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Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.
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Pre-lecture brain teaser

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with ⌃ = {0, 1} and has an output (y)
which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

LANDN =

8
>>>><

>>>>:

0|0, 1|1,
0 · 0|0, 0 · 1|0, 1 · 0|0, 1 · 1|1

... ... ... ...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

(1)

This is an example of a regular language which we’ll be
discussing today.
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Chomsky Hierarchy

regular
context free

context sensitive

recursively enumerable (decidable)

non recursively enumerable (undecidable)

3

two Lw that Lwf l II L



Chomsky Hierarchy

regular
context free

context sensitive

recursively enumerable (decidable)

non recursively enumerable (undecidable)

3

l



Regular Languages



Regular Languages

Theorem (Kleene’s Theorem )

A language is regular if and only if it can be obtained from
finite languages by applying the three operations:

• Union
• Concatenation
• Repetition

a finite number of times.
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Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet ⌃ is defined
inductively.

Base Case

• ; is a regular language.
• {✏} is a regular language.
• {a} is a regular language for each a 2 ⌃. Interpreting a as
string of length 1.
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Regular Languages

Inductive step:

We can build up languages using a few basic operations:

• If L1, L2 are regular then L1 [ L2 is regular.
• If L1, L2 are regular then L1L2 is regular.
• If L is regular, then L⇤ = [n�0Ln is regular.
The ·⇤ operator name is Kleene star.

• If L is regular, then so is L = ⌃⇤ \ L.

Regular languages are closed under operations of union,
concatenation and Kleene star.
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Some simple regular languages

Lemma
If w is a string then L = {w} is regular.

Example: {aba} or {abbabbab}. Why?

Lemma
Every finite language L is regular.

Examples: L = {a,abaab,aba}. L = {w | |w|  100}. Why?
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Regular Languages

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of
such operations is regular.

Lemma
Let L1, L2, . . . , be regular languages over alphabet ⌃. Then the
language [1

i=1Li is not necessarily regular.

Note:Kleene star (repetition) is a single operation!
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Regular Languages - Example

Example: The language L01 = 0i1j| for all i, j � 0 is regular:
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Rapid-fire questions - regular languages

1. L1 =
n
0i

��� i = 0, 1, . . . ,1
o
. The language L1 is regular. T/F?

2. L2 =
n
017i

��� i = 0, 1, . . . ,1
o
. The language L2 is regular.

T/F?
3. L3 =

n
0i

��� i is divisible by 2, 3,or 5
o
. L3 is regular. T/F?

4. L4 = {w 2 {0, 1}⇤ | w has at most 2 1s}. L4 is regular. T/F?
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Regular Expressions



Regular Expressions

A way to denote regular languages

• simple patterns to describe related strings
• useful in

• text search (editors, Unix/grep, emacs)
• compilers: lexical analysis
• compact way to represent interesting/useful languages
• dates back to 50’s: Stephen Kleene
who has a star names after him 1.
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Inductive Definition

A regular expression r over an alphabet ⌃ is one of the
following:
Base cases:

• ; denotes the language ;
• ✏ denotes the language {✏}.
• a denote the language {a}.

Inductive cases: If r1 and r2 are regular expressions denoting
languages R1 and R2 respectively then,

• (r1 + r2) denotes the language R1 [ R2
• (r1·r2) = r1·r2 = (r1r2) denotes the language R1R2
• (r1)⇤ denotes the language R⇤1
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Regular Languages vs Regular Expressions

Regular Languages Regular Expressions

; regular ; denotes ;
{✏} regular ✏ denotes {✏}
{a} regular for a 2 ⌃ a denote {a}
R1 [ R2 regular if both are r1 + r2 denotes R1 [ R2
R1R2 regular if both are r1·r2 denotes R1R2
R⇤ is regular if R is r⇤ denote R⇤

Regular expressions denote regular languages — they explicitly
show the operations that were used to form the language
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Notation and Parenthesis

• For a regular expression r, L(r) is the language denoted by
r. Multiple regular expressions can denote the same
language!
Example: (0+ 1) and (1+ 0) denotes same language {0, 1}

• Two regular expressions r1 and r2 are equivalent if
L(r1) = L(r2).

• Omit parenthesis by adopting precedence order: ⇤, ·, +.
Example: r⇤s+ t = ((r⇤)s) + t

• Omit parenthesis by associativity of each operation.
Example: rst = (rs)t = r(st),
r + s+ t = r + (s+ t) = (r + s) + t.

• Superscript +. For convenience, define r+ = rr⇤. Hence if
L(r) = R then L(r+) = R+.

• Other notation: r + s, r [ s, r|s all denote union. rs is
sometimes written as r·s.
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Some examples of regular
expressions



Creating regular expressions

1. All strings that end in 1011?

2. All strings except 11?
3. All strings that do not contain 000 as a subsequence?
4. All strings that do not contain the substring 10?
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Interpreting regular expressions

1. (0+ 1)⇤:

2. (0+ 1)⇤001(0+ 1)⇤:
3. 0⇤ + (0⇤10⇤10⇤10⇤)⇤:
4. (✏+ 1)(01)⇤(✏+ 0):
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Tying everything together

Consider the problem of a n-input AND function. The input (x)
is a string n-digits long with an input alphabet ⌃i = {0, 1} and
has an output (y) which is the logical AND of all the elements
of x. We knwo the language used to describe it is:

LANDN =

8
>>>><

>>>>:

0 · |0, 1 · |1,
0 · 0 · |0, 0 · 1 · |0, 1 · 0 · |0, 1 · 1 · |1

... ... ... ...
(0·)n|0, (0·)n�11|0, . . . (1·)n|1 . . .

9
>>>>=

>>>>;

Formulate the regular expression which describes the above
language:

⌃ = {0, 1, ‘·’, ‘|’}

rANDN = (“0·” + “1·”)⇤“0·”(“0·” + “1·”)⇤“|0”| {z }
all output 0 instances

+

all output 1 instancesz }| {
(“1·”)⇤“|1”
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Regular expressions in programming



One last expression....



Bit strings with odd number of 0s and 1s

The regular expression is
�
00+ 11

�⇤
(01+ 10)

⇣
00+ 11+(01+ 10)(00+ 11)⇤(01+ 10)

⌘⇤

(Solved using techniques to be presented in the following
lectures...)
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