
1

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

1

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani
August 24, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

LANDN =

8
>>>><

>>>>:

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

(1)

This is an example of a regular language which we’ll be
discussing today.

2

I 0 0 I p0 0

o 0 0 O 0

Canon o o

9111 fl
i

is

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

LANDN =

8
>>>><

>>>>:

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

(1)

This is an example of a regular language which we’ll be
discussing today.

2

t

0

A canon

Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

LANDN =

8
>>>><

>>>>:

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

(1)

This is an example of a regular language which we’ll be
discussing today.

2

Chomsky Hierarchy

regular
context free

context sensitive

recursively enumerable (decidable)

non recursively enumerable (undecidable)

3

two Lw that Lwf l II L

Chomsky Hierarchy

regular
context free

context sensitive

recursively enumerable (decidable)

non recursively enumerable (undecidable)

3

l

Regular Languages

Regular Languages

Theorem (Kleene’s Theorem)

A language is regular if and only if it can be obtained from
finite languages by applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.

4

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively.

Base Case

• ; is a regular language.
• {✏} is a regular language.
• {a} is a regular language for each a 2 ⌃. Interpreting a as
string of length 1.

5

Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 [L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L⇤ = [n�0Ln is regular.
The ·⇤ operator name is Kleene star.

• If L is regular, then so is L = ⌃⇤ \ L.

Regular languages are closed under operations of union,
concatenation and Kleene star.

6

Coils
Go UL
0113 on

Use U U
m oh

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| 100}. Why?

7

E a 63

Base 0
E a B abas

Laa to

Laba La Li La

Labbabbab La Lb Lb La G Lo La Ly

Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w| 100}. Why?

7

3

La U Labaab U Casa I Ly

Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of
such operations is regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet ⌃. Then the
language [1

i=1Li is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

8

Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of
such operations is regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet ⌃. Then the
language [1

i=1Li is not necessarily regular.

Note:Kleene star (repetition) is a single operation!

8

Regular Languages - Example

Example: The language L01 = 0i1j| for all i, j � 0 is regular:

9

2 20,50 3
SEE
03

Lo Lot 297 L it

Rapid-fire questions - regular languages

1. L1 =
n
0i

��� i = 0, 1, . . . ,1
o
. The language L1 is regular. T/F?

2. L2 =
n
017i

��� i = 0, 1, . . . ,1
o
. The language L2 is regular.

T/F?
3. L3 =

n
0i

��� i is divisible by 2, 3,or 5
o
. L3 is regular. T/F?

4. L4 = {w 2 {0, 1}⇤ | w has at most 2 1s}. L4 is regular. T/F?

10

4 Unto 2

L U Lo Ult

Lt HE E U 03 U 003 U

E O 00

Rapid-fire questions - regular languages

1. L1 =
n
0i

��� i = 0, 1, . . . ,1
o
. The language L1 is regular. T/F?

2. L2 =
n
017i

��� i = 0, 1, . . . ,1
o
. The language L2 is regular.

T/F?

3. L3 =
n
0i

��� i is divisible by 2, 3,or 5
o
. L3 is regular. T/F?

4. L4 = {w 2 {0, 1}⇤ | w has at most 2 1s}. L4 is regular. T/F?

10

4
st5

Rapid-fire questions - regular languages

1. L1 =
n
0i

��� i = 0, 1, . . . ,1
o
. The language L1 is regular. T/F?

2. L2 =
n
017i

��� i = 0, 1, . . . ,1
o
. The language L2 is regular.

T/F?
3. L3 =

n
0i

��� i is divisible by 2, 3,or 5
o
. L3 is regular. T/F?

4. L4 = {w 2 {0, 1}⇤ | w has at most 2 1s}. L4 is regular. T/F?

10

O O

Lo's Lo Ly
230s Lo Lo Lf
o's Lo Lo Lo Lo Co

23 220 s U 430 s U Lo's

Rapid-fire questions - regular languages

1. L1 =
n
0i

��� i = 0, 1, . . . ,1
o
. The language L1 is regular. T/F?

2. L2 =
n
017i

��� i = 0, 1, . . . ,1
o
. The language L2 is regular.

T/F?
3. L3 =

n
0i

��� i is divisible by 2, 3,or 5
o
. L3 is regular. T/F?

4. L4 = {w 2 {0, 1}⇤ | w has at most 2 1s}. L4 is regular. T/F?

10

O

is Lo

L Lins 4 2 let

n out L

Regular Expressions

Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.

11

Inductive Definition

A regular expression r over an alphabet ⌃ is one of the
following:
Base cases:

• ; denotes the language ;
• ✏ denotes the language {✏}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 [R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)⇤ denotes the language R⇤1

12

Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

; regular ; denotes ;
{✏} regular ✏ denotes {✏}
{a} regular for a 2 ⌃ a denote {a}
R1 [R2 regular if both are r1 + r2 denotes R1 [R2
R1R2 regular if both are r1·r2 denotes R1R2
R⇤ is regular if R is r⇤ denote R⇤

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language

13

o l i 03

LG L

Ra Lau Lo a 63 at

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s.

14

030203 03

Ot O O t U

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s.

14

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s.

14

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s.

14

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s.

14

Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [s, r|s all denote union. rs is
sometimes written as r·s. 14

Some examples of regular
expressions

Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

15

0 1 1011

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?

3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

15

0 1 11

0 1 00 17014644

Cot
L

Otl Otl o 1
t

t Cox 1 o ti Cot 1 Co It

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?

4. All strings that do not contain the substring 10?

15

pl

17 E O C I e o 1 7

14 1 014 1 0 M O M

1 o H o 1
00

Creating regular expressions

1. All strings that end in 1011?
2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?

15

Interpreting regular expressions

1. (0+ 1)⇤:

2. (0+ 1)⇤001(0+ 1)⇤:
3. 0⇤ + (0⇤10⇤10⇤10⇤)⇤:
4. (✏+ 1)(01)⇤(✏+ 0):

16

All bi any strings

Interpreting regular expressions

1. (0+ 1)⇤:
2. (0+ 1)⇤001(0+ 1)⇤:

3. 0⇤ + (0⇤10⇤10⇤10⇤)⇤:
4. (✏+ 1)(01)⇤(✏+ 0):

16

All string that

hare 001 as a substving

Interpreting regular expressions

1. (0+ 1)⇤:
2. (0+ 1)⇤001(0+ 1)⇤:
3. 0⇤ + (0⇤10⇤10⇤10⇤)⇤:

4. (✏+ 1)(01)⇤(✏+ 0):

16

All string whose

s is divisible

by 3

Interpreting regular expressions

1. (0+ 1)⇤:
2. (0+ 1)⇤001(0+ 1)⇤:
3. 0⇤ + (0⇤10⇤10⇤10⇤)⇤:
4. (✏+ 1)(01)⇤(✏+ 0):

16

Alternating

Tying everything together

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with an input alphabet ⌃i = {0, 1} and
has an output (y) which is the logical AND of all the elements
of x. We knwo the language used to describe it is:

LANDN =

8
>>>><

>>>>:

0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

Formulate the regular expression which describes the above
language:

⌃ = {0, 1, ‘·’, ‘|’}

rANDN = (“0·” + “1·”)⇤“0·”(“0·” + “1·”)⇤“|0”| {z }
all output 0 instances

+

all output 1 instancesz }| {
(“1·”)⇤“|1”

17

Tying everything together

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with an input alphabet ⌃i = {0, 1} and
has an output (y) which is the logical AND of all the elements
of x. We knwo the language used to describe it is:

LANDN =

8
>>>><

>>>>:

0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

Formulate the regular expression which describes the above
language: ⌃ = {0, 1, ‘·’, ‘|’}

rANDN = (“0·” + “1·”)⇤“0·”(“0·” + “1·”)⇤“|0”| {z }
all output 0 instances

+

all output 1 instancesz }| {
(“1·”)⇤“|1”

17O

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

The regular expression is
�
00+ 11

�⇤
(01+ 10)

⇣
00+ 11+(01+ 10)(00+ 11)⇤(01+ 10)

⌘⇤

(Solved using techniques to be presented in the following
lectures...)

18

Bit strings with odd number of 0s and 1s

The regular expression is
�
00+ 11

�⇤
(01+ 10)

⇣
00+ 11+(01+ 10)(00+ 11)⇤(01+ 10)

⌘⇤

(Solved using techniques to be presented in the following
lectures...)

18

Bit strings with odd number of 0s and 1s

The regular expression is
�
00+ 11

�⇤
(01+ 10)

⇣
00+ 11+(01+ 10)(00+ 11)⇤(01+ 10)

⌘⇤

(Solved using techniques to be presented in the following
lectures...)

18

