Formulate a **language** that describes the above problem.

ECE-374-B: Lecture 1 - Regular Languages

Lecturer: Nickvash Kani

August 24, 2023

University of Illinois at Urbana-Champaign

Formulate a **language** that describes the above problem.

 $D_{i} = 0$ 1.21 1111 17

Formulate a **language** that describes the above problem.

Formulate a **language** that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
(1)

This is an example of a regular language which we'll be discussing today.

3

Regular Languages

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- Repetition

a finite number of times.

A class of simple but useful languages. The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- $\cdot \ \emptyset$ is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If *L* is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The \cdot^* operator name is Kleene star.
- If *L* is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are <mark>closed</mark> under operations of union, concatenation and Kleene star.

U Lu ULU

Lemma If w is a string then $L = \{w\}$ is regular.

Example: {*aba*} or {*abbabbab*}. Why?

Base 4 263 203 263 La 40 > Jabaz

Lata = La · Lj · La

Labba bbab = Lailbilailailbilailb

Lemma If w is a string then $L = \{w\}$ is regular.

```
Example: {aba} or {abbabbab}. Why?
```

Lemma Every finite language L is regular.

Examples: $L_{3} = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why? La U Labaab U Laba = L_{3} Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note:Kleene star (repetition) is a **single** operation!

ular Languages - Example $\xi = \xi_0, \xi_1, \xi_2, \xi_3$ Example: The language $L_{01} = 0^{i_1j_1}$ for all $i, j \ge 0$ is regular: $L_e = \xi_e \xi_a$ $L_e = \xi_e \xi_a$

 $lon = lo* \cdot l_1$

1. $L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$. The language L_1 is regular. T/F? 2 = (20) = 0- 10 U LO ULP L = L* · L* = SEZUZOZUZOJUZOOJU

= {E, 0, 00,}

 L₁ = {0ⁱ | i = 0, 1, ..., ∞}. The language L₁ is regular. T/F?
 L₂ = {0¹⁷ⁱ | i = 0, 1, ..., ∞}. The language L₂ is regular. T/F?

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, ..., \infty \right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, ..., \infty \right\}$. The language L_2 is regular.
T/F?
3. $L_3 = \left\{ 0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5 \right\}$. L_3 is regular.
T/F?
 $L_{20's} = \left(L_0 \cdot L_0 \right)^{*}$
 $L_{30's} = \left(L_0 \cdot L_0 \right)^{*}$
 $L_{50's} = \left(L_0 \cdot L_0 \right)^{*}$
 $L_5 \circ s = \left(L_0 \cdot L_0 \cdot L_0 \right)^{*}$
 $L_3 = L_{20's} \cup L_{30's} \cup L_{50's} = 10$

1.
$$L_1 = \left\{ \begin{array}{l} 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language L_1 is regular. T/F?
2. $L_2 = \left\{ \begin{array}{l} 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?
3. $L_3 = \left\{ \begin{array}{l} 0^i \mid i \text{ is divisible by } 2, 3, \text{ or } 5 \right\}$. L_3 is regular. T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$. L_4 is regular T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$. L_4 is regular T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$. L_4 is regular T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$. L_4 is regular T/F?
4. $L_4 = \{w \in \{0, 1\}^* \mid w \text{ has at most } 2 \text{ 1s}\}$. L_4 is regular T/F?
4. $L_{11's} = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_2 L_1 \overset{*}{} L_2 L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_2 L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_2 L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_2 L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_2 \overset{*}{} L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_1 \overset{*}{} S = L_0 \overset{*}{} L_1 L_0 \overset{*}{} L_1 \overset{*}{} S = L_0 \overset{*}{}$

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene
 who has a star names after him ¹.

A regular expression \mathbf{r} over an alphabet $\boldsymbol{\Sigma}$ is one of the following:

Base cases:

- $\cdot \ \emptyset$ denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r_1} + \mathbf{r_2})$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(\mathbf{r}_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

R = LaULB = {a, 6} - arb

• For a regular expression **r**, *L*(**r**) is the language denoted by **r**. Multiple regular expressions can denote the same language!

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

Example: (0 + 1) and (1 + 0) denotes same language $\{0, 1\}$

• Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

- Two regular expressions r_1 and r_2 are equivalent if $L(r_1) = L(r_2)$.
- Omit parenthesis by adopting precedence order: $*, \cdot, +$. **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each operation. **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if L(r) = R then $L(r^+) = R^+$.
- Other notation: r + s, $r \cup s$, r|s all denote union. rs is sometimes written as $r \cdot s$.

Some examples of regular expressions

1. All strings that end in 1011? $(O \neq 1)^{*} ! O ! (O \neq 1)^{*}$

- 1. All strings that end in 1011?
- 2. All strings except 11?

1. All strings that end in 1011? 2. All strings except 11? 3. All strings that do not contain 000 as a subsequence? (15* (E+0) (15* (E+0) (15* 1* + 1× 01* + 1* 01* 01*

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

Interpreting regular expressions

1. (0+1)*: All biany strings

Interpreting regular expressions

1. $(0 + 1)^{*}$: 2. $(0 + 1)^{*}001(0 + 1)^{*}$. All string that have 001 as a substring

Interpreting regular expressions

1. (**0** + **1**)*: 2. $(0+1)^*001(0+1)^*$: 3. **0*** + (**0***10*10*1**0***)*; All string whese #1's is divisite 79 3

- 1. (**0** + **1**)*:
- 2. (0 + 1)*001(0 + 1)*:
- 3. **0*** + (**0***1**0***1**0***1**0***)*:
- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:

Alterneting

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0, 1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language:

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0, 1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We know the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0 \cdot |0, & 1 \cdot |1, \\ 0 \cdot 0 \cdot |0, & 0 \cdot 1 \cdot |0, & 1 \cdot 0 \cdot |0, & 1 \cdot 1 \cdot |1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1 |0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$

Formulate the regular expression which describes the above language: $\Sigma = \{0, 1, \cdot \cdot', \cdot | '\}$

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

```
(00 + 11)^*(01 + 10)
(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*
```

(Solved using techniques to be presented in the following lectures...)