

Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are
white and some are blue. You are given two distinct vertices u
and v and want to find a walk [u — v] such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge

oo

Develop a algorithm to find a path with these edge constrints.

ECE-374-B: Lecture 18 - Bellman-Ford and
Dynamic Programming on Graphs

Instructor: Nickvash Kani
March 28, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

You have a graph G(V,E). Some of the edges are red, some are
white and some are blue. You are given two distinct vertices u
and v and want to find a walk [u — v] such that:

- a white edge must be taken after a red edge only.

- a blue edge must be taken after a white edge only.

- and a red edge may be taken after a blue edge only.
- must start on red edge

oo

Develop a algorithm to find a path with these edge constrints.

OO

ORNOP O,

)

& O O

Shortest Paths with Negative Length
Edges

Why Dijkstra’s algorithm fails with
negative edges

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path

Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, V),
¢(e) = ¢(u,v) is its length.
- Given nodes s, t find
shortest path from s to

t.

- Given node s find
shortest path from s to
all other nodes.

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path

Problems
Input: A directed graph

G = (V, E) with arbitrary
(including negative) edge
lengths. For edge e = (u, V),
¢(e) = ¢(u,v) is its length.
- Given nodes s, t find
shortest path from s to

t.

- Given node s find
shortest path from s to
all other nodes.

What are the distances computed by Dijkstra’s algorithm?

The distance as com-
puted by Dijkstra algo-
rithm starting from s:

1.s=0,x=5y=1,

z=0.
2.5=0,x=1y=2,
z=>5.
3.5=0,x=5,y=1,
z7=2.

4. IDK.

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

Dijkstra’s Algorithm and Negative Lengths

With negative length edges, Dijkstra’s algorithm can fail

False assumption: Dijkstra’s algorithm is based on the
assumption that if s — vo — vy — v5... — Vv is a shortest path
from s to v, then dist(s, v;) < dist(s, vj,q) for 0 <i < k. Holds
true only for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vy — ... — Vp IS a shortest path from s to vy,
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vy — ... — Vp IS a shortest path from s to vy,
then for1<i < k:
©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

- False: dist(s, v;) < dist(s,vg) for 1 <i < k. Holds true only
for non-negative edge lengths.

Shortest Paths with Negative Lengths

Lemma
Let G be a directed graph with arbitrary edge lengths. If

S=Vy— Vi — Vy — ... — Vp IS a shortest path from s to vy,
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

- False: dist(s, v;) < dist(s,vg) for 1 <i < k. Holds true only
for non-negative edge lengths.

Cannot explore nodes in increasing order of distance! We need
other strategies.

Why can’t we just re-normalize the
edge lengths!?

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
10 13
(= ==
2 1
3 6

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
10 13
(= ==
2 1
3 6

Shortest Path: s —a —-c —t Shortest Path: s - b — t

Instinctual thought

Why can’t we simply add a weight to each edge so that the
shortest length is 0 (or positive).

5 1 8 4
Cb) 10 Cb) 13
o 1
3 6
O J
Shortest Path: s —a —-c —t Shortest Path: s - b — t

Adding weights to edges penalizes paths with more edges.

But wait! Things get worse: Negative
cycles

Negative Length Cycles

Definition ,
A cycle C is a negative length cycle if the sum of the edge

lengths of C is negative.

Negative Length Cycles

Definition ,
A cycle C is a negative length cycle if the sum of the edge

lengths of C is negative.

Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge

lengths of C is negative.

What is the shortest path distance between s and t?

Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

10

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- G has a negative length cycle C, and
- s can reach C and C can reach t.

Question: What is the shortest distance from s to t?

Possible answers: Define shortest distance to be:

- undefined, that is —oo, OR
- the length of a shortest simple path from s to t.

10

Really bad new about negative edges, and shortest path...

Lemma . , ,
If there is an efficient algorithm to find a shortest simple s — t

path in a graph with negative edge lengths, then there is an
efficient algorithm to find the longest simple s — t path in a
graph with positive edge lengths.

Finding the s — t longest path is difficult. NP-HARD!

n

Restating problem of Shortest path
with negative edges

Alternatively: Finding Shortest Walks

Given a graph G = (V, E):

- A path is a sequence of distinct vertices vy, vo, ..., Vg such
that (vj,vjyq) € Efor1<i<k-—1.
- A walk is a sequence of vertices vq, v, ..., V, such that

(vi,Vipq) € Efor1<i< k-1 Vertices are allowed to
repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

- If there is a walk from u to v that contains negative length
cycle then dist(u,v) = —o0
- Else there is a path with at most n — 1 edges whose length

is equal to the length of a shortest walk and dist(u, v) is
finite

Helpful to think about walks 12

Shortest Paths with Negative Edge Lengths - Problems

Algorithmic Problems
Input: A directed graph G = (V, E) with edge lengths (could be

negative). For edge e = (u, V), £(e) = £(u, V) is its length.
Questions:

- Given nodes s, t, either find a negative length cycle C that
s can reach or find a shortest path from s to t.

- Given node s, either find a negative length cycle C that s
can reach or find shortest path distances from s to all
reachable nodes.

- Check if G has a negative length cycle or not.

13

Shortest Paths with Negative Edge Lengths - In Undirected

Graphs

Note: With negative lengths, shortest path problems and
negative cycle detection in undirected graphs cannot be
reduced to directed graphs by bi-directing each undirected
edge. Why?

Problem can be solved efficiently in undirected graphs but
algorithms are different and significantly more involved than
those for directed graphs. One need to compute T-joins in the
relevant graph. Pretty painful stuff.

14

Bellman Ford Algorithm

Shortest path via number of hops

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

15

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?

- What are the smaller sub-problems?

Lemma , , ,
Let G be a directed graph with arbitrary edge lengths. If

S=Vg— Vi — Vo —...— VIS ashortest path from s to vy
then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

15

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?
Lemma

Let G be a directed graph with arbitrary edge lengths. If
S=Vg— Vi — Vo —...— VIS ashortest path from s to vy

then for1<i < k:

©S=Vy— Vi — Vy — ... — VIS ashortest path from s to v;

Sub-problem idea: paths of fewer hops/edges

15

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1).

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1). Recursion for d(v, R):

Hop-based Recursion: Bellman-Ford Algorithm

Single-source problem: fix source s.
Assume that all nodes can be reached by sin G
Assume G has no negative-length cycle (for now).

d(v,R): shortest walk length from s to v using at most k edges.

Note: dist(s,v) = d(v,n —1). Recursion for d(v, R):

d(v,R) = min {minuev(d(“’ kR—=1)+£u,v)).
d(v,kR —1)

Base case: d(s,0) =0 and d(v,0) = oo forall v # s.

round s‘a‘b‘c‘d‘e‘f‘

a

S

O|loo| oo | oo | 0| 00| 0o

round

17

(0. O2N ENC N INC ¢

a

S

O|loo| oo | oo | 0| 00| 0o

round

17

(0. O2N ENC N INC ¢

a

S

O|loo| oo | oo | 0| 00| 0o

round

17

11

(0. OXN BNG ORN NG ¢}

a

S

O|loo| oo | oo |00]| 00| 0

round

17

11

(0. OXN BNG ORN NG ¢}

a

S

O|loo| oo | oo |00]| 00| 0

round

17

11

(0. OXN BNG ORN NG ¢}

a

S

O|loo| oo | oo |00]| 00| 0

round

17

11

(0. OXN BNG ORN NG ¢}

a

S

O|loo| oo | oo |00]| 00| 0

round

17

11

(0. OXN BNG ORN NG ¢}

a

S

O|loo| oo | oo |00]| 00| 0

round

17

The Bellman-Ford Algorithm

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time:

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m))

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n 4+ m)) Space:

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m)) Space: O(m + n?)

Bellman-Ford Algorithm

Create in(G) list from adj(G)

for each uevVv do
d(u,0) +
d(s,0) + 0

for k=1 to n—1 do
for each veVv do
d(v, k) « d(v,k —1)
for each edge (u,v) €in(v) do
d(v, k) = min{d(v, k), d(u, k — 1) + £(u,v)}

for each veVv do
dist(s,Vv) < d(v,n —1)

Running time: O(n(n + m)) Space: O(m + n?)

Space can be reduced to O(m + n). 18

Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each veVv do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}

for each veVv do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n)

19

Bellman-Ford Algorithm: Cleaner version

for each ueVv do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each veVv do
for each edge (u,v) €in(v) do
d(v) = min{d(v),d(u) + £(u,v)}

for each veVv do
dist(s, v) « d(v)

Running time: O(mn) Space: O(m + n) Do we need the in(V)

list?

19

Bellman-Ford Algorithm: Cleaner version

for each uev do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each edge (u,v) € G do
d(v) = min{d(v),d(u) + £(u,v)}

for each veV do
dist(s, v) + d(v)

Running time: O(mn) Space: O(n)

20

Bellman-Ford Algorithm: Cleaner version

for each uev do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each edge (u,v) € G do
d(v) = min{d(v),d(u) + £(u,v)}

for each veV do
dist(s, v) + d(v)

Running time: O(mn) Space: O(n)

Do we need the in(V) list?

20

Bellman-Ford: Detecting negative
cycles

Negative cycles

What happens if we run this on a graph with negative cycles?

round s‘ a‘ b

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b

0O | 0|0

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a b
0 0| o0
1 0 1

8

8

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round
0
1
2

o818 |o

Pl

ool wn

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b
0 0 | o0 | o0
1 0] 1|
! - 2 0ol1/]0
3 11110
—

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round

Olr|r|~|8 |
o|lo|lo|® |8 |o

A

|
—_
@
W
[|

(ARG SN

21

Negative cycles

What happens if we run this on a graph with negative cycles?

round | s | a | b

0 0 | o0 | o0

1 0] 1|

! - 2 0ol1/]0
3 -1 110

T @ 4 |-110]0
5 -1 0] -1

21

Correctness: detecting negative length cycle

Lemma .
Suppose G has a negative cycle C reachable from s. Then there

is some node v € C such that d(v,n) < d(v,n —1).

22

Correctness: detecting negative length cycle

Lemma .
Suppose G has a negative cycle C reachable from s. Then there

is some node v € C such that d(v,n) < d(v,n —1).

Proof.

Suppose not. Let C =vq; — v, — ... — v, — V4 be negative
length cycle reachable from s. d(v;,n — 1) is finite for1<i < h
since C is reachable from s. By assumption d(v,n) > d(v,n — 1)
for all v e C; implies no change in n'f iteration;

d(vi,n —1) = d(vj,n) for 1 <i < h. This means

d(vi,n —1) < d(vi_s,n —1) +£(vj_4,v;) for2 < i < hand

d(vi,n —1) < d(va,n —1) + £(vy, v1). Adding up all these
inequalities results in the inequality 0 < ¢(C) which contradicts
the assumption that ¢(C) < 0. O

22

Proof of Lemma in more detail...

d(V1, ﬂ) < d(Vo, M = 1) +€(V0, V1)
d(va,n) < d(vi,n —1) + (v, V2)

V1 Vg

. @ o 07) < V1.0 = 1)+ (v,)
S

Us V4
d(vkan) (Vf?—'lvn - 1) +€(Vf€—17vf€)
0,N

<d
d(V) < d(vkan _1)+€(V/?a\/0)

23

Proof of Lemma in more detail...

(% Uy

Vo oo
(I @ “d(vi,n) < d(vi_r,) + £(vi_1, V)

Us Vg

d(vk,n)
d(vo,n)

(Ve—1,) + £(Vk—1, V&)

<d
< d(vka n) + f(Vkv VO)

23

Proof of Lemma in more detail...

(% Uy

Vo oo
(I @ “d(vi,n) < d(vi_r,) + £(vi_1, V)

Us Vg

d(vk,n)

< d(Ve—1,n) + £(Ve—1, V)
d(vo, n) < d(Vk, n) + £(Vi, Vo)
k k R
D d(vi,n) <D d(vi,n) + > 6Via, Vi) + £(Vk, Vo)
i=0 i=0 =

23

Proof of Lemma in more detail...

V1 Vg
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

R
0 <> 0(Vi1,vi) + Vi, Vo)-
i=1

23

Proof of Lemma in more detail...

V1 Vg
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

3
0 <> £(Viy,Vi) + Vi, Vo) = len(C).
i=1

23

Proof of Lemma in more detail...

U1

vy
Vo
Us V4
k k R
D d(vi,n) <D d(vi,n) + > Vi, Vi) + £(Vk, Vo)
i=0 =0 =

3
0 <> £(Viy,Vi) + Vi, Vo) = len(C).
i=1

C is a not a negative cycle. Contradiction. O]

23

Negative cycles can not hide

Lemma restated .
If G does not has a negative length cycle reachable froms —

Yv: d(v,n) =d(v,n —1).

Also, d(v,n — 1) is the length of the shortest path between s
and v.

Put together are the following:

Lemma 4 ‘
G has a negative length cycle reachable from s <= there is

some node v such that d(v,n) < d(v,n —1).

2%

Bellman-Ford: Negative Cycle Detection - final version

for each uevVv do
d(u) + o
d(s) « 0

for k=1 to n—1 do
for each veV do
for each edge (u,v) € in(v) do
d(v) = min{d(v),d(u) + ¢(u,v)}
(= One more iteration to check if distances change =)
for each veVv do
for each edge (u,v) €in(v) do
if (d(v) > d(u)+€(u,v))
Output ~“Negative Cycle''

for each veVv do
dist(s, v) + d(v)

25

Variants on Bellman-Ford

Finding the Paths and a Shortest Path Tree

How do we find a shortest path tree in addition to distances?

- For each v the d(v) can only get smaller as algorithm
proceeds.

- If d(v) becomes smaller it is because we found a vertex u
such that d(v) > d(u) + ¢(u,v) and we update
d(v) = d(u) + ¢(u,v). That is, we found a shorter path to v
through u.

- For each v have a prev(v) pointer and update it to point to
u if v finds a shorter path via u.

- At end of algorithm prev(v) pointers give a shortest path
tree oriented towards the source s.

26

Negative Cycle Detection

Negative Cycle Detection , '
Given directed graph G with arbitrary edge lengths, does it

have a negative length cycle?

27

Negative Cycle Detection

Negative Cycle Detection , '
Given directed graph G with arbitrary edge lengths, does it

have a negative length cycle?

- Bellman-Ford checks whether there is a negative cycle C
that is reachable from a specific vertex s. There may
negative cycles not reachable from s.

- Run Bellman-Ford |V| times, once from each node u?

27

Negative Cycle Detection

- Add a new node s’ and connect it to all nodes of G with
zero length edges. Bellman-Ford from s’ will fill find a
negative length cycle if there is one. Exercise: why does
this work?

- Negative cycle detection can be done with one
Bellman-Ford invocation.

28

Shortest Paths in DAGs

Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e=(u,v), £(e) =£(u,v) is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

29

Shortest Paths in a

Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V, E) with arbitrary
(including negative) edge lengths. For edge
e=(u,v), £(e) =£(u,v) is its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs

- No cycles and hence no negative length cycles! Hence can
find shortest paths even for negative length edges
- Can order nodes using topological sort

29

Algorithm for S

- Want to find shortest paths from s. Ignore nodes not
reachable from s.

- Lets =vq,v2,Vj4,..., vy be a topological sort of G

30

Algorithm for S

- Want to find shortest paths from s. Ignore nodes not
reachable from s.

- Lets =vq,v2,Vj4,..., vy be a topological sort of G

Observation:

- shortest path from s to v; cannot use any node from
Vigts« -5 Vn
- can find shortest paths in topological sort order.

30

Shortest Paths for DAGs - Example

R ©

@

Shortest Paths for DAGs - Example

R ©

@

Algorithm for S

for i=1 to n do
d(s,vi) =
d(s,s)=0

for i=1 to n—1 do
for each edge (v,v;) in Adj(v;) do
d(s,v;) = min{d(s,v;), d(s,vi) + £(vi,) }

return d(s,-) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative
edge lengths and hence can find longest paths in a DAG.

32

All Pairs Shortest Paths

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths (or costs). For edge e = (u, V),
¢(e) = t(u,v) is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.

- Find shortest paths for all pairs of nodes.

33

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

34

SSSP: Single-Source Shortest Paths

Single-Source Shortest Path Problems
Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Given nodes s, t find shortest path from s to t.

- Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running
time: O((m + n)logn) with heaps and
O(m + nlog n) with advanced priority queues.
Bellman-Ford algorithm for arbitrary edge lengths. Running
time: O(nm).

34

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.

35

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
- Non-negative lengths. O(nmlog n) with heaps and
O(nm + n%log n) using advanced priority queues.
- Arbitrary edge lengths: O(n’m).
©(n*) if m =Q(n?).

35

All-Pairs Shortest Paths - Using known algorithms...

All-Pairs Shortest Path Problem

Input A (undirected or directed) graph G = (V, E) with
edge lengths. For edge e = (u,v), (e) = ¢(u,V) is
its length.

- Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.

- Non-negative lengths. O(nmlog n) with heaps and
O(nm + n%log n) using advanced priority queues.
- Arbitrary edge lengths: O(n?m).
©(n*) if m =Q(n?).

Can we do better? -

All Pairs Shortest Paths: A recursive
solution

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 dist(i,j,0) =
Q% dist(i,j, 1) =
W dist(i,j,2) =
100 dist(i,},3) =

36

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 dist(i,j,0) = 100
Q% dist(i,j, 1) =
W dist(i,j,2) =
100 dist(i,},3) =

36

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 O dist(i,j,0) = 100

Q% dist(i,j, 1) = 9
W dist(i,j,2) =
100 dist(i,},3) =

36

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

4 O dist(i,j,0) = 100

Q% dist(i,j, 1) = 9

W dist(i,},2) = 8
100 dist(i,},3) =

36

All-Pairs: Recursion on index of intermediate nodes

- Number vertices arbitrarily as v, Vs, ..., Vp

» dist(l,J, k): length of shortest walk from v; to v; among all
walks in which the largest index of an intermediate node is
at most k (could be —co if there is a negative length cycle).

36

For the following graph, dist(i, }, 2) is...

19
2.10
3. M
4.12
515

37

All-Pairs: Recursion on index of intermediate nodes

dist (4, k, k — 1) dist(k,j, k —1)

dist(i, j, k — 1)

dist(i,j, k — 1)

dist(i,j,R) =minq¢ , :
dist(i,R, kR — 1) 4+ dist(R,j,k — 1)

Base case: dist(i,j,0) = £(i,)) if (1,)) € E, otherwise co

Correctness: If I — j shortest walk goes through k then k occurs
only once on the path — otherwise there is a negative length 38

All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k,k,k—1) < 0 then G
has a negative length cycle containing k and dist(i,j,R) = —oc.

Recursion below is valid only if dist(k, R,k — 1) > 0. We can
detect this during the algorithm or wait till the end.

dist(i,j, k — 1)

dist(i,j,R) = minq¢ . .
dist(i, kR, R — 1) + dist(k,j, R — 1)

39

Floyd-Warshall algorithm

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i,)
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

40

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i,)
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time:

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i,)
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(«',j,fe)min{d('_”’k”’ _
d(i, kR — 1)+ d(k,j, k — 1)
for i=1 to n do

if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n%).
40

Floyd-Warshall Algorithm - for All-Pairs Shortest Paths

ip =t d(i,j.k—1)
= mn d(i kR — 1)+ d(k,j, R — 1)

for i=1 to n do
for j=1 to n do
d(i,j, 0) = £(i,)
(% £(i,j) =00 if (i,j)¢E, 0 if i=j *)

for k=1 to n do
for i=1 to n do
for j=1 to n do
d(i,j, k=1,
d(ij, k) = min 4 SR
d(i, kR — 1)+ d(k,j, k — 1)

for i=1 to n do
if (dist(i,i,n) <0) then
Output 3 negative cycle in G

Running Time: ©(n3). Space: ©(n%).
Correctness: via induction and recursive definition

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

41

Floyd-Warshall Algorithm: Finding the Paths

Question: Can we find the paths in addition to the distances?

- Create a n x n array Next that stores the next vertex on
shortest path for each pair of vertices

- With array Next, for any pair of given vertices i,j can
compute a shortest path in O(n) time.

41

Floyd-Warshall Algorithm - Finding the Paths

for i=1 to n do
for j=1 to n do

d(i,j,0) = €(i,))
(* £(i,j) =00 if (i,j) not edge, 0 if i=j *)
Next(i,J) = —

for k=1 to n do
for i=1 to n do
for j=1 to n do
if (d(i,j,k—1)>d(i,k,k—1)+d(R,j,k—1)) then
d(i,j,R) = d(i,R, R —1) +d(R,j, kR —1)
Next(i,j) = R
for i=1 to n do
if (d(i,i,n) <0) then
Output that there is a negative length cycle in G

Exercise: Given Next array and any two vertices i,j describe an

O(n) algorithm to find a I-j shortest path.
42

Summary of shortest path algorithms

Summary of results on shortest paths

Single source
No negative edges Dijkstra O(nlogn + m)
Edge lengths can be negative | Bellman Ford | O(nm)

All Pairs Shortest Paths

No negative edges | n * Dijkstra \ 0(n?logn +nm) ‘
No negative cycles | n * Bellman Ford 0(n*m) = 0(n*)
No negative cycles | Johnson's' O(nm + n?logn)
No negative cycles | Floyd-Warshall 0(n%)
Unweighted Matrix multiplication 2 | O(n?38), O(n?8)

43

Summary of results on shortest paths

(1): The algorithm for the case that there are no negative
cycles, and doing all shortest paths, works by computing a
potential function using Bellman-Ford and then doing Dijkstra.
It is mentioned for the sake of completeness, but it outside the
scope of the class.

(2): https://resources.mpi-inf.mpg.de/
departments/d1l/teaching/ss12/
AdvancedGraphAlgorithms/Slides14.pdf

44

https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss12/AdvancedGraphAlgorithms/Slides14.pdf

Fin

	Shortest Paths with Negative Length Edges
	Why Dijkstra's algorithm fails with negative edges
	Why can't we just re-normalize the edge lengths!?
	But wait! Things get worse: Negative cycles
	Restating problem of Shortest path with negative edges
	Bellman Ford Algorithm
	Shortest path via number of hops
	The Bellman-Ford Algorithm
	Bellman-Ford: Detecting negative cycles
	Variants on Bellman-Ford
	Shortest Paths in DAGs
	All Pairs Shortest Paths
	All Pairs Shortest Paths: A recursive solution
	Floyd-Warshall algorithm
	Summary of shortest path algorithms
	Fin

