


Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are white and some are
blue. You are given two distinct vertices u and v and want to find a walk [u — V]
such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge
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You have a graph G(V,E). Some of the edges are red, some are white and some are
blue. You are given two distinct vertices «and < and want to find a walk [u — V]
such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge
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Shortest Paths with Negative Length
Edges



Why Dijkstra’s algorithm fails with
negative edges



Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems
Input: A directed graph G = (V, E) with arbitrary (including negative) edge lengths.

For edge e = (u, V), £(e) = ¢(u, V) Is its length.
- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.



What are the distances computed by Dijkstra’s algorithm?

= W N

The distance as computed by Di-
jkstra algorithm starting from s:

1.

s=0,x=5y=12z=0.
s=0,x=1y=2,z=05.
s=0,x=5y=12z=2.
IDK.



Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

o5
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

>?<th

L& Shortest pa

False assumption: Dijkstra’s algorithm assumes that if s — vg — v4 — Vo ... — Vv,
IS a shortest path from s to v, then dist(s, v;) < dist(s, vi;q) for 0 <1 < k. Holds
true only for non-negative edge lengths. 5



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;

+ False: dist(s, v;) < dist(s, vg) for1 < i < R Holds true only for non-negative
edge lengths.



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for1 < i < k:

- S=Vg— Vi — V» — ... — V; IS ashortest path from s to v;

+ False: dist(s, v;) < dist(s, vg) for1 < i < R Holds true only for non-negative
edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.



Why can’t we just re-normalize the
edge lengths!?




Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or

positive).
-3
5 1
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Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or
positive).
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Instinctual thought

Why can’'t we simply add a weight to each edge so that the shortest length is 0 (or

posmve
0
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0 0

Shortest Path: s —a —c—t Shortest Path: s = b —t
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But wait! Things get worse: Negative
cycles




Negative Length Cycles

Definition
A cycle C Is a negative length cycle if the sum of the edge lengths of C is negative.




Negative Length Cycles

Definition
A cycle C Is a negative length cycle if the sum of the edge lengths of C is negative.




Negative Length Cycles

Definition . ' | .
A cycle C Is a negative length cycle If the sum of the edge lengths of C Is negative.

What is the shortest path distance between s and t?

Reminder: Paths have to be simple...



Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and

- s can reach C and C can reach t.

10



Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s,t. Suppose

- G has a negative length cycle C, and

- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undeflined thatdSmmoc-QR.
t the length of a shortest simple path from s to t. 7

C= Ratly lot

10



Really bad new about negative edges, and shortest path...

Lemma
If there is an efficient algorithm to find a shortest simple s — t path in a graph

with negative edge lengths, then there is an efficient algorithm to find the longest
simple s — t path in a graph with positive edge lengths.

Finding the s — t longest path is difficult. NP-HARD!

1



Restating problem of Shortest path
with negative edges




Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

- A path is a sequence of distinct vertices vq, vy, ..., Vv, such that (vj,vj4) € E
fortr<i<kr-—1.
- A walk Is a sequence of vertices vq, Vo, ..., Vv, such that (v;,vjq) € E for

1 <1< k-1 Vertices are allowed to repeat.
Define dist(u, v) to be the length of a shortest walk from u to v.
- If there i1s a walk from u to v that contains negative length cycle then
dist(u,v) = —¢
- Else there is a path with at most n — 1 edges whose length is equal to the
length of a shortest walk and dist(u, v) is finite

Helpful to think about walks
12



Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge

e=(u,v), f(e) =4(u,v) is its length.

Questions:

- Glven nodes s, t, either find a negative length cycle C that s can reach or find
a shortest path from s to t.

- Glven node s, either find a negative length cycle C that s can reach or find
shortest path distances from s to all reachable nodes.

- Check if G has a negative length cycle or not.

13



Shortest Paths with Negative Edge Lengths - In Undirected Graphs

Note: With negative lengths, shortest path problems and negative cycle detection
In undirected graphs cannot be reduced to directed graphs by bi-directing each
undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are
different and significantly more involved than those for directed graphs. One
need to compute T-joins in the relevant graph. Pretty painful stuff.

14



Bellman Ford Algorithm




Shortest path via number of hops




Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems? é

15



Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

Lemma _ ' .
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for 1 < < k:

- S=Vg— Vi — V» = ... —V; IS ashortest path from s to v;

H— > (D——D =CD— W

15



Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?
Lemma

Let G be a directed graph with arbitrary edge lengths. If
S=Vg— Vi — Vo, —...— VIS ashortest path from s to vy, then for 1 < < k:

- S=Vg— Vi — V» = ... —V; IS ashortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

15



Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

s d(v, k). shortest walk length from s to v using at most k edges.

16



Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1).
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1). Recursion for d(v, R):
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v, k). shortest walk length from s to v using at most k edges. v a5
“

. | | A o, oA~
Note: dist(s,v) = d(v,n — 1). Recursion for d(v, R):
dist(s ) = oy = (v. ) 7 are 0,\»5’»%
k APE min{minue\/(d(u,/?1)+€(u,v)).e"§’d_ PP
o f.# ’ d(v,k = 1) §Aar<t'-e,z_‘t—0¢,,£tv SO, e
: ’ 3 o Vhen UGy Ous M

§ B ase: d(s,0) = 0and d(v,0) = oo forall v # s, a}&
J
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round s‘ a‘ b ‘c‘ d ‘e ‘f‘
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The Bellman-Ford Algorithm




Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

18



Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each ueV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: 0(1\ (M- "“)7 "




Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n 4+ m)) 9



Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each ueV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) < d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u,k — 1) + £(u,v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m)) Space: 5



Bellman-Ford Algorithm

Create in(G) 1list from adj(G)

for each u eV do
d(u,0) < oo
d(s, 0) + 0

for k=1 to n—1 do
for each veV do
d(v, k) + d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, R),d(u,k — 1) + £(u, v)}

for each veV do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n 4+ m)) Space: O(m + n?) (Space can be reduced to O(m + n)). o



Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do
for each veV do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + ¢(u,v)}

for each veV do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n)

19



Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do

for each ve Vv do (Jgﬁ‘
for each edge (u,v) €in(v) do ' %9

d(v) = min{d(v),d(u) + ¢(u,v)}

for each veV do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n) Do we need the in(V) list?
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Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + oo
d(s) « 0

for k=1 to n—1 do
for each edge (u,v) € G do
d(v) = min{d(v), d(u) + {(u, v)}

for each veVv do
dist(s, V) < d(v)

Running time: O(mn) Space: O(n)

20



Bellman-Ford: Detecting negative
cycles




Negative cycles

What happens if we run this on a graph with negative cycles?

round | s|al|b
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

O | 0| o0| o
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0O | 0|
1 0] 1

3

3
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s| a | b

0 0] oo | oo

1 0] 1 | o0

1 - 2 o110
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b
0 0O | oo | o0
1 0 1 | ©
1 - 2 0110
3 -1 1110
—)
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Negative cycles

What happens if we run this on a graph with negative cycles?

round

Ol |8 |
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b

0 0 | oo | o0

1 0 1 | ©

1 - 2 0110
3 -1 1110

b = @ 4 |-1]10 |0
5 -11 0 | -1

21



Negative cycles can not hide

Lemma restated _
If G does not has a negative length cycle reachable from s — Vv:

d(v,n) =d(v,n—1).
Also, d(v,n — 1) is the length of the shortest path between s and v.

Put together are the following:

Lemma
G has a negative length cycle reachable from s <= there is some node v such

that d(v,n) < d(v,n —1).

22



Bellman-Ford: Negative Cycle Detection - final version

for each ueVv do
d(u) < oo
d(s) < O

for k=1 to n—1 do
for each veV do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}
(* One more iteration to check if distances change =)
for each veV do
for each edge (u,v) cin(v) do
if (d(v) > d(u) +£(u,V))
Output ~ Negative Cycle'’

for each veV do
dist(s, V) < d(v)

23




Variants on Bellman-Ford




Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

+ For each v the d(v) can only get smaller as algorithm proceeds.

- If d(v) becomes smaller it is because we found a vertex u such that
d(v) > d(u) + £(u,v) and we update d(v) = d(u) + ¢(u, v). That is, we found a
shorter path to v through u.

+ For each v have a prev(v) pointer and update it to point to u if v finds a
shorter path via u.

- At end of algorithm prev(v) pointers give a shortest path tree oriented
towards the source s.

24



Negative Cycle Detection

Negative Cycle Detection

Given directed graph G with arbitrary edge lengths, does it have a negative length
cycle?

25



Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it have a negative length

cycle?

- Bellman-Ford checks whether there is a negative cycle C that is reachable
from a specific vertex s. There may negative cycles not reachable from s.

+ Run Bellman-Ford |V| times, once from each node u?

25



Negative Cycle Detection

- Add a new node s’ and connect it to all nodes of G with zero length edges.
Bellman-Ford from s” will fill find a negative length cycle if there is one.

- Negative cycle detection can be done with one Bellman-Ford invocation.

26



Shortest Paths in DAGSs




Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u,Vv), £(e) = ¢(u, V) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

27



Shortest Paths in a

Single-Source Shortest Path Problems
Input A directed acyclic graph G = (V, E) with arbitrary (including negative)
edge lengths. For edge e = (u,Vv), £(e) = ¢(u, V) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGS

- No cycles and hence no negative length cycles! Hence can find shortest
paths even for negative length edges
- Can order nodes using topological sort

27



Algorithm for S

- Want to find shortest paths from s. Ignore nodes not reachable from s.

- Lets =wvq, Vo, Vi,...,Vy be a topological sort of G

28



Algorithm for S

- Want to find shortest paths from s. Ignore nodes not reachable from s.

- Lets =wvq, Vo, Vi,...,Vy be a topological sort of G

Observation:

- shortest path from s to v; cannot use any node from Vi q,...,Vy

- can find shortest paths in topological sort order.

28



Shortest Paths for DAGs - Example




Shortest Paths for DAGs - Example




Algorithm for S

for i=1 to n do
d(s,v;) = oo
d(s,s)=0

for i=1 to n—1 do
for each edge (v,v) in Adj(v;) do
d(S, V/) — min{d(S,Vj), d(57 Vf) + K(V,', V/)}

return d(s,-) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and
hence can find longest paths in a DAG.

30



All Pairs Shortest Paths




Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with edge lengths (or
costs). For edge e = (u,Vv), £(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.
- Glven node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

31



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

32



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Glven nodes s, t find shortest path from s to t.

- Glven node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time:
O((m 4+ n)logn) with heaps and O(m + nlogn) with advanced priority
queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

32



All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

33



All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlog n) with heaps and O(nhm + n? log n) using
advanced priority queues.
- Arbitrary edge lengths: O(n?m).
o (n*) if m=Q(n?).
33



All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V, E) with edge lengths. For
edge e = (u,v), ¢(e) = ¢(u,v) is its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlogn) with heaps and O(nm + n?log n) using
advanced priority queues.
- Arbitrary edge lengths: O(n?m).
o (n*) if m=Q(n?).

Can we do better? 33



All Pairs Shortest Paths: A recursive
solution




All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j,0) = 1OO
dist(i,j,1) = @
dist(i,j,2) = &
dist(i,},3) = &,

34



All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) =
dist(i,j,2) =
dist(i,j,3) =
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All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i,j,3) =
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All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) =

34



All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as vq, Vo, ..., Vp

- dist(l,], k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oc if there is a
negative length cycle).

dist(i,j, 0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5

34



For the following graph, dist(i, }, 2) is...

ok W -
—_
—_

35



All-Pairs: Recursion on index of intermediate nodes

dist(i, k, k — 1) dist(k,j,k —1)

dist(4, j, k — 1)

dist(i,j,k — 1)

dist(i,j, R) = min o . :
dist(i, R,k — 1) + dist(k,j, kR — 1)

Base case: dist(1,j,0) = £(1,)) If (1,)) € E, otherwise oo

Correctness: If i — j shortest walk goes through k then k occurs only once on the 36



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(kR,k, kR — 1) < 0 then G has a negative
length cycle containing k and dist(i,}, R) = —oc.

Recursion below is valid only if dist(k, R,k — 1) > 0. We can detect this during the
algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j, R) = min o , :
dist(i,kR, R — 1) + dist(R,j, kR — 1)
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Floyd-Warshall algorithm




Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(’a]7l? T 1)

d(l,j, R) = min _ _
d(lal?al? o 1) + d(l?7j7[? o 1)

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,R—1),
d(lv l?vl?_ 1) + d(kvjal? - 1)
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

Running Time:

d(’a]7l? T 1)

d(l,j, R) = min _ _
d(lal?al? o 1) + d(l?7j7[? o 1)

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,R—1),
d(lv l?vl?_ 1) + d(kvjal? - 1)
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(’a]7l? T 1)
d(i, k,k —1) + d(k,j, k — 1)

d(i,j,R) = min {

for i=1 to n do
for j=1 to n do
d(i,j,0) =£(i,))
(x £(i,j)) =00 if (i,j)¢E, O if i=] *)

for k=1 to n do
for i=1 to n do
for j=1 to n do

d(l,j,R) = min {

for i=1 to n do
if (dist(i,i,n) < 0) then
Output 3 negative cycle 1in G

d(i,j,k —1),
d(i, R,k — 1) + d(k,j, k — 1)

Running Time: ©(n3). Space: ©(n?). %



Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n x n array Next that stores the next vertex on shortest path for each
pair of vertices

- With array Next, for any pair of given vertices I, can compute a shortest path
iIn O(n) time.
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Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = £(i,))
(* £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,j) = —1

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(k,j,k—1)) then
d(i,j,R) =d(i,R, R — 1) +d(k,j, R —1)
Next(i,j) = R
for i=1 to n do
if (d(i,i,n) <0) then
Output that there 1s a negative length cycle in G

Exercise: Given Next array and any two vertices i,j describe an O(n) algorithm to
find a i-) shortest path.
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Summary of shortest path algorithms




Summary of results on shortest paths

Single source
No negative edges Dijkstra O(nlogn + m)
Edge lengths can be negative | Bellman Ford | O(nhm)

All Pairs Shortest Paths

No negative edges | n * Dijkstra O(n*logn + nm)
No negative cycles | n * Bellman Ford O(n’m) = O(n*)
No negative cycles | Johnson's ' O(nm + n*logn)
No negative cycles | Floyd-Warshall 0(n?)

Unweighted Matrix multiplication 2 | O(n%38), O(n*>?)
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative cycles, and doing all
shortest paths, works by computing a potential function using Bellman-Ford and
then doing Dijkstra. It is mentioned for the sake of completeness, but it outside
the scope of the class.

(2): https://resources.mpi-inf.mpg.de/departments/d1l/teaching/
ss12/AdvancedGraphAlgorithms/Slides14.pdf
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