Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of G.
ECE-374-B: Lecture 17 - Shortest Paths [BFS, Djikstra]

Instructor: Nickvash Kani

March 23, 2022

University of Illinois at Urbana-Champaign
Given a directed graph \((G)\), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G\).
Breadth First Search
Breadth First Search (BFS)

Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a **queue** data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex \(s \) (the start vertex).

As such...

- **DFS** good for exploring graph structure
- **BFS** good for exploring **distances**
Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are picked in the order in which they were inserted.
Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

BFS Algorithm

- **BFS(s)**
 - Mark all vertices as unvisited
 - Initialize search tree T to be empty
 - Mark vertex s as visited
 - set Q to be the empty queue
 - **enqueue**(Q, s)
 - while Q is nonempty do
 - $u = \text{dequeue}(Q)$
 - for each vertex $v \in \text{Adj}(u)$
 - if v is not visited then
 - add edge (u, v) to T
 - Mark v as visited and **enqueue**(v)

Proposition

$\text{BFS}(s)$ runs in $O(n + m)$ time.
T1. [1]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T1. [1]
T2. [2,3]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
BFS: An Example in Undirected Graphs

T1. [1] T4. [4,5,7,8]
T2. [2,3] T5. [5,7,8]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]

T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Directed Graphs
BFS: An Example in Directed Graphs

T1. [A]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
T8. [H]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
T7. [G,H]
T8. [H]
T9. []
BFS with distances and layers
BFS with distances

BFS(s)
Mark all vertices as unvisited; for each \(v \) set \(\text{dist}(v) = \infty \)
Initialize search tree \(T \) to be empty
Mark vertex \(s \) as visited and set \(\text{dist}(s) = 0 \)
set \(Q \) to be the empty queue

enqueue(s)
while \(Q \) is nonempty do
 \(u = \text{dequeue}(Q) \)
 for each vertex \(v \in \text{Adj}(u) \) do
 if \(v \) is not visited do
 add edge \((u,v)\) to \(T \)
 Mark \(v \) as visited, enqueue(v)
 and set \(\text{dist}(v) = \text{dist}(u) + 1 \)
The following properties hold upon termination of BFS(s):

(A) Search tree contains exactly the set of vertices in the connected component of s.

(B) If dist(u) < dist(v) then u is visited before v.

(C) For every vertex u, dist(u) is the length of a shortest path (in terms of number of edges) from s to u.

(D) If u, v are in connected component of s and e = \{u, v\} is an edge of G, then |dist(u) − dist(v)| ≤ 1.
Properties of **BFS**: Directed Graphs

Theorem
The following properties hold upon termination of **BFS**(s):

(A) The search tree contains exactly the set of vertices reachable from s

(B) If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v

(C) For every vertex u, $\text{dist}(u)$ is indeed the length of shortest path from s to u

(D) If u is reachable from s and $e = (u, v)$ is an edge of G, then $\text{dist}(v) - \text{dist}(u) \leq 1$. *Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.**
BFS with Layers

BFS Layers

1. **Mark all vertices as unvisited and initialize T to be empty**
2. **Mark s as visited and set $L_0 = \{s\}**
3. **Initialize $i = 0$**
4. **While L_i is not empty do**
 - **Initialize L_{i+1} to be an empty list**
 - **For each u in L_i do**
 - **For each edge $(u,v) \in \text{Adj}(u)$ do**
 - **If v is not visited**
 - **Mark v as visited**
 - **Add (u,v) to tree T**
 - **Add v to L_{i+1}**

 $i = i + 1$

Running time: $O(n + m)$
BFS with Layers

BFS\text{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$
\[i = 0 \]
while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}
 \[i = i + 1 \]

Running time: $O(n + m)$
Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6
BFS with Layers: Properties

Proposition
The following properties hold on termination of $\text{BFSLayers}(s)$.

- $\text{BFSLayers}(s)$ outputs a BFS tree
- L_i is the set of vertices at distance exactly i from s
- If G is undirected, each edge $e = \{u, v\}$ is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both u, v in same layer
- \implies Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Layer 0: A
Layer 1: B, F, C
Layer 2: E, G, D
Layer 3: H
Proposition
The following properties hold on termination of BFS_Layers(s), if G is directed.

For each edge $e = (u, v)$ is one of four types:

- a **tree** edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
- a **non-tree forward** edge between consecutive layers
- a **non-tree backward** edge
- a **cross-edge** with both u, v in same layer
Shortest Paths and Dijkstra’s Algorithm
Problem definition
Shortest Path Problems

Input A (undirected or directed) graph \(G = (V, E) \) with edge lengths (or costs). For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.

- Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
- Given node \(s \) find shortest path from \(s \) to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!
• Single-Source Shortest Path Problems
 • **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 • Given nodes s, t find shortest path from s to t.
 • Given node s find shortest path from s to all other nodes.
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
 - Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem - how?

• Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
• Exercise: show reduction works. Relies on non-negativity!
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
 - Exercise: show reduction works. Relies on non-negativity!
Shortest path in the weighted case using BFS
• Special case: All edge lengths are 1.
• **Special case:** All edge lengths are 1.

 • Run **BFS**(s) to get shortest path distances from s to all other nodes.

 • $O(m + n)$ time algorithm.
Single-Source Shortest Paths via BFS

- **Special case:** All edge lengths are 1.
 - Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 - \(O(m + n)\) time algorithm.

- **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**?
• **Special case:** All edge lengths are 1.
 - Run **BFS**\((s)\) to get shortest path distances from \(s\) to all other nodes.
 - **\(O(m + n)\)** time algorithm.

• **Special case:** Suppose \(\ell(e)\) is an integer for all \(e\)? Can we use **BFS**? Reduce to unit edge-length problem by placing \(\ell(e) - 1\) dummy nodes on \(e\).
Example of edge refinement
Example of edge refinement
Example of edge refinement
Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(ml + n)$ nodes. **BFS** takes $O(ml + n)$ time. Not efficient if L is large.
On the hereditary nature of shortest paths
You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i < j \leq k$:

$v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$ is shortest path from v_i to v_j
A proof by picture

$s = v_0$

Shortest path from v_0 to v_{10}
A proof by picture

Shorter path from v_2 to v_8

Shortest path from v_0 to v_{10}
A proof by picture

A shorter path from v_0 to v_{10}. A contradiction.

Shortest path from v_0 to v_{10}.
Corollary

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i \leq k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i
- dist$(s, v_i) \leq$ dist(s, v_k). Relies on non-neg edge lengths.
The basic algorithm: Find the i^{th} closest vertex
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \{s\}$,
for $i = 2$ to $|V|$ do
 (* Invariant: X contains the $i-1$ closest nodes to s *)
Among nodes in $V - X$, find the node v that is the ith closest to s
Update $\text{dist}(s, v)$
$X = X \cup \{v\}$
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)

| Initialize for each node v, $\text{dist}(s, v) = \infty$ |
| Initialize $X = \{s\}$, |
| for $i = 2$ to $|V|$ do |
| (* Invariant: X contains the $i−1$ closest nodes to s *) |
| Among nodes in $V − X$, find the node v that is the ith closest to s |
| Update $\text{dist}(s, v)$ |
| $X = X \cup \{v\}$ |

How can we implement the step in the for loop?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i^{th} closest node to s - recall that X already has the $i - 1$ closest nodes.

□
Finding the i^{th} closest node repeatedly
Finding the i^{th} closest node

Corollary
The i^{th} closest node is adjacent to X.
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)

Initialize \(X = \emptyset, \; d'(s, s) = 0 \)

for \(i = 1 \) to \(|V|\) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)

(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)

\(\text{dist}(s, v) = d'(s, v) \)

\(X = X \cup \{v\} \)

for each node \(u \) in \(V - X \) do

\(d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \)
Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes *)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

$$d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$$
Algorithm

Initialize for each node \(v \): \(\text{dist}(s,v) = \infty \)
Initialize \(X = \emptyset \), \(\text{d}'(s,s) = 0 \)
for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i-1 \) closest nodes to \(s \) *)
(* Invariant: \(\text{d}'(s,u) \) is shortest path distance from \(u \) to \(s \)
 using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(\text{d}'(s,v) = \min_{u \in V - X} \text{d}'(s,u) \)
\(\text{dist}(s,v) = \text{d}'(s,v) \)
\(X = X \cup \{v\} \)
for each node \(u \) in \(V - X \) do

\(\text{d}'(s,u) = \min_{t \in X} \left(\text{dist}(s,t) + \ell(t,u) \right) \)

Running time:
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $d'(s, s) = 0$
for $i = 1$ to $|V|$ do
 (* Invariant: X contains the $i-1$ closest nodes to s *)
 (* Invariant: $d'(s, u)$ is shortest path distance from u to s
 using only X as intermediate nodes *)
 Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$
 $\text{dist}(s, v) = d'(s, v)$
 $X = X \cup \{v\}$
 for each node u in $V - X$ do
 $d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right)$

Running time: $O(n \cdot (n + m))$ time.

- n outer iterations. In each iteration, $d'(s, u)$ for each u by
 scanning all edges out of nodes in X; $O(m + n)$
 time/iteration.
Dijkstra’s algorithm
Example: Dijkstra algorithm in action
Improved Algorithm

- Main work is to compute the $d'(s, u)$ values in each iteration
- $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

\[
\begin{align*}
\text{Initialize for each node } v, & \quad \text{dist}(s, v) = d'(s, v) = \infty \\
\text{Initialize } X = \emptyset, & \quad d'(s, s) = 0 \\
\text{for } i = 1 \text{ to } |V| \text{ do} & \\
& \quad \text{// X contains the } i-1 \text{ closest nodes to } s, \text{ and the values of } d'(s, u) \text{ are current} \\
& \quad \text{Let } v \text{ be node realizing } d'(s, v) = \min_{u \in V - X} d'(s, u) \\
& \quad \text{dist}(s, v) = d'(s, v) \\
& \quad X = X \cup \{v\} \\
& \quad \text{Update } d'(s, u) \text{ for each } u \text{ in } V - X \text{ as follows:} \\
& \quad d'(s, u) = \min(d'(s, u), \text{dist}(s, v) + \ell(v, u)) \\
\end{align*}
\]

Running time: $O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- Updating $d'(s, u)$ after v is added takes $O(\deg(v))$ time so total work is $O(m)$ since a node enters X only once
- Finding v from $d'(s, u)$ values is $O(n)$ time
Improved Algorithm

• Main work is to compute the $d'(s, u)$ values in each iteration
• $d'(s, u)$ changes from iteration i to $i+1$ only because of the node v that is added to X in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$
Initialize $X = \emptyset$, $d'(s, s) = 0$
for $i = 1$ to $|V|$ do
 // X contains the $i-1$ closest nodes to s,
 // and the values of $d'(s, u)$ are current
 Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
 $\text{dist}(s, v) = d'(s, v)$
 $X = X \cup \{v\}$
 Update $d'(s, u)$ for each u in $V - X$ as follows:
 \[
 d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)
 \]

Running time:
$O(m + n^2)$ time.
Improved Algorithm

Initialize for each node v, $\text{dist}(s,v) = d'(s,v) = \infty$

Initialize $X = \emptyset$, $d'(s,s) = 0$

for $i = 1$ to $|V|$ do

// X contains the $i-1$ closest nodes to s,
// and the values of $d'(s,u)$ are current

Let v be node realizing $d'(s,v) = \min_{u \in V-X} d'(s,u)$

$\text{dist}(s,v) = d'(s,v)$

$X = X \cup \{v\}$

Update $d'(s,u)$ for each u in $V-X$ as follows:

$$d'(s,u) = \min \left(d'(s,u), \text{dist}(s,v) + \ell(v,u) \right)$$

Running time: $O(m + n^2)$ time.

- n outer iterations and in each iteration following steps
- updating $d'(s,u)$ after v is added takes $O(\text{deg}(v))$ time so total work is $O(m)$ since a node enters X only once
- Finding v from $d'(s,u)$ values is $O(n)$ time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of v

```plaintext
Initialize for each node $v$, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
    Let $v$ be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
    $X = X \cup \{v\}$
    for each $u$ in $\text{Adj}(v)$ do
        $\text{dist}(s, u) = \min\left(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)\right)$
```

Priority Queues to maintain dist values for faster running time
Dijkstra’s Algorithm

- eliminate \(d'(s, u)\) and let \(\text{dist}(s, u)\) maintain it
- update \(\text{dist}\) values after adding \(v\) by scanning edges out of \(v\)

\[
\begin{align*}
\text{Initialize for each node } v, & \quad \text{dist}(s, v) = \infty \\
\text{Initialize } X = \emptyset, & \quad \text{dist}(s, s) = 0 \\
\text{for } i = 1 \text{ to } |V| \text{ do} & \\
\text{Let } v \text{ be such that } \text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u) \\
X = X \cup \{v\} & \\
\text{for each } u \text{ in Adj}(v) \text{ do} & \\
\text{dist}(s, u) = \min\left(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)\right)
\end{align*}
\]

Priority Queues to maintain \(\text{dist}\) values for faster running time
- Using heaps and standard priority queues: \(O((m + n) \log n)\)
- Using Fibonacci heaps: \(O(m + n \log n)\).
Dijkstra using priority queues
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert($v, k(v)$)**: Add new element v with key $k(v)$ to S.
- **delete(v)**: Remove element v from S.
- **decreaseKey($v, k'(v)$)**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

$decreaseKey$ is implemented via $delete$ and $insert$.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**$(v, k(v))$**: Add new element v with key $k(v)$ to S.
- **delete**(v)**: Remove element v from S.
- **decreaseKey**$(v, k'(v))$**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**(v, $k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

decreaseKey is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[
Q \leftarrow \text{makePQ()}
\]
\[
\text{insert}(Q, (s, 0))
\]
\[
\text{for each node } u \neq s \text{ do}
\]
\[
\quad \text{insert}(Q, (u, \infty))
\]
\[
X \leftarrow \emptyset
\]
\[
\text{for } i = 1 \text{ to } |V| \text{ do}
\]
\[
\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q)
\]
\[
\quad X = X \cup \{v\}
\]
\[
\quad \text{for each } u \text{ in Adj}(v) \text{ do}
\]
\[
\quad \quad \text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))))
\]

Priority Queue operations:

\begin{itemize}
 \item $O(n)$ \textbf{insert} operations
 \item $O(n)$ \textbf{extractMin} operations
 \item $O(m)$ \textbf{decreaseKey} operations
\end{itemize}
Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

- `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ amortized time:
Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

- **extractMin, insert, delete, meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)
- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Fibonacci Heaps

- **extractMin, insert, delete, meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,
- Boost library implements both Fibonacci heaps and rank-pairing heaps.
Shortest path trees and variants
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```plaintext
Q = makePQ() 
insert(Q, (s, 0)) 
prev(s) ← null 
for each node u ≠ s do 
  insert(Q, (u, ∞)) 
  prev(u) ← null 
X = ∅ 
for i = 1 to |V| do 
  (v, dist(s, v)) = extractMin(Q) 
  X = X ∪ {v} 
  for each u in Adj(v) do 
    if dist(s, v) + ℓ(v, u) < dist(s, u) then 
      decreaseKey(Q, (u, dist(s, v) + ℓ(v, u))) 
      prev(u) = v
```
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```plaintext
Q = makePQ()
insert(Q, (s, 0))
prev(s) ← null
for each node u ≠ s do
    insert(Q, (u, ∞))
    prev(u) ← null

X = ∅
for i = 1 to |V| do
    (v, dist(s, v)) = extractMin(Q)
    X = X ∪ {v}
    for each u in Adj(v) do
        if (dist(s, v) + ℓ(v, u) < dist(s, u)) then
            decreaseKey(Q, (u, dist(s, v) + ℓ(v, u)))
            prev(u) = v
```
Lemma
The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

- The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)

- Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?

- In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in G^{rev}!