


Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are
white and some are blue. You are given two distinct vertices u
and v and want to find a walk [u — v] such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge

oo

Develop a algorithm to find a path with these edge constrints.
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Shortest Paths with Negative Length
Edges



Why Dijkstra’s algorithm fails with
negative edges



Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path

Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, V),
¢(e) = ¢(u,v) is its length.
- Given nodes s, t find
shortest path from s to

t.

- Given node s find
shortest path from s to
all other nodes.



Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path

Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, V),
¢(e) = ¢(u,v) is its length.
- Given nodes s, t find
shortest path from s to

t.

- Given node s find
shortest path from s to
all other nodes.



What are the distances computed by Dijkstra’s algorithm?

The distance as com-
puted by Dijkstra algo-
rithm starting from s:

1.s=0,x=5y=1,

z=0.
2.5=0,x=1y=2,
z=>5.
3.5=0,x=5,y=1,
z7=2.

4. IDK.
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With negative length edges, Dijkstra’s algorithm can fail
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Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

False assumption: Dijkstra’s algorithm is based on the
assumption that if s — vo — vy — v5... — Vv is a shortest path
from s to v, then dist(s, v;) < dist(s, vj,q) for 0 <i < k. Holds
true only for non-negative edge lengths.



Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vy — ... — Vp IS a shortest path from s to vy,
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;
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Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vy — ... — Vp IS a shortest path from s to vy,
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

- False: dist(s, v;) < dist(s,vg) for 1 <i < k. Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need
other strategies.



Why can’t we just re-normalize the
edge lengths!?




Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).
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Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
Cb) 10 Cb) 13
o 1
3 6
O J
Shortest Path: s —a —-c —t Shortest Path: s - b — t

Adding weights to edges penalizes paths with more edges.



But wait! Things get worse: Negative
cycles




Negative Length Cycles

Definition ,
A cycle C is a negative length cycle if the sum of the edge

lengths of C is negative.
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Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge

lengths of C is negative.

What is the shortest path distance between s and t?

Reminder: Paths have to be simple...



Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

10



Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undefined, that is —oo, OR
- the length of a shortest simple path from s to t.

10



Really bad new about negative edges, and shortest path...

Lemma . , ,
If there is an efficient algorithm to find a shortest simple s — t

path in a graph with negative edge lengths, then there is an
efficient algorithm to find the longest simple s — t path in a
graph with positive edge lengths.

Finding the s — t longest path is difficult. NP-HARD!

n



Restating problem of Shortest path
with negative edges



Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

- A path is a sequence of distinct vertices vy, vo, ..., Vg such
that (vj,vjyq) € Efor1<i<k-—1.
- A walk is a sequence of vertices vq, v, ..., V, such that

(vi,Vipq) € Efor1<i< k-1 Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

- If there is a walk from u to v that contains negative length
cycle then dist(u,v) = —o0
- Else there is a path with at most n — 1 edges whose length

is equal to the length of a shortest walk and dist(u, v) is
finite

Helpful to think about walks 12



Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be

negative). For edge e = (u, V), £(e) = £(u, V) is its length.
Questions:

- Given nodes s, t, either find a negative length cycle C that
s can reach or find a shortest path from s to t.

- Given node s, either find a negative length cycle C that s
can reach or find shortest path distances from s to all
reachable nodes.

- Check if G has a negative length cycle or not.

13



Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and
negative cycle detection in undirected graphs cannot be
reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but
algorithms are different and significantly more involved than
those for directed graphs. One need to compute T-joins in the
relevant graph. Pretty painful stuff.

14



Bellman Ford Algorithm




Shortest path via number of hops




Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

15
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- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

Lemma , , ,
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo —...— VIS ashortest path from s to vy
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;
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Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?
Lemma

Let G be a directed graph with arbitrary edge lengths. If
S=Vg— Vi — Vo —...— VIS ashortest path from s to vy

then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

15



Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.
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Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1). Recursion for d(v, R):

d(v,R) = min {minuev(d(“’ kR—=1)+£u,v)).
d(v,kR —1)

Base case: d(s,0) =0 and d(v,0) = oo forall v # s.
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The Bellman-Ford Algorithm




Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)
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Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m)) Space: O(m + n?)

Space can be reduced to O(m + n). 18



Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each veVv do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}

for each veVv do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n)

19
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for k=1 to n—1 do
for each veVv do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}

for each veVv do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n) Do we need the in(V)

list?
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for each uev do
d(u) + o
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Bellman-Ford Algorithm: Cleaner version

for each uev do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each edge (u,v) € G do
d(v) = min{d(v),d(u) + £(u,v)}

for each veV do
dist(s, v) + d(v)

Running time: O(mn) Space: O(n)

Do we need the in(V) list?
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Bellman-Ford: Detecting negative
cycles




Negative cycles

What happens if we run this on a graph with negative cycles?

round s‘ a‘ b
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Negative cycles
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b
0 0 | o0 | o0
1 0] 1|
! - 2 0ol1/]0
3 11110
—

21



Negative cycles

What happens if we run this on a graph with negative cycles?
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Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b
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Correctness: detecting negative length cycle

Lemma .
Suppose G has a negative cycle C reachable from s. Then there

is some node v € C such that d(v,n) < d(v,n —1).

22



Correctness: detecting negative length cycle

Lemma .
Suppose G has a negative cycle C reachable from s. Then there

is some node v € C such that d(v,n) < d(v,n —1).

Proof.

Suppose not. Let C =vq; — v, — ... — v, — V4 be negative
length cycle reachable from s. d(v;,n — 1) is finite for1<i < h
since C is reachable from s. By assumption d(v,n) > d(v,n — 1)
for all v e C; implies no change in n'f iteration;

d(vi,n —1) = d(vj,n) for 1 <i < h. This means

d(vi,n —1) < d(vi_s,n —1) +£(vj_4,v;) for2 < i < hand

d(vi,n —1) < d(va,n —1) + £(vy, v1). Adding up all these
inequalities results in the inequality 0 < ¢(C) which contradicts
the assumption that ¢(C) < 0. O

22



Proof of Lemma in more detail...

d(V1, ﬂ) < d(Vo, M = 1) +€(V0, V1)
d(va,n) < d(vi,n —1) + (v, V2)

V1 Vg

. @ o 07) < V1.0 = 1)+ (v, )
S

Us V4
d(vkan) (Vf?—'lvn - 1) +€(Vf€—17vf€)
0,N

<d
d(V ) < d(vkan _1)+€(V/?a\/0)

23



Proof of Lemma in more detail...

(% Uy

Vo oo
(I @ “d(vi,n) < d(vi_r, ) + £(vi_1, V)

Us Vg

d(vk,n)
d(vo,n)

(Ve—1, ) + £(Vk—1, V&)

<d
< d(vka n) + f(Vkv VO)
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Proof of Lemma in more detail...
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Vo oo
(I @ “d(vi,n) < d(vi_r, ) + £(vi_1, V)

Us Vg

d(vk,n)

< d(Ve—1,n) + £(Ve—1, V)
d(vo, n) < d(Vk, n) + £(Vi, Vo)
k k R
D d(vi,n) <D d(vi,n) + > 6Via, Vi) + £(Vk, Vo)
i=0 i=0 =
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Proof of Lemma in more detail...

V1 Vg
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

R
0 <> 0(Vi1,vi) + Vi, Vo)-
i=1

23



Proof of Lemma in more detail...

V1 Vg
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

3
0 <> £(Viy,Vi) + Vi, Vo) = len(C).
i=1

23



Proof of Lemma in more detail...

U1

vy
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

3
0 <> £(Viy,Vi) + Vi, Vo) = len(C).
i=1

C is a not a negative cycle. Contradiction. O]

23



Negative cycles can not hide

Lemma restated .
If G does not has a negative length cycle reachable froms —

Yv: d(v,n) =d(v,n —1).

Also, d(v,n — 1) is the length of the shortest path between s
and v.

Put together are the following:

Lemma 4 ‘
G has a negative length cycle reachable from s <= there is

some node v such that d(v,n) < d(v,n —1).

2%



Bellman-Ford: Negative Cycle Detection - final version

for each uevVv do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each veV do
for each edge (u,v) € in(v) do
d(v) = min{d(v),d(u) + ¢(u,v)}
(= One more iteration to check if distances change =)
for each veVv do
for each edge (u,v) €in(v) do
if (d(v) > d(u)+€(u,v))
Output ~“Negative Cycle''

for each veVv do
dist(s, v) + d(v)

25



Variants on Bellman-Ford




Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm
proceeds.

- If d(v) becomes smaller it is because we found a vertex u
such that d(v) > d(u) + ¢(u,v) and we update
d(v) = d(u) + ¢(u,v). That is, we found a shorter path to v
through u.

- For each v have a prev(v) pointer and update it to point to
u if v finds a shorter path via u.

- At end of algorithm prev(v) pointers give a shortest path
tree oriented towards the source s.

26



Negative Cycle Detection

Negative Cycle Detection , '
Given directed graph G with arbitrary edge lengths, does it

have a negative length cycle?

27



Negative Cycle Detection

Negative Cycle Detection , '
Given directed graph G with arbitrary edge lengths, does it

have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C
that is reachable from a specific vertex s. There may
negative cycles not reachable from s.

- Run Bellman-Ford |V| times, once from each node u?

27



Negative Cycle Detection

- Add a new node s’ and connect it to all nodes of G with
zero length edges. Bellman-Ford from s’ will fill find a
negative length cycle if there is one. Exercise: why does
this work?

- Negative cycle detection can be done with one
Bellman-Ford invocation.

28



Shortest Paths in DAGs




Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e=(u,v), £(e) =£(u,v) is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

29



Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e=(u,v), £(e) =£(u,v) is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges
- Can order nodes using topological sort

29



Algorithm for S

- Want to find shortest paths from s. Ignore nodes not
reachable from s.

- Lets =vq,v2,Vj4,..., vy be a topological sort of G

30



Algorithm for S

- Want to find shortest paths from s. Ignore nodes not
reachable from s.

- Lets =vq,v2,Vj4,..., vy be a topological sort of G

Observation:

- shortest path from s to v; cannot use any node from
Vigts« -5 Vn
- can find shortest paths in topological sort order.

30



Shortest Paths for DAGs - Example
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Shortest Paths for DAGs - Example
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Algorithm for S

for i=1 to n do
d(s,vi) =
d(s,s)=0

for i=1 to n—1 do
for each edge (v,v;) in Adj(v;) do
d(s,v;) = min{d(s,v;), d(s,vi) + £(vi, ) }

return d(s,-) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative
edge lengths and hence can find longest paths in a DAG.

32



All Pairs Shortest Paths




Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, V),
¢(e) = t(u,v) is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

33



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

34



SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running
time: O((m + n)logn) with heaps and
O(m + nlog n) with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running
time: O(nm).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlog n) with heaps and
O(nm + n%log n) using advanced priority queues.
- Arbitrary edge lengths: O(n’m).
©(n*) if m =Q(n?).
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All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- Non-negative lengths. O(nmlog n) with heaps and
O(nm + n%log n) using advanced priority queues.
- Arbitrary edge lengths: O(n?m).
©(n*) if m =Q(n?).

Can we do better? -



All Pairs Shortest Paths: A recursive
solution




All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 dist(i,j,0) =
Q% dist(i,j, 1) =
W dist(i,j,2) =
100 dist(i,},3) =
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- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).
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W dist(i,j,2) =
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All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 O dist(i,j,0) = 100

Q% dist(i,j, 1) = 9

W dist(i,},2) = 8
100 dist(i,},3) =

36



All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).
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For the following graph, dist(i, }, 2) is...

19
2.10
3. M
4.12
515
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All-Pairs: Recursion on index of intermediate nodes

dist (4, k, k — 1) dist(k,j, k —1)

dist(i, j, k — 1)

dist(i,j, k — 1)

dist(i,j,R) =minq¢ , :
dist(i,R, kR — 1) 4+ dist(R,j,k — 1)

Base case: dist(i,j,0) = £(i,)) if (1,)) € E, otherwise co

Correctness: If I — j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length 38



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k,k,k—1) < 0 then G
has a negative length cycle containing k and dist(i,j,R) = —oc.

Recursion below is valid only if dist(k, R,k — 1) > 0. We can
detect this during the algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j,R) = minq¢ . .
dist(i, kR, R — 1) + dist(k,j, R — 1)
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Floyd-Warshall algorithm




Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i, )
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i, )
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time:



Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i, )
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(«',j,fe)min{d('_”’k”’ _
d(i, kR — 1)+ d(k,j, k — 1)
for i=1 to n do

if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n%).
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Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i, )
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n%).
Correctness: via induction and recursive definition



Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?
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Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n x n array Next that stores the next vertex on
shortest path for each pair of vertices

- With array Next, for any pair of given vertices i,j can
compute a shortest path in O(n) time.
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Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = €(i,))
(* £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,J) = —

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(R,j,k—1)) then
d(i,j,R) = d(i,R, R —1) +d(R,j, kR —1)
Next(i,j) = R
for i=1 to n do
if (d(i,i,n) <0) then
Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i,j describe an

O(n) algorithm to find a I-j shortest path.
42



Summary of shortest path algorithms




Summary of results on shortest paths

Single source
No negative edges Dijkstra O(nlogn + m)
Edge lengths can be negative | Bellman Ford | O(nm)

All Pairs Shortest Paths

No negative edges | n * Dijkstra \ 0(n?logn +nm) ‘
No negative cycles | n * Bellman Ford 0(n*m) = 0(n*)
No negative cycles | Johnson's' O(nm + n?logn)
No negative cycles | Floyd-Warshall 0(n%)
Unweighted Matrix multiplication 2 | O(n?38), O(n?8)
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Summary of results on shortest paths

(1): The algorithm for the case that there are no negative
cycles, and doing all shortest paths, works by computing a
potential function using Bellman-Ford and then doing Dijkstra.
It is mentioned for the sake of completeness, but it outside the
scope of the class.

(2): https://resources.mpi-inf.mpg.de/
departments/d1l/teaching/ss12/
AdvancedGraphAlgorithms/Slides14.pdf
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