Given a directed graph \((G)\), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G\).
Pre-lecture brain teaser

Given a directed graph \((G)\), propose an algorithm that finds a vertex that is contained within the source SCC of the meta-graph of \(G\).
Breadth First Search
Breadth First Search (BFS)

Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a **queue** data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex \(s \) (the start vertex).

As such...

- **DFS** good for exploring graph structure
- **BFS** good for exploring **distances**
Queues

A queue is a list of elements which supports the operations:

- **enqueue**: Adds an element to the end of the list
- **dequeue**: Removes an element from the front of the list

Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are picked in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

```
BFS(s)
    Mark all vertices as unvisited
    Initialize search tree $T$ to be empty
    Mark vertex $s$ as visited
    set $Q$ to be the empty queue
    enqueue$(Q, s)$
    while $Q$ is nonempty do
        $u =$ dequeue$(Q)$
        for each vertex $v \in \text{Adj}(u)$
            if $v$ is not visited then
                add edge $(u,v)$ to $T$
                Mark $v$ as visited and enqueue$(v)$
```

Proposition

$\text{BFS}(s)$ runs in $O(n + m)$ time.
T1. \[1\]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2, 3]
T3. [3, 4, 5]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
BFS: An Example in Undirected Graphs

T1. \([1]\)
T2. \([2,3]\)
T3. \([3,4,5]\)

T4. \([4,5,7,8]\)
T5. \([5,7,8]\)

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of purple edges.
BFS: An Example in Undirected Graphs

T1. [1]
T2. [2,3]
T3. [3,4,5]
T4. [4,5,7,8]
T5. [5,7,8]
T6. [7,8,6]
T7. [8,6]
T8. [6]
T9. []

BFS tree is the set of purple edges.
BFS: An Example in Directed Graphs
BFS: An Example in Directed Graphs

T1. [A]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B, C, F]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
BFS: An Example in Directed Graphs

1. \([A]\)
2. \([B,C,F]\)
3. \([C,F,E]\)
4. \([F,E,D]\)
5. \([E,D,G]\)
6. \([A]\)
7. \([G,H]\)
8. \([H]\)

Diagram:

- Node A connected to B, C, D, and E
- Node B connected to A, C, D, and E
- Node C connected to A, D, and E
- Node D connected to C, E, and F
- Node E connected to D, F, and G
- Node F connected to E, D, and H
- Node G connected to F, D, and H
- Node H connected to G, F, and E
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]

T4. [F,E,D]
T5. [E,D,G]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]
T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]
BFS: An Example in Directed Graphs

BFS: An Example in Directed Graphs

1. \[[A]\]
2. \[[B,C,F]\]
3. \[[C,F,E]\]
4. \[[F,E,D]\]
5. \[[E,D,G]\]
6. \[[D,G,H]\]
7. \[[G,H]\]
8. \[[H]\]
BFS: An Example in Directed Graphs

T1. [A]
T2. [B,C,F]
T3. [C,F,E]

T4. [F,E,D]
T5. [E,D,G]
T6. [D,G,H]

T7. [G,H]
T8. [H]
T9. []
BFS with distances and layers
BFS with distances

BFS(s)

Mark all vertices as unvisited; for each \(v \) set \(\text{dist}(v) = \infty \)
Initialize search tree \(T \) to be empty
Mark vertex \(s \) as visited and set \(\text{dist}(s) = 0 \)
set \(Q \) to be the empty queue
enqueue\((s)\)
while \(Q \) is nonempty do
 \(u = \text{dequeue}(Q) \)
 for each vertex \(v \in \text{Adj}(u) \) do
 if \(v \) is not visited do
 add edge \((u,v)\) to \(T \)
 Mark \(v \) as visited, enqueue\((v)\)
 and set \(\text{dist}(v) = \text{dist}(u) + 1 \)
Properties of **BFS**: Undirected Graphs

Theorem

The following properties hold upon termination of **BFS**(s)

(A) Search tree contains exactly the set of vertices in the connected component of s.

(B) If \(\text{dist}(u) < \text{dist}(v) \) then u is visited before v.

(C) For every vertex u, \(\text{dist}(u) \) is the length of a shortest path (in terms of number of edges) from s to u.

(D) If \(u, v \) are in connected component of s and \(e = \{u, v\} \) is an edge of G, then \(|\text{dist}(u) - \text{dist}(v)| \leq 1 \).
Properties of **BFS: Directed Graphs**

Theorem
The following properties hold upon termination of **BFS**(s):

(A) The search tree contains exactly the set of vertices reachable from \(s \)

(B) If \(\text{dist}(u) < \text{dist}(v) \) then \(u \) is visited before \(v \)

(C) For every vertex \(u \), \(\text{dist}(u) \) is indeed the length of shortest path from \(s \) to \(u \)

(D) If \(u \) is reachable from \(s \) and \(e = (u, v) \) is an edge of \(G \), then \(\text{dist}(v) - \text{dist}(u) \leq 1 \). *Not necessarily the case that* \(\text{dist}(u) - \text{dist}(v) \leq 1 \).
BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$
$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}
 $i = i + 1$
BFS with Layers

BFS Layers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$
$i = 0$

while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}
 $i = i + 1$

Running time: $O(n + m)$
Example

Layer 0:

Layer 1:
1, 2

Layer 2:
4, 5, 7, 8

Layer 3:
6

13
Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6
BFS with Layers: Properties

Proposition
The following properties hold on termination of BFS\text{Layers}(s).

- **BFS\text{Layers}(s)** outputs a **BFS tree**
- \(L_i\) is the set of vertices at distance exactly \(i\) from \(s\)
- If \(G\) is undirected, each edge \(e = \{u, v\}\) is one of three types:
 - tree edge between two consecutive layers
 - non-tree forward/backward edge between two consecutive layers
 - non-tree cross-edge with both \(u, v\) in same layer
- \(\rightarrow\) Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Layer 0: A
Layer 1: B, F, C
Layer 2: E, G, D
Layer 3: H
Proposition
The following properties hold on termination of $\text{BFSLayers}(s)$, if G is directed.

For each edge $e = (u, v)$ is one of four types:

- a tree edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
- a non-tree forward edge between consecutive layers
- a non-tree backward edge
- a cross-edge with both u, v in same layer
Shortest Paths and Dijkstra’s Algorithm
Problem definition
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$,
$\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input:** A (undirected or directed) graph \(G = (V, E) \) with non-negative edge lengths. For edge \(e = (u, v) \), \(\ell(e) = \ell(u, v) \) is its length.
 - Given nodes \(s, t \) find shortest path from \(s \) to \(t \).
 - Given node \(s \) find shortest path from \(s \) to all other nodes.

- Restrict attention to directed graphs
- Undirected graph problem can be reduced to directed graph problem - how?
- Given undirected graph \(G \), create a new directed graph \(G_0 \) by replacing each edge \(\{u, v\} \) in \(G \) by \((u, v)\) and \((v, u)\) in \(G_0 \).
- Set \(\ell(u, v) = \ell(v, u) = \ell(u, v) \)\(\{u, v\} \)
- Exercise: show reduction works. Relies on non-negativity!
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input:** A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
 - Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem - how?
Single-Source Shortest Paths: Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.
 - Given nodes s, t find shortest path from s to t.
 - Given node s find shortest path from s to all other nodes.
 - Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem - how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
 - Exercise: show reduction works. Relies on non-negativity!
Shortest path in the weighted case using BFS
Single-Source Shortest Paths via BFS

- **Special case:** All edge lengths are 1.
• **Special case:** All edge lengths are 1.
 • Run **BFS**(s) to get shortest path distances from s to all other nodes.
 • $O(m + n)$ time algorithm.
Single-Source Shortest Paths via BFS

- **Special case:** All edge lengths are 1.
 - Run **BFS**(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.

- **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**?
• **Special case:** All edge lengths are 1.
 • Run **BFS**(s) to get shortest path distances from s to all other nodes.
 • $O(m + n)$ time algorithm.

• **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.
Example of edge refinement
Example of edge refinement
Example of edge refinement
Shortest path using BFS

Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(ml + n)$ nodes. BFS takes $O(ml + n)$ time. Not efficient if L is large.
On the hereditary nature of shortest paths
You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i < j \leq k$:

$v_i \rightarrow v_{i+1} \rightarrow \ldots \rightarrow v_j$ is shortest path from v_i to v_j.
A proof by picture

\[s = v_0 \]

Shortest path from \(v_0 \) to \(v_{10} \)
A proof by picture

Shorter path from v_2 to v_8

$S = v_0$

Shortest path from v_0 to v_{10}
A proof by picture

A shorter path from v_0 to v_{10}. A contradiction.

Shortest path from v_0 to v_{10}.
Corollary

G: directed graph with non-negative edge lengths.

$\text{dist}(s, v)$: shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ shortest path from s to v_k then for any $0 \leq i \leq k$:

- $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is shortest path from s to v_i
- $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$. Relies on non-neg edge lengths.
The basic algorithm: Find the i^{th} closest vertex
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(X = \{s\} \),
for \(i = 2 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i-1 \) closest nodes to \(s \) *)
Among nodes in \(V - X \), find the node \(v \) that is the \(i \)th closest to \(s \)
Update \(\text{dist}(s, v) \)
\(X = X \cup \{v\} \)
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s and that no edge has zero length)

Initialize for each node v, $\text{dist}(s,v) = \infty$

Initialize $X = \{s\}$,

for $i = 2$ to $|V|$ do

(* Invariant: X contains the $i-1$ closest nodes to s *)

Among nodes in $V - X$, find the node v that is the ith closest to s

Update $\text{dist}(s,v)$

$X = X \cup \{v\}$

How can we implement the step in the for loop?
Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?
Finding the i^{th} closest node

- X contains the $i – 1$ closest nodes to s
- Want to find the i^{th} closest node from $V – X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Finding the i^{th} closest node

- X contains the $i - 1$ closest nodes to s
- Want to find the i^{th} closest node from $V - X$.

What do we know about the i^{th} closest node?

Claim

Let P be a shortest path from s to v where v is the i^{th} closest node. Then, all intermediate nodes in P belong to X.

Proof.

If P had an intermediate node u not in X then u will be closer to s than v. Implies v is not the i^{th} closest node to s - recall that X already has the $i - 1$ closest nodes.
Finding the i^{th} closest node repeatedly
Corollary

The i^{th} closest node is adjacent to X.
Algorithm

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d''(s, s) = 0 \)
for \(i = 1 \) to \(|V|\) do

(* Invariant: \(X \) contains the \(i-1 \) closest nodes to \(s \) *)
(* Invariant: \(d''(s, u) \) is shortest path distance from \(u \) to \(s \)
using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d''(s, v) = \min_{u \in V - X} d''(s, u) \)
\(\text{dist}(s, v) = d''(s, v) \)
\(X = X \cup \{v\} \)
for each node \(u \) in \(V - X \) do

\[d''(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \]
Algorithm

Initialize for each node v: $\text{dist}(s,v) = \infty$

Initialize $X = \emptyset$, $d'(s,s) = 0$

for $i = 1$ **to** $|V|$ **do**

(* Invariant: X contains the $i-1$ closest nodes to s *)

(* Invariant: $d'(s,u)$ is shortest path distance from u to s using only X as intermediate nodes*)

Let v be such that $d'(s,v) = \min_{u \in V - X} d'(s,u)$

$\text{dist}(s,v) = d'(s,v)$

$X = X \cup \{v\}$

for each node u **in** $V - X$ **do**

$$d'(s,u) = \min_{t \in X} \left(\text{dist}(s,t) + \ell(t,u) \right)$$
Algorithm

Initialize for each node \(v \): \(\text{dist}(s,v) = \infty \)

Initialize \(X = \emptyset \), \(d''(s,s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(X \) contains the \(i - 1 \) closest nodes to \(s \) *)

(* Invariant: \(d''(s,u) \) is shortest path distance from \(u \) to \(s \) using only \(X \) as intermediate nodes*)

Let \(v \) be such that \(d''(s,v) = \min_{u \in V - X} d''(s,u) \)

\(\text{dist}(s,v) = d''(s,v) \)

\(X = X \cup \{v\} \)

for each node \(u \) in \(V - X \) do

\(d''(s,u) = \min_{t \in X} \left(\text{dist}(s,t) + \ell(t,u) \right) \)

Running time:
Algorithm

Initialize for each node v: $\text{dist}(s, v) = \infty$

Initialize $X = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: X contains the $i - 1$ closest nodes to s *)

(* Invariant: $d'(s, u)$ is shortest path distance from u to s using only X as intermediate nodes *)

Let v be such that $d'(s, v) = \min_{u \in V - X} d'(s, u)$

$\text{dist}(s, v) = d'(s, v)$

$X = X \cup \{v\}$

for each node u in $V - X$ do

\[d'(s, u) = \min_{t \in X} \left(\text{dist}(s, t) + \ell(t, u) \right) \]

Running time: $O(n \cdot (n + m))$ time.

• n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in X; $O(m + n)$ time/iteration.
Dijkstra’s algorithm
Example: Dijkstra algorithm in action
• Main work is to compute the $d'(s, u)$ values in each iteration
• $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.
Improved Algorithm

• Main work is to compute the $d'(s, u)$ values in each iteration
• $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to X in iteration i.

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$
Initialize $X = \emptyset$, $d'(s, s) = 0$
for $i = 1$ to $|V|$ do
 // X contains the $i - 1$ closest nodes to s,
 // and the values of $d'(s, u)$ are current
 Let v be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
 $\text{dist}(s, v) = d'(s, v)$
 $X = X \cup \{v\}$
 Update $d'(s, u)$ for each u in $V - X$ as follows:
 \[
 d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u) \right)
 \]

Running time: $O(n^2)$ time.
Improved Algorithm

Initialize for each node \(v \), \(\text{dist}(s, v) = d'(s, v) = \infty \)
Initialize \(X = \emptyset \), \(d'(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
 // \(X \) contains the \(i-1 \) closest nodes to \(s \),
 // and the values of \(d'(s, u) \) are current
 Let \(v \) be node realizing \(d'(s, v) = \min_{u \in V - X} d'(s, u) \)
 \(\text{dist}(s, v) = d'(s, v) \)
 \(X = X \cup \{v\} \)
 Update \(d'(s, u) \) for each \(u \) in \(V - X \) as follows:
 \[d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right) \]

Running time: \(O(m + n^2) \) time.

• \(n \) outer iterations and in each iteration following steps
• updating \(d'(s, u) \) after \(v \) is added takes \(O(\text{deg}(v)) \) time so total work is \(O(m) \) since a node enters \(X \) only once
• Finding \(v \) from \(d'(s, u) \) values is \(O(n) \) time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of V

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
 $X = X \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min\left(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)\right)$

Priority Queues to maintain dist values for faster running time
Dijkstra’s Algorithm

- eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
- update dist values after adding v by scanning edges out of V

```
Initialize for each node $v$, $\text{dist}(s, v) = \infty$
Initialize $X = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
  Let $v$ be such that $\text{dist}(s, v) = \min_{u \in V - X} \text{dist}(s, u)$
  $X = X \cup \{v\}$
  for each $u$ in $\text{Adj}(v)$ do
    $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$
```

Priority Queues to maintain dist values for faster running time
- Using heaps and standard priority queues: $O((m + n) \log n)$
- Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra using priority queues
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**(v, $k_0(v)$): decrease key of v from $k(v)$ (current key) to $k_0(v)$ (new key). Assumption: $k_0(v) < k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. **decreaseKey** is implemented via **delete** and **insert**.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**(v, $k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**(v, $k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.
Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

- **makePQ**: create an empty queue.
- **findMin**: find the minimum key in S.
- **extractMin**: Remove $v \in S$ with smallest key and return it.
- **insert**($v, k(v)$): Add new element v with key $k(v)$ to S.
- **delete**(v): Remove element v from S.
- **decreaseKey**($v, k'(v)$): decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
- **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

decreaseKey is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[
Q \leftarrow \text{makePQ}()
\]
\[
\text{insert}(Q, (s, 0))
\]
\[
\text{for each node } u \neq s \text{ do}
\]
\[
\quad \text{insert}(Q, (u, \infty))
\]
\[
X \leftarrow \emptyset
\]
\[
\text{for } i = 1 \text{ to } |V| \text{ do}
\]
\[
\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q)
\]
\[
X = X \cup \{v\}
\]
\[
\text{for each } u \text{ in } \text{Adj}(v) \text{ do}
\]
\[
\quad \text{decreaseKey}(Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))))
\]

Priority Queue operations:

* \(O(n)\) \textbf{insert} operations
* \(O(n)\) \textbf{extractMin} operations
* \(O(m)\) \textbf{decreaseKey} operations
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in \(O(\log n)\) time
Using Heaps
Store elements in a heap based on the key value

- All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time:

Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Theta(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,

Boost library implements both Fibonacci heaps and rank-pairing heaps.
Fibonacci Heaps

- `extractMin`, `insert`, `delete`, `meld` in $O(\log n)$ time
- `decreaseKey` in $O(1)$ amortized time: ℓ `decreaseKey` operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: `decreaseKey` in $O(1)$ worst case time but at the expense of `meld` (not necessary for Dijkstra’s algorithm)
Fibonacci Heaps

- **extractMin**, **insert**, **delete**, **meld** in $O(\log n)$ time
- **decreaseKey** in $O(1)$ amortized time: ℓ **decreaseKey** operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

- Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
Fibonacci Heaps

- extractMin, insert, delete, meld in $O(\log n)$ time
- decreaseKey in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in $O(1)$ worst case time but at the expense of meld (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps,

Boost library implements both Fibonacci heaps and rank-pairing heaps.
Shortest path trees and variants
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?
Dijkstra’s alg. finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

\[
\begin{align*}
Q &= \text{makePQ()} \\
\text{insert}(Q, (s, 0)) \\
\text{prev}(s) &\leftarrow \text{null} \\
\text{for each node } u &\neq s \text{ do} \\
&\text{insert}(Q, (u, \infty)) \\
&\text{prev}(u) \leftarrow \text{null} \\
X &= \emptyset \\
\text{for } i = 1 \text{ to } |V| \text{ do} \\
&(v, \text{dist}(s, v)) = \text{extractMin}(Q) \\
&X = X \cup \{v\} \\
&\text{for each } u \text{ in } \text{Adj}(v) \text{ do} \\
&\quad \text{if } (\text{dist}(s, v) + \ell(v, u) < \text{dist}(s, u)) \text{ then} \\
&\quad \quad \text{decreaseKey}(Q, (u, \text{dist}(s, v) + \ell(v, u))) \\
&\quad \quad \text{prev}(u) = v
\end{align*}
\]
Shortest Path Tree

Lemma
The edge set \((u, \text{prev}(u))\) is the reverse of a shortest path tree rooted at \(s\). For each \(u\), the reverse of the path from \(u\) to \(s\) in the tree is a shortest path from \(s\) to \(u\).

Proof Sketch.

• The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)

• Use induction on \(|X|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Dijkstra’s alg. gives shortest paths from s to all nodes in V.

How do we find shortest paths from all of V to s?
Dijkstra’s alg. gives shortest paths from \(s \) to all nodes in \(V \).

How do we find shortest paths from all of \(V \) to \(s \)?

- In undirected graphs shortest path from \(s \) to \(u \) is a shortest path from \(u \) to \(s \) so there is no need to distinguish.
- In directed graphs, use Dijkstra’s algorithm in \(G^{rev} \)!