


Pre-lecture brain teaser

Consider the following algorithm which takes in an undirected
graph (G) and a vertex s.

- The algorithm represents a
FindClique (G,s)

C=s greedy algorithm which finds a
for each vertex v e V clique depending on a start
flag = 1 vertex s.
for each vertex ue C . . .
if (u,v) ¢ E e How fast is this algorithm?
flag = 0
if flag == /(\D\
= oty —0
return C
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Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph
(G) and a vertex s

FindClique (G, s)
C=s
for each vertex ve V
flag = 1
for each vertex ue C /CD\
if (u,v) ¢ E O O)
flag = 0
if flag == ( >
c=CU{v} @
return C

The Clique-problem is NP-complete. But this algorithm provides
us with the maximal clique containing s. If we run it |V/| times,
does that solve the clique-problem.



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph
(G) and a vertex s

FindClique (G, s)
C=s
for each vertex ve V
flag = 1 /CD\
for each vertex uec C ° e
if (u,v)¢E
flag = 0 C
if flag == @
c=CU{v} \CD/
return C




The Satisfiability Problem (SAT)



Propositional Formulas

Definition
Consider a set of boolean variables x7, xo, . . . x,.

e A literal is either a boolean variable x; or its negation —x;.

e A clause is a disjunction of literals.

For example, x1 V x» V —x4 is a clause.

e A formula in conjunctive normal form (CNF) is propositional

formula which is a conjunction of clauses.

e (x1VxoV—xq) A (x2V —x3) A xs is a CNF formula.



Propositional Formulas

Definition
Consider a set of boolean variables x7, xo, . . . x,.
e A literal is either a boolean variable x; or its negation —x;.

e A clause is a disjunction of literals.
For example, x1 V x» V —x4 is a clause.

e A formula in conjunctive normal form (CNF) is propositional

formula which is a conjunction of clauses.
e (x1VxoV—xq) A (x2V —x3) A xs is a CNF formula.
e A formula ¢ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.
e (X1 VxoV—xq)A(xVx3Vx)isa3CNF formula, but
(x1 VX2V =ixq) A (X2 V —1x3) A X5 is not.



Every boolean formula f : {0,1}"” — {0,1} can be written as a
CNF formula.

\ X1 \ X0 \ X3 \ X4 \ X5 \ X6 H f(x1,x2,...,%) H XV x0X3 VX VsV X
olof[ofJofo[o] fo,...00) 1
ololojolo|1]| f0,...,01) 1
1 0 1 0 0 ?

1 0 1|0 1 0
1 0 1 0 1 ?
111111 f(1,...,1) 1

How? For every row such that f is zero, compute corresponding
CNF clause. Then take the AND (A) of all the CNF clauses
computed. The resulting CNF formula is equivalent to f. 4



Satisfiability

Problem: SAT

Instance: A formula ¢.
Question: Is there a truth assignment to the variable

of ¢ such that ¢ evaluates to true?

Problem: 3SAT

Instance: A formula ¢.
Question: Is there a truth assignment to the variable
of ¢ such that ¢ evaluates to true?




Satisfiability

SAT
Given a CNF formula ¢, is there a truth assignment to variables

such that ¢ evaluates to true?

Example
e (x1 VxoV—xa) A (x2V—x3) A x5 is satisfiable; take
X1, X2, ...x5 to be all true
o (x1V—x2) A (—x1Vx2)A(—x1V—x2) A (x1V x2) is not
satisfiable.

3SAT
Given a 3CNF formula ¢, is there a truth assignment to variables

such that ¢ evaluates to true?



Importance of and

e SAT and 3SAT are basic constraint satisfaction problems.

e Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.
e Arise naturally in many applications involving hardware and

software verification and correctness.

e As we will see, it is a fundamental problem in theory of
NP-Completeness.



Given two bits x, z which of the following SAT formulas is

equivalent to the formula z = x:

(A) ZVx)A(zVvXx

(B) (zVx)A(ZVX).

(C) ZVx)A(ZVX)A(ZVX).

(D) z&d x

(BE) (zVvx)A(ZVX)A(zVX)A(ZV x).

Answer: B



z = X: Solution

Given two bits x,z which of the
following SAT formulas is equiva-
lent to the formula z = x:

(A) ZVX)A(zVX). 0 g 0
(B) (zVx)A(ZVX). 0|1 1
(C) ZVX)A(ZVX)A(ZVX). 110 1
(D) z® x. 1]1)] 0
(E) (zVx)A(ZVX)A(zVX)A

(Z V x).



Given three bits x, y, z which of the following SAT formulas is
equivalent to the formula z = x A y:

(A) ZVxVy)A(zVXVYy).

(B) ZVxVy)A(ZVXVy)A(zVXVY)

(CQ) ZVxVy)A(ZVXVyYy)A(zVXVy)A(zVXVY).

(D) (zVxVy)A(ZVXVyY)A(zVXVy)A(zVXVY).

(E) (zVxVy)A(zVXVY)A(zVXVy)A(zVEVY)A
ZVxVY)ANEZVXVY)AN(ZVXVY)AN(ZVXVY).

Answer: C
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Given three bits x,y,z which of
the following SAT formulas is
equivalent to the formula z =
XAYy:

(A) (?\/x\/y)/\(z

>
<

>
R|lRr|RlROlO|lO|O|X

Y e =l E=1 Y E=l K=

R OlR| ORI OIR|O|N

R OO|Rr| O|R|O|F]| X

11



Reducing SAT to 3SAT



SAT <p 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(XVy\/Z\/W\/u)/\<ﬂx\/ﬂy\/ﬁz\/w\/u>/\(ﬂx>

In 3SAT every clause must have exactly 3 different literals.

12



SAT <p 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(XVy\/Z\/W\/u)/\<ﬂx\/ﬂy\/ﬁz\/w\/u>/\(ﬂx>

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
e Pad short clauses so they have 3 literals.
e Break long clauses into shorter clauses.

e Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures! 12



Overview of Complexity Classes



In the beginning...
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In the beginning...

Undecidable
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In the beginning...

/ Undecidable \
NP — Hard

13



In the beginning...

/ Undecidable \
NP — Hard

13



In the beginning...

/ Undecidable \
NP — Hard

13
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Non-deterministic polynomial time -
NP




P, NP and Turing Machines

e P: set of decision problems that have polynomial time
(deterministic) algorithms, i.e. efficiently solvable using a
(deterministic) Turing machine (DTM).

e NP: set of decision problems that have polynomial time
non-deterministic algorithms, i.e. efficiently solvable using a

non-deterministic Turing machine (NTM).

e Many natural problems we would like to solve are in NP.

e Every problem in NP has an exponential time (deterministic)
algorithm.

e PC NP.

e Some problems in NP are in P (e.g., shortest path problem).

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.
14



Problems with no known deterministic polynomial time algo-

rithms

Problems
¢ Independent Set
e Vertex Cover
e Set Cover
e SAT

There are of course undecidable problems (no algorithm at all!)
but many problems that we want to solve are of similar flavor to
the above.

Question: What is common to above problems?

ii5)



Problems with no known deterministic polynomial time algo-

rithms

Problems
¢ Independent Set
e Vertex Cover
e Set Cover
e SAT

There are of course undecidable problems (no algorithm at all!)
but many problems that we want to solve are of similar flavor to
the above.

Question: What is common to above problems?
They can all be solved via a non-deterministic computer in

polynomial time! 15



Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string to
be accepted by the machine, then
the string is part of the language.

Deterministic

f(n)

|

oo

accept or

.
+/ reject

accept— e

f(n)

Non-Deterministic
.'/.\‘.

X ,l.\.
N\

o — reject

* —accept

16



Problems with no known deterministic polynomial time algo-

rithms

Problems

e Independent Set & Vertex Cover - Can build algorithm to
check all possible collection of vertices

e Set Cover - Can check all possible collection of sets

e SAT -Can build a non-deterministic algorithm that checks
every possible boolean assignment.

But we don't have access to a non-deterministic computer. So how
can a deterministic computer verify that a algorithm is in NP?

17



Efficient Checkability

Above problems share the following feature.

Checkability

For any YES instance Ix of X there is a proof/certificate/solution

that is of length poly(|/x|) such that given a proof one can

efficiently check that /x is indeed a YES instance.

18



Efficient Checkability

Above problems share the following feature.
Checkability
For any YES instance Ix of X there is a proof/certificate/solution

that is of length poly(|/x|) such that given a proof one can
efficiently check that /x is indeed a YES instance.

Examples:

e SAT formula : proof is a satisfying assignment.
e Independent Set in graph G and k: a subset S of vertices.

¢ Homework.

18



Definition
An algorithm C(+,-) is a certifier for problem X if the following two

conditions hold.

e For every s € X there is some string t such that
C(s,t) = "yes"
o If s¢Z X, C(s,t) = "no” for every t.
The string s is the problem instance. (Example: particular graph in

independent set problem.) The string t is called a certificate or
proof for s.

19



Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.?
A certifier C is an efficient certifier for problem X if there is a

polynomial p(+) such that the following conditions hold.

e For every s € X there is some string t such that
C(s,t) = "yes" and [t| < p([s]).
o If s¢Z X, C(s,t) = “no” for every t.

e C(-,-) runs in polynomial time.

20



Example: Independent Set

e Problem: Does G = (V, E) have an independent set of size
> k?
e Certificate: Set S C V.
o Certifier: Check |S| > k and no pair of vertices in S is
connected by an edge.

21



(SETICHECYAN

e Problem: Does formula ¢ have a satisfying truth assignment?

e Certificate: Assignment a of 0/1 values to each variable.
e Certifier: Check each clause under a and say “yes” if all
clauses are true.

22



Why is it called Non-deterministic Polynomial Time

A certifier is an algorithm C(/, ¢) with the following two inputs.

e /: instance.

e c: proof/certificate that the instance is indeed a YES instance
of the given problem.

One can think about C as an algorithm for the original problem if
the following hold.

e Given /, the algorithm guesses (non-deterministically, and who
knows how) a certificate c.

e The algorithm now verifies the certificate ¢ for the instance /.

NP can be equivalently described using Turing machines.

23



Cook-Levin Theorem




“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
e Hardest problem must be in NP.

e Hardest problem must be at least as “difficult” as every other
problem in NP.

24



NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

e X ¢ NP, and
e (Hardness) For any Y € NP, Y <p X.

25



Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial

time if and only if P = NP.

Proof.

= Suppose X can be solved in polynomial time

e Let Y € NP. We know Y <p X.

e We showed that if Y <p X and X can be solved in polynomial
time, then Y can be solved in polynomial time.

e Thus, every problem Y € NP is such that Y € P; NP C P.

e Since P C NP, we have P = NP.

< Since P = NP, and X € NP, we have a polynomial time
algorithm for X. O

26



NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

e (Hardness) For any X € NP, we have that X <p Y.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

27



Consequences of proving NP-Completeness

If X is NP-Complete

e Since we believe P # NP,
e and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.

28



Consequences of proving NP-Completeness

If X is NP-Complete

e Since we believe P # NP,
e and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

28



NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

30



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show the following.

e SAT is in NP.
e Every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

e Show that X is in NP.

e Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X.

31



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

e Show that X is in NP.

e Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X.

SAT <p X implies that every NP problem Y <p X. Why?
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show the following.

e Show that X is in NP.

e Give a polynomial-time reduction from a known NP-Complete
problem such as SAT to X.

SAT <p X implies that every NP problem Y <p X. Why?
Transitivity of reductions:

Y <p SAT and SAT <p X and hence Y <p X.

31



is NP-Complete

e 3-SAT is in NP.
e SAT <p 3-SAT as we saw.

32



NP-Completeness via Reductions

e SAT is NP-Complete due to Cook-Levin theorem.
SAT <p 3-SAT
e 3-SAT <p Independent Set

Independent Set <p Vertex Cover

Independent Set <p Clique
3-SAT <p 3-Color
e 3-SAT <p Hamiltonian Cycle

33



NP-Completeness via Reductions

e SAT is NP-Complete due to Cook-Levin theorem.
SAT <p 3-SAT
e 3-SAT <p Independent Set

Independent Set <p Vertex Cover

Independent Set <p Clique
e 3-SAT <p 3-Color
e 3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

33



Reducing 3-SAT to Independent Set



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

34
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Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?
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Interpreting

There are two ways to think about 3SAT.

1. Find a way to assign 0/1 (false/true) to the variables such
that the formula evaluates to true, that is each clause
evaluates to true.

2. Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you
pick are in conflict, i.e., you pick x; and —x;.

We will take the second view of 3SAT to construct the reduction.

85



The Reduction

1. G, will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set
do not have a conflict.

4. Take k to be the number of clauses.

G (=) @
® ® 0 ® 6 @

Figure 1: Graph for

36
p=(x1VxaVx3)A(x1V-xVx3)A(-x1VxVxg).



The Reduction

1. G, will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set
do not have a conflict.

4. Take k to be the number of clauses.
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The Reduction

1. G, will have one vertex for each literal in a clause.

2. Connect the literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set
do not have a conflict.

4. Take k to be the number of clauses.
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2. Connect the literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true.

3. Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set
do not have a conflict.

4. Take k to be the number of clauses.
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independent set will pick at most one vertex from each clause,
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do not have a conflict.
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Correctness

Lemma
p is satisfiable iff G, has an independent set of size k (= number

of clauses in ¢).

Proof.

= Let a be the truth assignment satisfying ¢.

e Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size. Why? [

37



Correctness (contd)

Lemma
p is satisfiable iff G, has an independent set of size k (= number

of clauses in ¢).

Proof.

< Let S be an independent set of size k.
e S must contain exactly one vertex from each clause triangle.
e S cannot contain vertices labeled by conflicting literals.
e Thus, it is possible to obtain a truth assignment that makes in
the literals in S true; such an assignment satisfies one literal in
every clause. O

38



Other NP-Complete problems




Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V/, E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored
using k colors so that vertices connected by an edge

do not get the same color?

39



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge

do not get the same color?

40



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored
using 3 colors so that vertices connected by an edge

do not get the same color?

40



Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G can
be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm

to check if G is bipartite using breadth first search.

41



Hamiltonian Cycle




Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?

e A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once.

42



Directed Hamiltonian Cycle

Input Given a directed graph G = (V/, E) with n vertices
Goal Does G have a Hamiltonian cycle?

e A Hamiltonian cycle is a cycle in the graph that
visits every vertex in G exactly once.

42
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