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Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are white and some are
blue. You are given two distinct vertices u and v and want to find a walk [u! v]
such that:

• a white edge must be taken after a red edge only.
• a blue edge must be taken after a white edge only.
• and a red edge may be taken after a blue edge only.
• must start on red edge

s v0 v1 t

Develop a algorithm to find a path with these edge constrints.
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Pre-lecture brain teaser

s v0 v1 t

s1 v10 v11 t1

s2 v20 v21 t2

s3 v30 v31 t3
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Shortest Paths with Negative Length
Edges



Why Dijkstra’s algorithm fails with
negative edges



Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems
Input: A directed graph G = (V, E) with arbitrary (including negative) edge lengths.
For edge e = (u, v), `(e) = `(u, v) is its length.
• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
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What are the distances computed by Dijkstra’s algorithm?
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The distance as computed by Di-
jkstra algorithm starting from s:
1. s = 0, x = 5, y = 1, z = 0.
2. s = 0, x = 1, y = 2, z = 5.
3. s = 0, x = 5, y = 1, z = 2.
4. IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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With negative length edges, Dijkstra’s algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm assumes that if s! v0 ! v1 ! v2 . . . ! vk
is a shortest path from s to vk then dist(s, vi)  dist(s, vi+1) for 0  i < k. Holds
true only for non-negative edge lengths. 6



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 ! v1 ! v2 ! . . . ! vk is a shortest path from s to vk then for 1  i < k:

• s = v0 ! v1 ! v2 ! . . . ! vi is a shortest path from s to vi

• False: dist(s, vi)  dist(s, vk) for 1  i < k. Holds true only for non-negative
edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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Why can’t we just re-normalize the
edge lengths!?



Instinctual thought

Why can’t we simply add a weight to each edge so that the shortest length is 0 (or
positive).
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Instinctual thought

Why can’t we simply add a weight to each edge so that the shortest length is 0 (or
positive).
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Instinctual thought

Why can’t we simply add a weight to each edge so that the shortest length is 0 (or
positive).
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Adding weights to edges penalizes paths with more edges.
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But wait! Things get worse: Negative
cycles



Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.
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What is the shortest path distance between s and t?

Reminder: Paths have to be simple...
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

• G has a negative length cycle C, and
• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

• undefined, that is �1, OR
• the length of a shortest simple path from s to t.
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

• G has a negative length cycle C, and
• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?
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Really bad new about negative edges, and shortest path...

Lemma
If there is an efficient algorithm to find a shortest simple s! t path in a graph
with negative edge lengths, then there is an efficient algorithm to find the longest
simple s! t path in a graph with positive edge lengths.

Finding the s! t longest path is difficult. NP-Hard!
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Restating problem of Shortest path
with negative edges



Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

• A path is a sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) 2 E
for 1  i  k� 1.

• A walk is a sequence of vertices v1, v2, . . . , vk such that (vi, vi+1) 2 E for
1  i  k� 1. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

• If there is a walk from u to v that contains negative length cycle then
dist(u, v) = �1

• Else there is a path with at most n� 1 edges whose length is equal to the
length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
12



Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge
e = (u, v), `(e) = `(u, v) is its length.

Questions:

• Given nodes s, t, either find a negative length cycle C that s can reach or find
a shortest path from s to t.

• Given node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

• Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths - In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection
in undirected graphs cannot be reduced to directed graphs by bi-directing each
undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are
different and significantly more involved than those for directed graphs. One
need to compute T-joins in the relevant graph. Pretty painful stuff.
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Bellman Ford Algorithm



Shortest path via number of hops



Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?
• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 ! v1 ! v2 ! . . . ! vk is a shortest path from s to vk then for 1  i < k:

• s = v0 ! v1 ! v2 ! . . . ! vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v,n� 1). Recursion for d(v, k):

d(v, k) = min

8
<

:
minu2V(d(u, k� 1) + `(u, v)).
d(v, k� 1)

Base case: d(s, 0) = 0 and d(v, 0) = 1 for all v 6= s.

16
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The Bellman-Ford Algorithm



Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u 2 V do
d(u, 0) 1

d(s, 0) 0

for k = 1 to n� 1 do
for each v 2 V do

d(v, k) d(v, k� 1)
for each edge (u, v) 2 in(v) do

d(v, k) = min{d(v, k),d(u, k� 1) + `(u, v)}

for each v 2 V do
dist(s, v) d(v,n� 1)

Running time: O(n(n+m)) Space: O(m+ n2) (Space can be reduced to O(m+ n)).
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Bellman-Ford Algorithm: Cleaner version

for each u 2 V do
d(u) 1

d(s) 0

for k = 1 to n� 1 do
for each v 2 V do

for each edge (u, v) 2 in(v) do
d(v) = min{d(v),d(u) + `(u, v)}

for each v 2 V do
dist(s, v) d(v)

Running time: O(mn) Space: O(m+ n)

Do we need the in(V) list?
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Bellman-Ford Algorithm: Cleaner version
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Bellman-Ford: Detecting negative
cycles



Negative cycles

What happens if we run this on a graph with negative cycles?
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Negative cycles

What happens if we run this on a graph with negative cycles?
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Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s =) 8v:
d(v,n) = d(v,n� 1).

Also, d(v,n� 1) is the length of the shortest path between s and v.

Put together are the following:

Lemma
G has a negative length cycle reachable from s () there is some node v such
that d(v,n) < d(v,n� 1).

22



Bellman-Ford: Negative Cycle Detection - final version

for each u 2 V do
d(u) 1

d(s) 0

for k = 1 to n� 1 do
for each v 2 V do

for each edge (u, v) 2 in(v) do
d(v) = min{d(v),d(u) + `(u, v)}

(* One more iteration to check if distances change *)
for each v 2 V do

for each edge (u, v) 2 in(v) do
if (d(v) > d(u) + `(u, v))

Output ``Negative Cycle''

for each v 2 V do
dist(s, v) d(v) 23



Variants on Bellman-Ford



Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

• For each v the d(v) can only get smaller as algorithm proceeds.
• If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + `(u, v) and we update d(v) = d(u) + `(u, v). That is, we found a
shorter path to v through u.

• For each v have a prev(v) pointer and update it to point to u if v finds a
shorter path via u.

• At end of algorithm prev(v) pointers give a shortest path tree oriented
towards the source s.
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Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length
cycle?

• Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may negative cycles not reachable from s.

• Run Bellman-Ford |V| times, once from each node u?
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Negative Cycle Detection

• Add a new node s0 and connect it to all nodes of G with zero length edges.
Bellman-Ford from s0 will fill find a negative length cycle if there is one.

• Negative cycle detection can be done with one Bellman-Ford invocation.
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Shortest Paths in a DAG

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V, E) with arbitrary (including negative)

edge lengths. For edge e = (u, v), `(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges

• Can order nodes using topological sort
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Algorithm for DAGs

• Want to find shortest paths from s. Ignore nodes not reachable from s.
• Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

• shortest path from s to vi cannot use any node from vi+1, . . . , vn
• can find shortest paths in topological sort order.
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Shortest Paths for DAGs - Example

a b c

d e

f g

h

5 -4 -1

23

-4

2

a b c d e f g h

5

-4

-1

2

3

-4

2

29



Shortest Paths for DAGs - Example

a b c

d e

f g

h

5 -4 -1

23

-4

2

0 1 1 5 �4 8 �2 �8

5

-4

-1

2

3

-4

2

29



Algorithm for DAGs

for i = 1 to n do
d(s, vi) =1

d(s, s) = 0

for i = 1 to n� 1 do
for each edge (vi, vj) in Adj(vi) do

d(s, vj) = min{d(s, vj),d(s, vi) + `(vi, vj)}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m+ n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.
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Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or

costs). For edge e = (u, v), `(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

31



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths. For

edge e = (u, v), `(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m+ n) log n) with heaps and O(m+ n log n) with advanced priority
queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For

edge e = (u, v), `(e) = `(u, v) is its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths. O(nm log n) with heaps and O(nm+ n2 log n) using
advanced priority queues.

• Arbitrary edge lengths: O(n2m).
⇥
�
n4

�
if m = ⌦

�
n2
�
.

Can we do better?
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All Pairs Shortest Paths: A recursive
solution



All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn
• dist(i, j, k): length of shortest walk from vi to vj among all walks in which the
largest index of an intermediate node is at most k (could be �1 if there is a
negative length cycle).
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For the following graph, dist(i, j, 2) is...
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k � 1) dist(k, j, k � 1)

dist(i, j, k � 1)

dist(i, j, k) = min

8
<

:
dist(i, j, k� 1)
dist(i, k, k� 1) + dist(k, j, k� 1)

Base case: dist(i, j, 0) = `(i, j) if (i, j) 2 E, otherwise1

Correctness: If i! j shortest walk goes through k then k occurs only once on the
path — otherwise there is a negative length cycle.
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All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k� 1) < 0 then G has a negative
length cycle containing k and dist(i, j, k) = �1.

Recursion below is valid only if dist(k, k, k� 1) � 0. We can detect this during the
algorithm or wait till the end.

dist(i, j, k) = min

8
<

:
dist(i, j, k� 1)
dist(i, k, k� 1) + dist(k, j, k� 1)
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i, j, k) = min

8
<

:
d(i, j, k� 1)
d(i, k, k� 1) + d(k, j, k� 1)

for i = 1 to n do
for j = 1 to n do

d(i, j, 0) = `(i, j)
(* `(i, j) =1 if (i, j) /2 E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i, j, k) = min

8
<

:
d(i, j, k� 1),
d(i, k, k� 1) + d(k, j, k� 1)

for i = 1 to n do
if (dist(i, i,n) < 0) then

Output 9 negative cycle in G

Running Time: ⇥(n3). Space: ⇥(n3).
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

• Create a n⇥ n array Next that stores the next vertex on shortest path for each
pair of vertices

• With array Next, for any pair of given vertices i, j can compute a shortest path
in O(n) time.
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Floyd-Warshall Algorithm - Finding the Paths

for i = 1 to n do
for j = 1 to n do

d(i, j, 0) = `(i, j)
(* `(i, j) =1 if (i, j) not edge, 0 if i = j *)

Next(i, j) = �1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i, j, k� 1) > d(i, k, k� 1) + d(k, j, k� 1)) then
d(i, j, k) = d(i, k, k� 1) + d(k, j, k� 1)
Next(i, j) = k

for i = 1 to n do
if (d(i, i,n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i, j describe an O(n) algorithm to
find a i-j shortest path.
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Summary of shortest path algorithms



Summary of results on shortest paths

Single source
No negative edges Dijkstra O(n log n+m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths
No negative edges n * Dijkstra O

�
n2 log n+ nm

�

No negative cycles n * Bellman Ford O
�
n2m

�
= O

�
n4

�

No negative cycles Johnson’s 1 O
�
nm+ n2 log n

�

No negative cycles Floyd-Warshall O
�
n3
�

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles, and doing all
shortest paths, works by computing a potential function using Bellman-Ford and
then doing Dijkstra. It is mentioned for the sake of completeness, but it outside
the scope of the class.

(2): https://resources.mpi-inf.mpg.de/departments/d1/teaching/
ss12/AdvancedGraphAlgorithms/Slides14.pdf
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