find the ith closest vertex
	Dijkstra's algorithm
	Dijkstra using priority queues
	Shortest path trees and variants

