
1

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a
vertex that is contained within the source SCC of the
meta-graph of G.

1

ECE-374-B: Lecture 17 - Shortest Paths [BFS,
Djikstra]

Instructor: Nickvash Kani
March 23, 2022

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Given a directed graph (G), propose an algorithm that finds a
vertex that is contained within the source SCC of the
meta-graph of G.

2

Breadth First Search

Breadth First Search (BFS)

Overview
(A) BFS is obtained from BasicSearch by processing edges

using a queue data structure.
(B) It processes the vertices in the graph in the order of their

shortest distance from the vertex s (the start vertex).

As such...
• DFS good for exploring graph structure
• BFS good for exploring distances

3

Queue Data Structure

Queues
A queue is a list of elements which supports the operations:

• enqueue: Adds an element to the end of the list
• dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e.,
elements are picked in the order in which they were inserted.

4

BFS Algorithm

Given (undirected or directed) graph G = (V, E) and node s 2 V
BFS(s)

Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue
enqueue(Q, s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v 2 Adj(u)

if v is not visited then
add edge (u, v) to T
Mark v as visited and enqueue(v)

Proposition
BFS(s) runs in O(n+m) time.

5

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

6

T1. [1]

T4. [4,5,7,8] T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6

T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3]

T5. [5,7,8] T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

2 3

7

8

6
T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5]

T6. [7,8,6] T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8]

T7. [8,6]

T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8]

T8. [6]

T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6]

T9. []

BFS tree is the set of purple edges.

6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Undirected Graphs

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

1

4 5

6

2 3

7

8

6

T1. [1] T4. [4,5,7,8] T7. [8,6]
T2. [2,3] T5. [5,7,8] T8. [6]
T3. [3,4,5] T6. [7,8,6] T9. []

BFS tree is the set of purple edges.
6

BFS: An Example in Directed Graphs

AB C

DE F

G H

7

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A]

T4. [F,E,D] T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F]

T5. [E,D,G] T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E]

T6. [D,G,H] T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D]

T7. [G,H]

T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G]

T8. [H]

T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H]

T9. []

8

BFS: An Example in Directed Graphs

6
AB C

DE F

G H

AB C

DE F

G H

T1. [A] T4. [F,E,D] T7. [G,H]
T2. [B,C,F] T5. [E,D,G] T8. [H]
T3. [C,F,E] T6. [D,G,H] T9. []

8

BFS with distances and layers

BFS with distances

BFS(s)
Mark all vertices as unvisited; for each v set dist(v) =1
Initialize search tree T to be empty
Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue
enqueue(s)
while Q is nonempty do

u = dequeue(Q)
for each vertex v 2 Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enqueue(v)
and set dist(v) = dist(u) + 1

9

Properties of BFS: Undirected Graphs

Theorem
The following properties hold upon termination of BFS(s)

(A) Search tree contains exactly the set of vertices in the
connected component of s.

(B) If dist(u) < dist(v) then u is visited before v.
(C) For every vertex u, dist(u) is the length of a shortest path

(in terms of number of edges) from s to u.
(D) If u, v are in connected component of s and e = {u, v} is an

edge of G, then |dist(u)� dist(v)|  1.

10

Properties of BFS: Directed Graphs

Theorem
The following properties hold upon termination of BFS(s):

(A) The search tree contains exactly the set of vertices
reachable from s

(B) If dist(u) < dist(v) then u is visited before v
(C) For every vertex u, dist(u) is indeed the length of shortest

path from s to u
(D) If u is reachable from s and e = (u, v) is an edge of G, then

dist(v)� dist(u)  1. Not necessarily the case that

dist(u)� dist(v)  1.

11

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) 2 Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

12

BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list
for each u in Li do

for each edge (u, v) 2 Adj(u) do
if v is not visited

mark v as visited
add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

12

Example

1

2 3

4 5

6

7

8

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

13

Example

1

2 3

4 5

6

7

8

Layer 0: 1
Layer 1: 2, 3
Layer 2: 4, 5, 7, 8
Layer 3: 6

13

BFS with Layers: Properties

Proposition
The following properties hold on termination of BFSLayers(s).

• BFSLayers(s) outputs a BFS tree
• Li is the set of vertices at distance exactly i from s
• If G is undirected, each edge e = {u, v} is one of three
types:

• tree edge between two consecutive layers
• non-tree forward/backward edge between two consecutive
layers

• non-tree cross-edge with both u, v in same layer
• =) Every edge in the graph is either between two vertices
that are either (i) in the same layer, or (ii) in two
consecutive layers.

14

Example

AB C

DE F

G H

Layer 0: A
Layer 1: B, F, C
Layer 2: E,G,D
Layer 3: H 15

BFS with Layers: Properties for directed graphs

Proposition
The following properties hold on termination of BFSLayers(s), if
G is directed.

For each edge e = (u, v) is one of four types:

• a tree edge between consecutive layers, u 2 Li, v 2 Li+1 for
some i � 0

• a non-tree forward edge between consecutive layers
• a non-tree backward edge
• a cross-edge with both u, v in same layer

16

Shortest Paths and Dijkstra’s
Algorithm

Problem definition

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with

edge lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

Many applications!

17

Shortest Path Problems

Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with

edge lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.

Many applications!

17

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G0 by
replacing each edge {u, v} in G by (u, v) and (v,u) in G0.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G0 by
replacing each edge {u, v} in G by (u, v) and (v,u) in G0.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Single-Source Shortest Paths: Non-Negative Edge Lengths

• Single-Source Shortest Path Problems
• Input: A (undirected or directed) graph G = (V, E) with
non-negative edge lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

• • Restrict attention to directed graphs
• Undirected graph problem can be reduced to directed
graph problem - how?

• Given undirected graph G, create a new directed graph G0 by
replacing each edge {u, v} in G by (u, v) and (v,u) in G0.

• set `(u, v) = `(v,u) = `({u, v})
• Exercise: show reduction works. Relies on non-negativity!

18

Shortest path in the weighted case
using BFS

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.

• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)� 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)� 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS?

Reduce to unit edge-length problem by
placing `(e)� 1 dummy nodes on e.

19

Single-Source Shortest Paths via BFS

• Special case: All edge lengths are 1.
• Run BFS(s) to get shortest path distances from s to all
other nodes.

• O(m+ n) time algorithm.

• Special case: Suppose `(e) is an integer for all e?
Can we use BFS? Reduce to unit edge-length problem by
placing `(e)� 1 dummy nodes on e.

19

Example of edge refinement

20

Example of edge refinement

20

Example of edge refinement

20

Shortest path using BFS

Let L = maxe `(e). New graph has O(mL) edges and O(mL+ n)
nodes. BFS takes O(mL+ n) time. Not efficient if L is large.

21

On the hereditary nature of shortest
paths

You can not shortcut a shortest path

Lemma
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s = v0 ! v1 ! v2 ! . . . ! vk shortest path from s to vk then
for any 0  i < j  k:

vi ! vi+1 ! . . . ! vj is shortest path from vi to vj

22

p

A proof by picture

s = v0

v1

v2

v7

v8
v9

v10

Shortest path
from v0 to v10

v3

v4 v6

v5

23

A proof by picture

s = v0

v1

v2

v7

v8
v9

v10

Shortest path
from v0 to v10

Shorter path
from v2 to v8

v3

v4 v6

v5

23

A proof by picture

s = v0

v1

v2

v7

v8
v9

v10

Shortest path
from v0 to v10

A shorter path
from v0 to v10.
A contradic-
tion.

v3

v4 v6

v5

23

What we really need...

Corollary
G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If s = v0 ! v1 ! v2 ! . . . ! vk shortest path from s to vk then
for any 0  i  k:

• s = v0 ! v1 ! v2 ! . . . ! vi is shortest path from s to vi
• dist(s, vi)  dist(s, vk). Relies on non-neg edge lengths.

24

The basic algorithm: Find the ith
closest vertex

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)
Initialize for each node v, dist(s, v) =1
Initialize X = {s},
for i = 2 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
Among nodes in V � X, find the node v that is the

iþclosest to s
Update dist(s, v)
X = X [{v}

How can we implement the step in the for loop?

25

A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances
from s and that no edge has zero length)
Initialize for each node v, dist(s, v) =1
Initialize X = {s},
for i = 2 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
Among nodes in V � X, find the node v that is the

iþclosest to s
Update dist(s, v)
X = X [{v}

How can we implement the step in the for loop?

25

Finding the ith closest node

• X contains the i� 1 closest nodes to s
• Want to find the ith closest node from V � X.

What do we know about the ith closest node?

Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i� 1 closest nodes.

26

Finding the ith closest node

• X contains the i� 1 closest nodes to s
• Want to find the ith closest node from V � X.

What do we know about the ith closest node?
Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i� 1 closest nodes.

26

Finding the ith closest node

• X contains the i� 1 closest nodes to s
• Want to find the ith closest node from V � X.

What do we know about the ith closest node?
Claim
Let P be a shortest path from s to v where v is the ith closest
node. Then, all intermediate nodes in P belong to X.

Proof.
If P had an intermediate node u not in X then u will be closer
to s than v. Implies v is not the ith closest node to s - recall
that X already has the i� 1 closest nodes.

26

Finding the ith closest node repeatedly

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19
f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

f

g

h

27

Finding the ith closest node repeatedly

b

c

d

e

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

6

9

0

13

19

25

36

38

f

g

h

27

Finding the ith closest node

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

Corollary
The ith closest node is adjacent to X.

28

Algorithm

Initialize for each node v: dist(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
(* Invariant: d0(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
for each node u in V � X do

d0(s,u) = mint2X
⇣

dist(s, t) + `(t,u)
⌘

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d0(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
(* Invariant: d0(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
for each node u in V � X do

d0(s,u) = mint2X
⇣

dist(s, t) + `(t,u)
⌘

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d0(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
(* Invariant: d0(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
for each node u in V � X do

d0(s,u) = mint2X
⇣

dist(s, t) + `(t,u)
⌘

Running time:

O(n · (n+m)) time.

• n outer iterations. In each iteration, d0(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration.

29

Algorithm

Initialize for each node v: dist(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

(* Invariant: X contains the i� 1 closest nodes to s *)
(* Invariant: d0(s,u) is shortest path distance from u to s
using only X as intermediate nodes*)

Let v be such that d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
for each node u in V � X do

d0(s,u) = mint2X
⇣

dist(s, t) + `(t,u)
⌘

Running time: O(n · (n+m)) time.

• n outer iterations. In each iteration, d0(s,u) for each u by
scanning all edges out of nodes in X; O(m+ n)
time/iteration. 29

Dijkstra’s algorithm

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

00

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

0

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

S

9

6

13

0

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

30

Example: Dijkstra algorithm in action

S

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

3625

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

36

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

30

Example: Dijkstra algorithm in action

a 9

13

6

10

8
20

30

18

11

16

6

19

6

6

25

0

9

6

13

0

6

24

36

9 19

13

33

38

19

362525

363636

38

30

Improved Algorithm

• Main work is to compute the d0(s,u) values in each
iteration

• d0(s,u) changes from iteration i to i+ 1 only because of
the node v that is added to X in iteration i.

Initialize for each node v, dist(s, v) = d0(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

// X contains the i� 1 closest nodes to s,
// and the values of d0(s,u) are current
Let v be node realizing d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
Update d0(s,u) for each u in V � X as follows:

d0(s,u) = min
⇣
d0(s,u), dist(s, v) + `(v,u)

⌘

Running time: O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d0(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d0(s,u) values is O(n) time

31

Improved Algorithm

• Main work is to compute the d0(s,u) values in each
iteration

• d0(s,u) changes from iteration i to i+ 1 only because of
the node v that is added to X in iteration i.
Initialize for each node v, dist(s, v) = d0(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

// X contains the i� 1 closest nodes to s,
// and the values of d0(s,u) are current
Let v be node realizing d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
Update d0(s,u) for each u in V � X as follows:

d0(s,u) = min
⇣
d0(s,u), dist(s, v) + `(v,u)

⌘

Running time:

O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d0(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d0(s,u) values is O(n) time

31

Improved Algorithm

Initialize for each node v, dist(s, v) = d0(s, v) =1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

// X contains the i� 1 closest nodes to s,
// and the values of d0(s,u) are current
Let v be node realizing d0(s, v) = minu2V�X d0(s,u)
dist(s, v) = d0(s, v)
X = X [{v}
Update d0(s,u) for each u in V � X as follows:

d0(s,u) = min
⇣
d0(s,u), dist(s, v) + `(v,u)

⌘

Running time: O(m+ n2) time.

• n outer iterations and in each iteration following steps
• updating d0(s,u) after v is added takes O(deg(v)) time so
total work is O(m) since a node enters X only once

• Finding v from d0(s,u) values is O(n) time 31

Dijkstra’s Algorithm

• eliminate d0(s,u) and let dist(s,u) maintain it
• update dist values after adding v by scanning edges out of
v

Initialize for each node v, dist(s, v) =1
Initialize X = ;, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu2V�X dist(s,u)
X = X [{v}
for each u in Adj(v) do

dist(s,u) = min
⇣

dist(s,u), dist(s, v) + `(v,u)
⌘

Priority Queues to maintain dist values for faster running time

• Using heaps and standard priority queues: O((m+n) log n)
• Using Fibonacci heaps: O(m+ n log n).

32

Dijkstra’s Algorithm

• eliminate d0(s,u) and let dist(s,u) maintain it
• update dist values after adding v by scanning edges out of
v

Initialize for each node v, dist(s, v) =1
Initialize X = ;, dist(s, s) = 0
for i = 1 to |V| do

Let v be such that dist(s, v) = minu2V�X dist(s,u)
X = X [{v}
for each u in Adj(v) do

dist(s,u) = min
⇣

dist(s,u), dist(s, v) + `(v,u)
⌘

Priority Queues to maintain dist values for faster running time
• Using heaps and standard priority queues: O((m+n) log n)
• Using Fibonacci heaps: O(m+ n log n).

32

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each
element v 2 S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v 2 S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.

• decreaseKey(v, k0(v)): decrease key of v from k(v) (current
key) to k0(v) (new key). Assumption: k0(v)  k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.

33

Priority Queues

Data structure to store a set S of n elements where each
element v 2 S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v 2 S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.
• decreaseKey(v, k0(v)): decrease key of v from k(v) (current
key) to k0(v) (new key). Assumption: k0(v)  k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert.

33

Priority Queues

Data structure to store a set S of n elements where each
element v 2 S has an associated real/integer key k(v) such
that the following operations:

• makePQ: create an empty queue.
• findMin: find the minimum key in S.
• extractMin: Remove v 2 S with smallest key and return it.
• insert(v, k(v)): Add new element v with key k(v) to S.
• delete(v): Remove element v from S.
• decreaseKey(v, k0(v)): decrease key of v from k(v) (current
key) to k0(v) (new key). Assumption: k0(v)  k(v).

• meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.

decreaseKey is implemented via delete and insert. 33

Dijkstra’s Algorithm using Priority Queues

Q makePQ()
insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,1))
X ;
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
X = X [{v}
for each u in Adj(v) do

decreaseKey
⇣
Q,

⇣
u,min

⇣
dist(s,u), dist(s, v) + `(v,u)

⌘⌘⌘
.

Priority Queue operations:

• O(n) insert operations
• O(n) extractMin operations
• O(m) decreaseKey operations

34

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

• All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n)
time.

35

Implementing Priority Queues via Heaps

Using Heaps
Store elements in a heap based on the key value

• All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n+m) log n)
time.

35

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time:

` decreaseKey operations
for ` � n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = ⌦(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` � n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = ⌦(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` � n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = ⌦(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps.

36

Priority Queues: Fibonacci Heaps/Relaxed Heaps

Fibonacci Heaps

• extractMin, insert, delete, meld in O(log n) time

• decreaseKey in O(1) amortized time: ` decreaseKey operations
for ` � n take together O(`) time

• Relaxed Heaps: decreaseKey in O(1) worst case time but at the
expense of meld (not necessary for Dijkstra’s algorithm)

• Dijkstra’s algorithm can be implemented in O(n log n+m) time.
If m = ⌦(n log n), running time is linear in input size.

• Data structures are complicated to analyze/implement. Recent
work has obtained data structures that are easier to analyze and
implement, and perform well in practice. Rank-Pairing Heaps,

• Boost library implements both Fibonacci heaps and rank-pairing
heaps. 36

Shortest path trees and variants

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()
insert(Q, (s, 0))
prev(s) null
for each node u 6= s do

insert(Q, (u,1))
prev(u) null

X = ;
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
X = X [{v}
for each u in Adj(v) do

if (dist(s, v) + `(v,u) < dist(s,u)) then
decreaseKey(Q, (u, dist(s, v) + `(v,u)))
prev(u) = v

37

Shortest Path Tree

Dijkstra’s alg. finds the shortest path distances from s to V .
Question: How do we find the paths themselves?

Q = makePQ()
insert(Q, (s, 0))
prev(s) null
for each node u 6= s do

insert(Q, (u,1))
prev(u) null

X = ;
for i = 1 to |V| do

(v, dist(s, v)) = extractMin(Q)
X = X [{v}
for each u in Adj(v) do

if (dist(s, v) + `(v,u) < dist(s,u)) then
decreaseKey(Q, (u, dist(s, v) + `(v,u)))
prev(u) = v 37

Shortest Path Tree

Lemma
The edge set (u, prev(u)) is the reverse of a shortest path tree
rooted at s. For each u, the reverse of the path from u to s in
the tree is a shortest path from s to u.

Proof Sketch.
• The edge set {(u, prev(u)) | u 2 V} induces a directed
in-tree rooted at s (Why?)

• Use induction on |X| to argue that the tree is a shortest
path tree for nodes in V .

38

Shortest paths to s

Dijkstra’s alg. gives shortest paths from s to all nodes in V .

How do we find shortest paths from all of V to s?

• In undirected graphs shortest path from s to u is a shortest
path from u to s so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in Grev !

39

Shortest paths to s

Dijkstra’s alg. gives shortest paths from s to all nodes in V .

How do we find shortest paths from all of V to s?

• In undirected graphs shortest path from s to u is a shortest
path from u to s so there is no need to distinguish.

• In directed graphs, use Dijkstra’s algorithm in Grev !

39

