

Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are white and some are
blue. You are given two distinct vertices u and v and want to find a walk [u — V]
such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge

OS=0OS=0S=0

ECE-374-B: Lecture 17 - Bellman-Ford and Dynamic
Programming on Graphs

Instructor: Nickvash Kani
October 28, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are white and some are
blue. You are given two distinct vertices «and < and want to find a walk [u — V]
such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge

OS=0OS=0S=0

Pre-lecture brain teaser

()
)
()
©

G

ofe
KO _6
e

Shortest Paths with Negative Length
Edges

Why Dijkstra’s algorithm fails with
negative edges

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems
Input: A directed graph G = (V, E) with arbitrary (including negative) edge lengths.

For edge e = (u, V), £(e) = ¢(u, V) Is its length.
- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

What are the distances computed by Dijkstra’s algorithm?

= W N

The distance as computed by Di-
jkstra algorithm starting from s:

1.

s=0,x=5y=12z=0.
s=0,x=1y=2,z=05.
s=0,x=5y=12z=2.
IDK.

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

o5

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

>?<th

L& Shortest pa

False assumption: Dijkstra’s algorithm assumes that if s — vg — v4 — Vo ... — Vv,
IS a shortest path from s to v, then dist(s, v;) < dist(s, vi;q) for 0 <1 < k. Holds
true only for non-negative edge lengths. 5

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;

+ False: dist(s, v;) < dist(s, vg) for1 < i < R Holds true only for non-negative
edge lengths.

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;

+ False: dist(s, v;) < dist(s, vg) for1 < i < R Holds true only for non-negative
edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.

Why can’t we just re-normalize the
edge lengths!?

Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or

positive).
-3
5 1
10
-2

Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or
positive).
-3 _ 0

S 1

2
O

D

Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or

posmve
0
8 4
13
g 1

0 0

Shortest Path: s —a —c—t Shortest Path: s = b —t

Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or

posmve
0
8 4
13
g 1

0 0

Shortest Path: s —a —c—t Shortest Path: s = b —t

But wait! Things get worse: Negative
cycles

Negative Length Cycles

Definition
A cycle C Is a negative length cycle if the sum of the edge lengths of C is negative.

Negative Length Cycles

Definition
A cycle C Is a negative length cycle if the sum of the edge lengths of C is negative.

Negative Length Cycles

Definition . ' | .
A cycle C Is a negative length cycle If the sum of the edge lengths of C Is negative.

What is the shortest path distance between s and t?

Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and

- s can reach C and C can reach t.

10

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s,t. Suppose

- G has a negative length cycle C, and

- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undeflined thatdSmmoc-QR.
t the length of a shortest simple path from s to t. 7

C= Ratly lot

10

Really bad new about negative edges, and shortest path...

Lemma
If there is an efficient algorithm to find a shortest simple s — t path in a graph

with negative edge lengths, then there is an efficient algorithm to find the longest
simple s — t path in a graph with positive edge lengths.

Finding the s — t longest path is difficult. NP-HARD!

1

Restating problem of Shortest path
with negative edges

Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

- A path is a sequence of distinct vertices vq, vy, ..., Vv, such that (vj,vj4) € E
fortr<i<kr-—1.
- A walk Is a sequence of vertices vq, Vo, ..., Vv, such that (v;,vjq) € E for

1 <1< k-1 Vertices are allowed to repeat.
Define dist(u, v) to be the length of a shortest walk from u to v.
- If there i1s a walk from u to v that contains negative length cycle then
dist(u,v) = —¢
- Else there is a path with at most n — 1 edges whose length is equal to the
length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
12

Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge

e=(u,v), f(e) =4(u,v) is its length.

Questions:

- Glven nodes s, t, either find a negative length cycle C that s can reach or find
a shortest path from s to t.

- Glven node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

- Check if G has a negative length cycle or not.

13

Shortest Paths with Negative Edge Lengths - In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection
In undirected graphs cannot be reduced to directed graphs by bi-directing each
undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are
different and significantly more involved than those for directed graphs. One
need to compute T-joins in the relevant graph. Pretty painful stuff.

14

Bellman Ford Algorithm

Shortest path via number of hops

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems? é

15

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

Lemma _ ' .
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for 1 < < k:

- S=Vg— Vi — V» = ... —V; IS ashortest path from s to v;

H— > (D——D =CD— W

15

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?
Lemma

Let G be a directed graph with arbitrary edge lengths. If
S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for 1 < < k:

- S=Vg— Vi — V» = ... —V; IS ashortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

15

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

s d(v, k). shortest walk length from s to v using at most k edges.

16

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1).

16

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1). Recursion for d(v, R):

16

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges. v a5
“

. | | A o, oA~
Note: dist(s,v) = d(v,n — 1). Recursion for d(v, R):
dist(s) = oy = (v.) 7 are 0,\»5’»%
k APE min{minue\/(d(u,/?1)+€(u,v)).e"§’d_ PP
o f.# ’ d(v,k = 1) §Aar<t'-e,z_‘t—0¢,,£tv SO, e
: ’ 3 o Vhen UGy Ous M

§ B ase: d(s,0) = 0and d(v,0) = oo forall v # s, a}&
J

16

round s‘ a‘ b ‘c‘ d ‘e ‘f‘

17

round | s| a | bl c| d]| e]| f

17

17

round | s| a | b | c|d|e]|f
0 Oloo |0 |00 |00 | 00| 0
1 0] 6 @ 3 | oo | 00| o
2 0| 6 3|14 || 9

6+ . i

11

O OAN NG ONNENG.©

S

Oloo | oo |l oo | 0| co | o

round

17

11

O OAN NG ONNENG.©

S

Oloo | oo |l oo | 0| co | o

round

17

11

O ONN NG O NN ENG.¢

S

Oloo|loo |l oo |loo | oo | o0

round

17

11

O ONN NG O NN ENG.¢

S

Oloo|loo |l oo |loo | oo | o0

round

17

11

O OAN NG ONNENG.©

S

Oloo | oo |l oo | 0| co | o

round

17

The Bellman-Ford Algorithm

Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

18

Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each ueV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: 0(1\ (M- "“)7 "

Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n 4+ m)) 9

Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each ueV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) < d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u,k — 1) + £(u,v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m)) Space: 5

Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n 4+ m)) Space: O(m + n?) (Space can be reduced to O(m + n)). o

Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do
for each veV do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + ¢(u,v)}

for each veV do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n)

19

Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do

for each ve Vv do (Jgﬁ‘
for each edge (u,v) €in(v) do ' %9

d(v) = min{d(v),d(u) + ¢(u,v)}

for each veV do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n) Do we need the in(V) list?

19

Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do
for each edge (u,v) € G do
d(v) = min{d(v), d(u) + {(u, v)}

for each veVv do
dist(s, V) < d(v)

Running time: O(mn) Space: O(n)

20

Bellman-Ford: Detecting negative
cycles

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s|al|b

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

O | 0| o0| o

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0O | 0|
1 0] 1

3

3

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s| a | b

0 0] oo | oo

1 0] 1 | o0

1 - 2 o110

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b
0 0O | oo | o0
1 0 1 | ©
1 - 2 0110
3 -1 1110
—)

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round

Ol |8 |
o|lo|lo|¥ |8 |

S~ OWI N -
[
[N

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b

0 0 | oo | o0

1 0 1 | ©

1 - 2 0110
3 -1 1110

b = @ 4 |-1]10 |0
5 -11 0 | -1

21

Negative cycles can not hide

Lemma restated _
If G does not has a negative length cycle reachable from s — Vv:

d(v,n) =d(v,n—1).
Also, d(v,n — 1) is the length of the shortest path between s and v.

Put together are the following:

Lemma
G has a negative length cycle reachable from s <= there is some node v such

that d(v,n) < d(v,n —1).

22

Bellman-Ford: Negative Cycle Detection - final version

for each ueVv do
d(u) < oo
d(s) < O

for k=1 to n—1 do
for each veV do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}
(* One more iteration to check if distances change =)
for each veV do
for each edge (u,v) cin(v) do
if (d(v) > d(u) +£(u,V))
Output ~ Negative Cycle'’

for each veV do
dist(s, V) < d(v)

23

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

+ For each v the d(v) can only get smaller as algorithm proceeds.

- If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + £(u,v) and we update d(v) = d(u) + ¢(u, v). That is, we found a
shorter path to v through u.

+ For each v have a prev(v) pointer and update it to point to u if v finds a
shorter path via u.

- At end of algorithm prev(v) pointers give a shortest path tree oriented
towards the source s.

24

Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length
cycle?

25

Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length

cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may negative cycles not reachable from s.

+ Run Bellman-Ford |V| times, once from each node u?

25

Negative Cycle Detection

- Add a new node s’ and connect it to all nodes of G with zero length edges.
Bellman-Ford from s” will fill find a negative length cycle if there is one.

- Negative cycle detection can be done with one Bellman-Ford invocation.

26

Shortest Paths in DAGSs

Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u,Vv), £(e) = ¢(u, V) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

27

Shortest Paths in a

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u,Vv), £(e) = ¢(u, V) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGS

- No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges
- Can order nodes using topological sort

27

Algorithm for S

- Want to find shortest paths from s. Ignore nodes not reachable from s.

- Lets =wvq, Vo, Vi,...,Vy be a topological sort of G

28

Algorithm for S

- Want to find shortest paths from s. Ignore nodes not reachable from s.

- Lets =wvq, Vo, Vi,...,Vy be a topological sort of G

Observation:

- shortest path from s to v; cannot use any node from Vi q,...,Vy

- can find shortest paths in topological sort order.

28

Shortest Paths for DAGs - Example

Shortest Paths for DAGs - Example

Algorithm for S

for i=1 to n do
d(s,v;) = oo
d(s,s)=0

for i=1 to n—1 do
for each edge (v,v) in Adj(v;) do
d(S, V/) — min{d(S,Vj), d(57 Vf) + K(V,', V/)}

return d(s,-) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

30

All Pairs Shortest Paths

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

31

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

32

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m 4+ n)logn) with heaps and O(m + nlogn) with advanced priority
queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

32

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

33

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlog n) with heaps and O(nhm + n? log n) using
advanced priority queues.
- Arbitrary edge lengths: O(n?m).
o (n*) if m=Q(n?).
33

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlogn) with heaps and O(nm + n?log n) using
advanced priority queues.
- Arbitrary edge lengths: O(n?m).
o (n*) if m=Q(n?).

Can we do better? 33

All Pairs Shortest Paths: A recursive
solution

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j,0) = 1OO
dist(i,j,1) = @
dist(i,j,2) = &
dist(i,},3) = &,

34

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) =
dist(i,j,2) =
dist(i,j,3) =

34

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i,j,3) =

34

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) =

34

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5

34

For the following graph, dist(i, }, 2) is...

ok W -
—_
—_

35

All-Pairs: Recursion on index of intermediate nodes

dist(i, k, k — 1) dist(k,j,k —1)

dist(4, j, k — 1)

dist(i,j,k — 1)

dist(i,j, R) = min o . :
dist(i, R,k — 1) + dist(k,j, kR — 1)

Base case: dist(1,j,0) = £(1,)) If (1,)) € E, otherwise oo

Correctness: If i — j shortest walk goes through k then k occurs only once on the 36

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(kR,k, kR — 1) < 0 then G has a negative
length cycle containing k and dist(i,}, R) = —oc.

Recursion below is valid only if dist(k, R,k — 1) > 0. We can detect this during the
algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j, R) = min o , :
dist(i,kR, R — 1) + dist(R,j, kR — 1)

37

Floyd-Warshall algorithm

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(’a]7l? T 1)

d(l,j, R) = min _ _
d(lal?al? o 1) + d(l?7j7[? o 1)

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,R—1),
d(lv l?vl?_ 1) + d(kvjal? - 1)

38

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

Running Time:

d(’a]7l? T 1)

d(l,j, R) = min _ _
d(lal?al? o 1) + d(l?7j7[? o 1)

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,R—1),
d(lv l?vl?_ 1) + d(kvjal? - 1)

38

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(’a]7l? T 1)
d(i, k,k —1) + d(k,j, k — 1)

d(i,j,R) = min {

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,k —1),
d(i, R,k — 1) + d(k,j, k — 1)

Running Time: ©(n3). Space: ©(n?). %

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

39

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n x n array Next that stores the next vertex on shortest path for each
pair of vertices

- With array Next, for any pair of given vertices I, can compute a shortest path
iIn O(n) time.

39

Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = £(i,))
(* £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,j) = —1

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(k,j,k—1)) then
d(i,j,R) =d(i,R, R — 1) +d(k,j, R —1)
Next(i,j) = R
for i=1 to n do
if (d(i,i,n) <0) then
Output that there 1s a negative length cycle in G

Exercise: Given Next array and any two vertices i,j describe an O(n) algorithm to
find a i-) shortest path.

40

Summary of shortest path algorithms

Summary of results on shortest paths

Single source
No negative edges Dijkstra O(nlogn + m)
Edge lengths can be negative | Bellman Ford | O(nhm)

All Pairs Shortest Paths

No negative edges | n * Dijkstra O(n*logn + nm)
No negative cycles | n * Bellman Ford O(n’m) = O(n*)
No negative cycles | Johnson's ' O(nm + n*logn)
No negative cycles | Floyd-Warshall 0(n?)

Unweighted Matrix multiplication 2 | O(n%38), O(n*>?)

41

Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles, and doing all
shortest paths, works by computing a potential function using Bellman-Ford and
then doing Dijkstra. It is mentioned for the sake of completeness, but it outside
the scope of the class.

(2): https://resources.mpi-inf.mpg.de/departments/d1l/teaching/
ss12/AdvancedGraphAlgorithms/Slides14.pdf

42

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

Fin

