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Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are
white and some are blue. You are given two distinct vertices u
and v and want to find a walk [u→ v] such that:

• a white edge must be taken after a red edge only.
• a blue edge must be taken after a white edge only.
• and a red edge may be taken after a blue edge only.
• must start on red edge

s v0 v1 t

Develop a algorithm to find a path with these edge constrints.
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Pre-lecture brain teaser

s v0 v1 t

s1 v10 v11 t1

s2 v20 v21 t2

s3 v30 v31 t3
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Shortest Paths with Negative Length
Edges



Why Dijkstra’s algorithm fails with
negative edges



Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path
Problems
Input: A directed graph
G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.
• Given nodes s, t find
shortest path from s to
t.

• Given node s find
shortest path from s to
all other nodes.
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What are the distances computed by Dijkstra’s algorithm?
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The distance as com-
puted by Dijkstra algo-
rithm starting from s:
1. s = 0, x = 5, y = 1,
z = 0.

2. s = 0, x = 1, y = 2,
z = 5.

3. s = 0, x = 5, y = 1,
z = 2.

4. IDK.
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the
assumption that if s→ v0 → v1 → v2 . . . → vk is a shortest path
from s to vk then dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k. Holds
true only for non-negative edge lengths.
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk
then for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

• False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need
other strategies.
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Why can’t we just re-normalize the
edge lengths!?



Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

8



Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

s a

b c

t

0

13

8 4

1
6

8



Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

s a

b c

t

-3

10

5 1

-2
3

Shortest Path: s→ a→ c → t

s a

b c

t

0

13

8 4

1
6

Shortest Path: s→ b→ t

8



Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).
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Adding weights to edges penalizes paths with more edges.
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But wait! Things get worse: Negative
cycles



Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge
lengths of C is negative.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge
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What is the shortest path distance between s and t?

Reminder: Paths have to be simple...
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Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

• G has a negative length cycle C, and
• s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

• undefined, that is −∞, OR
• the length of a shortest simple path from s to t.
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Really bad new about negative edges, and shortest path...

Lemma
If there is an efficient algorithm to find a shortest simple s→ t
path in a graph with negative edge lengths, then there is an
efficient algorithm to find the longest simple s→ t path in a
graph with positive edge lengths.

Finding the s→ t longest path is difficult. NP-Hard!
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Restating problem of Shortest path
with negative edges



Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

• A path is a sequence of distinct vertices v1, v2, . . . , vk such
that (vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1.

• A walk is a sequence of vertices v1, v2, . . . , vk such that
(vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1. Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

• If there is a walk from u to v that contains negative length
cycle then dist(u, v) = −∞

• Else there is a path with at most n− 1 edges whose length
is equal to the length of a shortest walk and dist(u, v) is
finite

Helpful to think about walks 12



Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be
negative). For edge e = (u, v), `(e) = `(u, v) is its length.

Questions:

• Given nodes s, t, either find a negative length cycle C that
s can reach or find a shortest path from s to t.

• Given node s, either find a negative length cycle C that s
can reach or find shortest path distances from s to all
reachable nodes.

• Check if G has a negative length cycle or not.
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Shortest Paths with Negative Edge Lengths - In Undirected
Graphs

Note: With negative lengths, shortest path problems and
negative cycle detection in undirected graphs cannot be
reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but
algorithms are different and significantly more involved than
those for directed graphs. One need to compute T-joins in the
relevant graph. Pretty painful stuff.

14



Bellman Ford Algorithm



Shortest path via number of hops



Shortest Paths and Recursion

• Compute the shortest path distance from s to t recursively?
• What are the smaller sub-problems?

Lemma
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . . → vk is a shortest path from s to vk
then for 1 ≤ i < k:

• s = v0 → v1 → v2 → . . . → vi is a shortest path from s to vi

Sub-problem idea: paths of fewer hops/edges

15
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by s in G
Assume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v,n− 1). Recursion for d(v, k):

d(v, k) = min

minu∈V(d(u, k− 1) + `(u, v)).

d(v, k− 1)

Base case: d(s, 0) = 0 and d(v, 0) = ∞ for all v 6= s.
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The Bellman-Ford Algorithm



Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each u ∈ V do
d(u, 0)←∞

d(s, 0)← 0

for k = 1 to n− 1 do
for each v ∈ V do

d(v, k)← d(v, k− 1)
for each edge (u, v) ∈ in(v) do

d(v, k) = min{d(v, k),d(u, k− 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v,n− 1)

Running time: O(n(n+m)) Space: O(m+ n2)

Space can be reduced to O(m+ n).

18
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Bellman-Ford Algorithm: Cleaner version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v),d(u) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v)

Running time: O(mn) Space: O(m+ n)

Do we need the in(V)

list?

19
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Bellman-Ford: Detecting negative
cycles



Negative cycles

What happens if we run this on a graph with negative cycles?
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Correctness: detecting negative length cycle

Lemma
Suppose G has a negative cycle C reachable from s. Then there
is some node v ∈ C such that d(v,n) < d(v,n− 1).

Proof.
Suppose not. Let C = v1 → v2 → . . . → vh → v1 be negative
length cycle reachable from s. d(vi,n− 1) is finite for 1 ≤ i ≤ h
since C is reachable from s. By assumption d(v,n) ≥ d(v,n− 1)
for all v ∈ C; implies no change in nth iteration;
d(vi,n− 1) = d(vi,n) for 1 ≤ i ≤ h. This means
d(vi,n− 1) ≤ d(vi−1,n− 1) + `(vi−1, vi) for 2 ≤ i ≤ h and
d(v1,n− 1) ≤ d(vn,n− 1) + `(vn, v1). Adding up all these
inequalities results in the inequality 0 ≤ `(C) which contradicts
the assumption that `(C) < 0.
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Proof of Lemma in more detail...

s

v0

v1 v2

v3

v4v5

C

d(v1,n) ≤ d(v0,n− 1) + `(v0, v1)
d(v2,n) ≤ d(v1,n− 1) + `(v1, v2)

. . .

d(vi,n) ≤ d(vi−1,n− 1) + `(vi−1, vi)
. . .

d(vk,n) ≤ d(vk−1,n− 1) + `(vk−1, vk)
d(v0,n) ≤ d(vk,n− 1) + `(vk, v0)
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v3

v4v5
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i=0

d(vi,n) ≤
k∑
i=0

d(vi,n) +
k∑
i=1

`(vi−1, vi) + `(vk, v0)

0 ≤
k∑
i=1

`(vi−1, vi) + `(vk, v0) = len(C) .

C is a not a negative cycle. Contradiction.
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Negative cycles can not hide

Lemma restated
If G does not has a negative length cycle reachable from s =⇒
∀v: d(v,n) = d(v,n− 1).

Also, d(v,n− 1) is the length of the shortest path between s
and v.

Put together are the following:

Lemma
G has a negative length cycle reachable from s ⇐⇒ there is
some node v such that d(v,n) < d(v,n− 1).

24



Bellman-Ford: Negative Cycle Detection - final version

for each u ∈ V do
d(u)←∞

d(s)← 0

for k = 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v) = min{d(v),d(u) + `(u, v)}

(* One more iteration to check if distances change *)
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
if (d(v) > d(u) + `(u, v))

Output ``Negative Cycle''

for each v ∈ V do
dist(s, v)← d(v)
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Variants on Bellman-Ford



Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

• For each v the d(v) can only get smaller as algorithm
proceeds.

• If d(v) becomes smaller it is because we found a vertex u
such that d(v) > d(u) + `(u, v) and we update
d(v) = d(u) + `(u, v). That is, we found a shorter path to v
through u.

• For each v have a prev(v) pointer and update it to point to
u if v finds a shorter path via u.

• At end of algorithm prev(v) pointers give a shortest path
tree oriented towards the source s.
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Negative Cycle Detection

Negative Cycle Detection
Given directed graph G with arbitrary edge lengths, does it
have a negative length cycle?

• Bellman-Ford checks whether there is a negative cycle C
that is reachable from a specific vertex s. There may
negative cycles not reachable from s.

• Run Bellman-Ford |V| times, once from each node u?
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Negative Cycle Detection

• Add a new node s′ and connect it to all nodes of G with
zero length edges. Bellman-Ford from s′ will fill find a
negative length cycle if there is one. Exercise: why does
this work?

• Negative cycle detection can be done with one
Bellman-Ford invocation.
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Shortest Paths in DAGs



Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e = (u, v), `(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges

• Can order nodes using topological sort

29



Shortest Paths in a DAG

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e = (u, v), `(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

• No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges

• Can order nodes using topological sort

29



Algorithm for DAGs

• Want to find shortest paths from s. Ignore nodes not
reachable from s.

• Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:

• shortest path from s to vi cannot use any node from
vi+1, . . . , vn

• can find shortest paths in topological sort order.
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Shortest Paths for DAGs - Example
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Algorithm for DAGs

for i = 1 to n do
d(s, vi) =∞

d(s, s) = 0

for i = 1 to n− 1 do
for each edge (vi, vj) in Adj(vi) do

d(s, vj) = min{d(s, vj),d(s, vi) + `(vi, vj)}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m+ n) time algorithm! Works for negative
edge lengths and hence can find longest paths in a DAG.
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All Pairs Shortest Paths



Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, v),
`(e) = `(u, v) is its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.
• Find shortest paths for all pairs of nodes.
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SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), `(e) = `(u, v) is
its length.

• Given nodes s, t find shortest path from s to t.
• Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running
time: O((m+ n) log n) with heaps and
O(m+ n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running
time: O(nm).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u, v), `(e) = `(u, v) is
its length.

• Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

• Non-negative lengths. O(nm log n) with heaps and
O(nm+ n2 log n) using advanced priority queues.

• Arbitrary edge lengths: O(n2m).
Θ
(
n4

)
if m = Ω

(
n2
)
.

Can we do better?
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All Pairs Shortest Paths: A recursive
solution



All-Pairs: Recursion on index of intermediate nodes

• Number vertices arbitrarily as v1, v2, . . . , vn
• dist(i, j, k): length of shortest walk from vi to vj among all
walks in which the largest index of an intermediate node is
at most k (could be −∞ if there is a negative length cycle).
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9
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8

dist(i, j, 3) =

5
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For the following graph, dist(i, j, 2) is...
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All-Pairs: Recursion on index of intermediate nodes

i j

kdist(i, k, k − 1) dist(k, j, k − 1)

dist(i, j, k − 1)

dist(i, j, k) = min

dist(i, j, k− 1)

dist(i, k, k− 1) + dist(k, j, k− 1)

Base case: dist(i, j, 0) = `(i, j) if (i, j) ∈ E, otherwise∞

Correctness: If i→ j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length
cycle.

38



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k− 1) < 0 then G
has a negative length cycle containing k and dist(i, j, k) = −∞.

Recursion below is valid only if dist(k, k, k− 1) ≥ 0. We can
detect this during the algorithm or wait till the end.

dist(i, j, k) = min

dist(i, j, k− 1)

dist(i, k, k− 1) + dist(k, j, k− 1)
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Floyd-Warshall algorithm



Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

d(i, j, k) = min

d(i, j, k− 1)

d(i, k, k− 1) + d(k, j, k− 1)

for i = 1 to n do
for j = 1 to n do

d(i, j, 0) = `(i, j)
(* `(i, j) =∞ if (i, j) /∈ E, 0 if i = j *)

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do

d(i, j, k) = min

d(i, j, k− 1),d(i, k, k− 1) + d(k, j, k− 1)
for i = 1 to n do

if (dist(i, i,n) < 0) then
Output ∃ negative cycle in G

Running Time: Θ(n3). Space: Θ(n3).
Correctness: via induction and recursive definition
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

• Create a n× n array Next that stores the next vertex on
shortest path for each pair of vertices

• With array Next, for any pair of given vertices i, j can
compute a shortest path in O(n) time.
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Floyd-Warshall Algorithm - Finding the Paths

for i = 1 to n do
for j = 1 to n do

d(i, j, 0) = `(i, j)
(* `(i, j) =∞ if (i, j) not edge, 0 if i = j *)

Next(i, j) = −1
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if (d(i, j, k− 1) > d(i, k, k− 1) + d(k, j, k− 1)) then
d(i, j, k) = d(i, k, k− 1) + d(k, j, k− 1)
Next(i, j) = k

for i = 1 to n do
if (d(i, i,n) < 0) then

Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i, j describe an
O(n) algorithm to find a i-j shortest path.
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Summary of shortest path algorithms



Summary of results on shortest paths

Single source
No negative edges Dijkstra O(n log n+m)

Edge lengths can be negative Bellman Ford O(nm)

All Pairs Shortest Paths
No negative edges n * Dijkstra O

(
n2 log n+ nm

)
No negative cycles n * Bellman Ford O

(
n2m

)
= O

(
n4

)
No negative cycles Johnson’s 1 O

(
nm+ n2 log n

)
No negative cycles Floyd-Warshall O

(
n3
)

Unweighted Matrix multiplication 2 O(n2.38), O(n2.58)
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative
cycles, and doing all shortest paths, works by computing a
potential function using Bellman-Ford and then doing Dijkstra.
It is mentioned for the sake of completeness, but it outside the
scope of the class.

(2): https://resources.mpi-inf.mpg.de/
departments/d1/teaching/ss12/
AdvancedGraphAlgorithms/Slides14.pdf
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