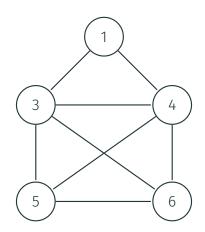
Consider the following algorithm which takes in a undirected graph (*G*) and a vertex s

```
FindClique (G, s)
     C = S
     for each vertex v \in V
          flag = 1
          for each vertex u \in C
               if (u, v) \notin E
                    flag = 0
          if flag == 1
               C = C \cup \{v\}
     return C
```

The algorithm is a represents a greedy algorithm which finds a clique depending on a start vertex s.

How fast is this algorithm?



ECE-374-B: Lecture 20 - P/NP and NP-completeness

Instructor: Nickvash Kani

November 11, 2025

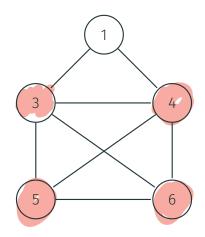
University of Illinois Urbana-Champaign

Consider the following algorithm which takes in a undirected graph (*G*) and a vertex s

```
FindClique (G, s)
     C = S
     for each vertex v \in V
          flag = 1
          for each vertex u \in C
               if (u, v) \notin E
                    flag = 0
          if flag == 1
               C = C \cup \{v\}
     return C
```

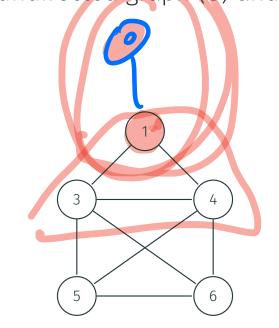
The algorithm is a represents a greedy algorithm which finds a clique depending on a start vertex s.

How fast is this algorithm?



Consider the following algorithm which takes in a undirected graph (G) and a vertex s

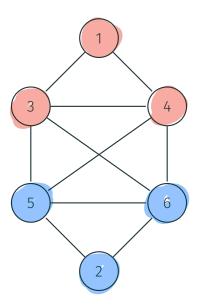
```
FindClique (G, s)
     C = S
    for each vertex v \in V
          flag = 1
          for each vertex u \in C
               if (u, v) \notin E
                    flag = 0
          if flag == 1
               C = C \cup \{v\}
     return C
```



The Clique-problem is NP-complete. But this algorithm provides us with the maximal clique containing s. If we run it |V| times, does that solve the clique-problem

Consider the following algorithm which takes in a undirected graph (*G*) and a vertex s

```
FindClique (G,s)
     C = s
     for each vertex v \in V
          flag = 1
          for each vertex u \in C
               if (u, v) \notin E
                    flag = 0
          if flag == 1
               C = C \cup \{v\}
     return C
```



The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \dots x_n$.

- A <u>literal</u> is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.

$$\begin{cases} x_1, \dots, x_5 \end{cases} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{cases} x_1 \lor x_2 \rbrace \land (x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_1 \lor x_2) \end{cases}$$

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \dots x_n$.

- A <u>literal</u> is either a boolean variable x_i or its negation $\neg x_i$.
- A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- A formula φ is a 3CNF: A CNF formula such that every clause has **exactly** 3 literals.
 - $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of φ such

that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such

that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- · As we will see, it is a fundamental problem in theory of NP-Completeness.

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have <u>exactly</u> 3 different literals.

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, . . . variables:

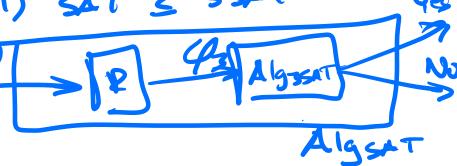
$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$
The specific and different literals.

In **3SAT** every clause must have <u>exactly</u> 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals
- · Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.



How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables...

Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

How SAT is different from 3SAT?

In **SAT** clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have exactly 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- a (xuyuzva)
- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

A (ta/w/u)

Overview of Complexity Classes

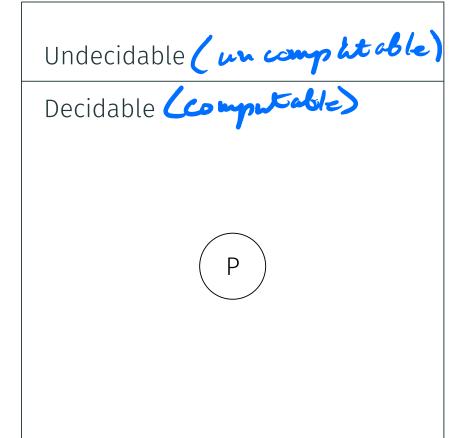
Algorithmic Complexity Space This represents all problems that exist.

All problems solvable in a polynomial amount of time.

Most of the problems we discussed in the second part of the course.

P problems:

- Longest whatever subsequence
- Various shortest path problems
- Graph connectivity



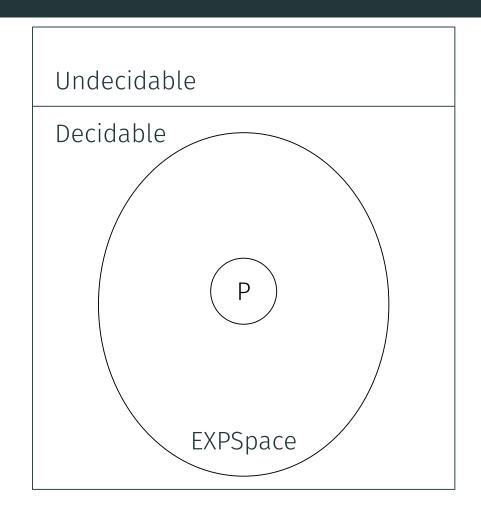
Set of all problems that can be computed by a TM (or not).

Decidable problems:

Anything you can compute

Undecidable problems:

- Halting problem
- TM equivalence
- All non-trivial programs (Rice's theorem)

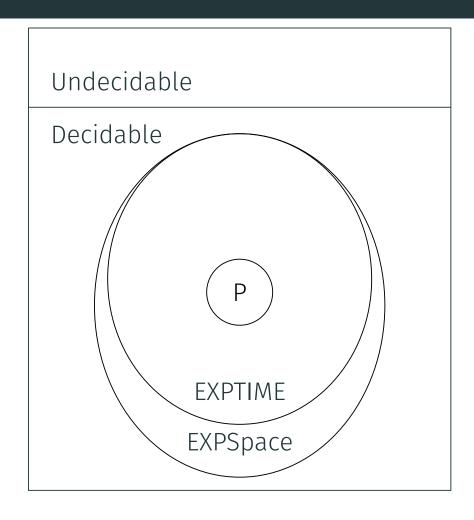


Set of all decision problem solvable by a TM in $O^{p(n)}$ space.

EXPSPACE problems:

- Given regular expressions r_1 and r_2 , does $L(r_1) \equiv L(r_2)$
- Convertibility and reachability for Petri Nets

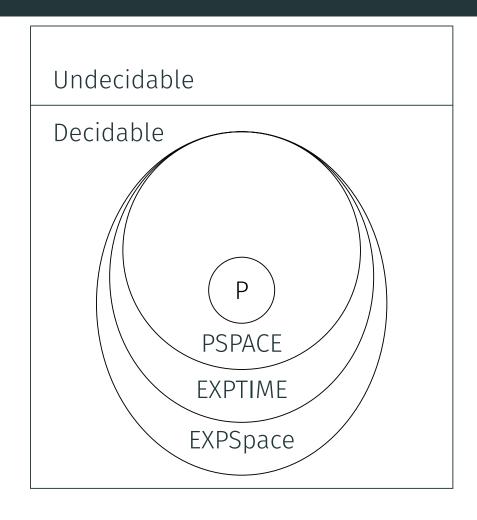
Equivalent to NEXPSPACE (Savitch's theorem), and



Set of all decision problem solvable by a TM in $O^{p(n)}$ time.

EXPSPACE problems:

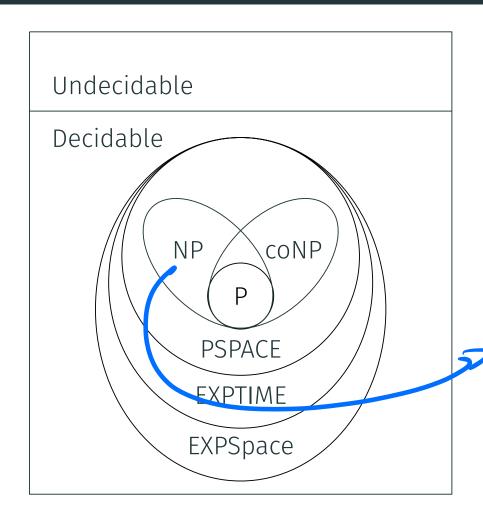
Succinct circuits



Set of all decision problem solvable by a TM using a polynomial amount of space.

PSPACE problems:

- Given a regular expression r_1 , is $L(r_1) = \Sigma^*$
- Quantified boolean problem
- Reconfiguration problems
- Various puzzle problems



Set of all decision problem solvable by a NTM in a polynomial amount of time. Alternatively, NP contains the problems whose YES instances are checkable in a polynomial amount of time by a TM (DTM). coNP is same for NO instances.

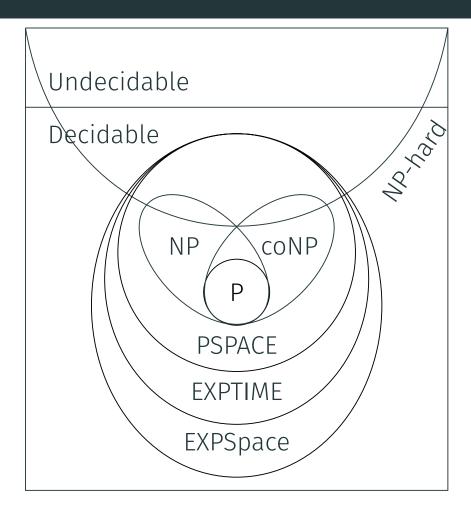
NP problems:

- SAT 3 A Transmitte polynomial time

 Integer factorization

coNP problems:

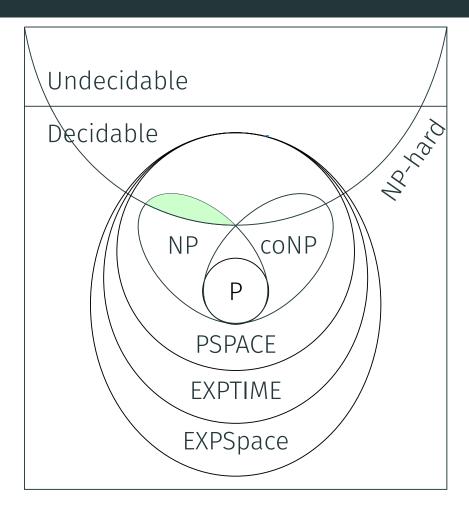
- Tautology (opposite of SAT)
- Integer factorization



Class of problems that are atleast as hard as the hardest problems in NP.

NP-hard problems:

- SAT, 3SAT, ...
- · Clique, Independent set
- Hamiltonian path/cycle
- 3+ Coloring



The intersection of NP-hard and NP is called **NP-complete**. These are all the NP problems which all other NP problems can reduce to.

NP-complete problems:

- 3+ SAT, SAT
- · Clique, Independent set
- 3+ Coloring

Non-deterministic polynomial time - NP

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time <u>non-deterministic</u> algorithms.
- · Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- $P \subset NP$
- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether P = NP.

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- · SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

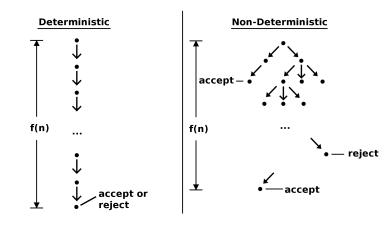
They can all be solved via a non-deterministic computer in polynomial time!

Non-determinism in computing

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.



Problems with no known deterministic polynomial time algorithms

Problems

- Independent Set & Vertex Cover Can build algorithm to check all possible collection of vertices
- Set Cover Can check all possible collection of sets
- **SAT** -Can build a non-deterministic algorithm that checks every possible boolean assignment.

But we don't have access to a non-deterministic computer. So how can a deterministic computer verify that a algorithm is in NP?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- Independent Set in graph G and k: a subset S of vertices.
- Homework

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes"
- If $s \notin X_{c}(s,t) = \text{"no" for every } t$.

The string's is the problem instance. (Example: particular graph in independent set problem) The string t is called a certificate or proof for s.

Efficient (polynomial time) Certifiers

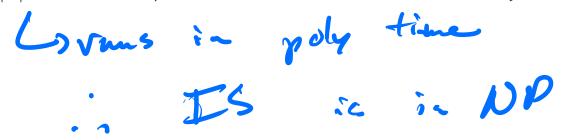
Definition (Efficient Certifier.)

A certifier \dot{C} is an <u>efficient certifier</u> for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that C(s,t) = "yes" and $|t| \le p(|s|)$.
- If $s \notin X$, C(s,t) = "no" for every t.
- $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.



Example: SAT

- Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - Certifier: Check each clause under a and say "yes" if all clauses are true.

Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- *I*: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate *c*.
- The algorithm now verifies the certificate c for the instance I.

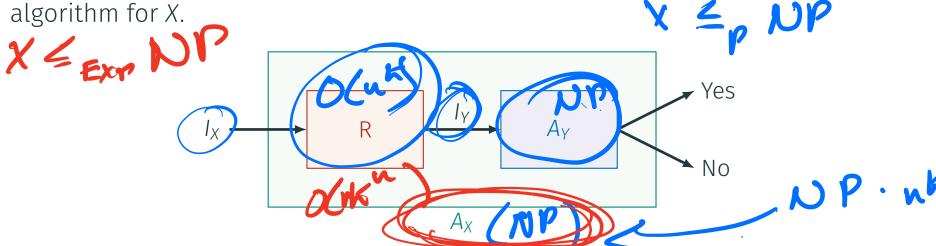
NP can be equivalently described using Turing machines.

Polynomial-time reductions

We say that an algorithm is <u>efficient</u> if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_P Y$), and a poly-time algorithm \mathcal{A}_Y for Y, we have a polynomial-time/efficient



Polynomial-time Reduction

A polynomial time reduction from a <u>decision</u> problem X to a <u>decision</u> problem Y is an algorithm A that has the following properties:

- given an instance I_X of X, A produces an instance I_Y of Y
- A runs in time polynomial in $|I_X|$.
- Answer to I_X YES \iff answer to I_Y is YES.

Lemma

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a <u>Karp reduction</u>. Most reductions we will need are Karp reductions.Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Review question: Reductions again...

Let X and Y be two decision problems, such that X can be solved in polynomial (A) Y can be solved in polynomial time.

(B) Y can NOT be solved in and

- (If Y is hard then X is also hard.
- None of the above.
- (F) All of the above

Cook-Levin Theorem

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- · Hardest problem must be in NP.
- · Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be **NP-Complete** if

- $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Lemma

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - Since $P \subseteq NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem Y is said to be NP-Hard if

• (Hardness) For any $X \in NP$, we have that $X \leq_P Y$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Consequences of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for *X*.

Consequences of proving NP-Completeness

If X is NP-Complete

- Since we believe $P \neq NP$,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for *X*.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin) SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin) SAT is NP-Complete.

Need to show

- **SAT** is in NP.
- every NP problem X reduces to **SAT**.

Steve Cook won the Turing award for his theorem.

Proving that a problem *X* is NP-Complete

To prove *X* is NP-Complete, show

- Show that X is in NP.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as SAT to X

Proving that a problem *X* is NP-Complete

To prove *X* is NP-Complete, show

- Show that X is in NP.
- Give a polynomial-time reduction <u>from</u> a known NP-Complete problem such as SAT to X

SAT $\leq_P X$ implies that every NP-complete problem $Y \leq_P X$. Why?

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT ≤_P 3-SAT
- 3-SAT \leq_P Independent Set
- Independent Set \leq_P Vertex Cover
- Independent Set \leq_P Clique
- 3-SAT \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT \leq_P 3-SAT
- 3-SAT \leq_P Independent Set
- Independent Set \leq_P Vertex Cover
- Independent Set \leq_P Clique
- 3-SAT \leq_P 3-Color
- 3-SAT \leq_P Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

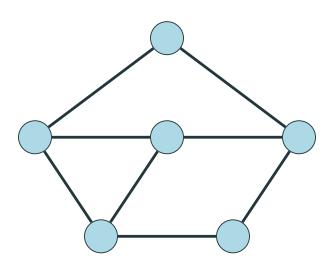
Question: Is there an independent set in G of size k?

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?



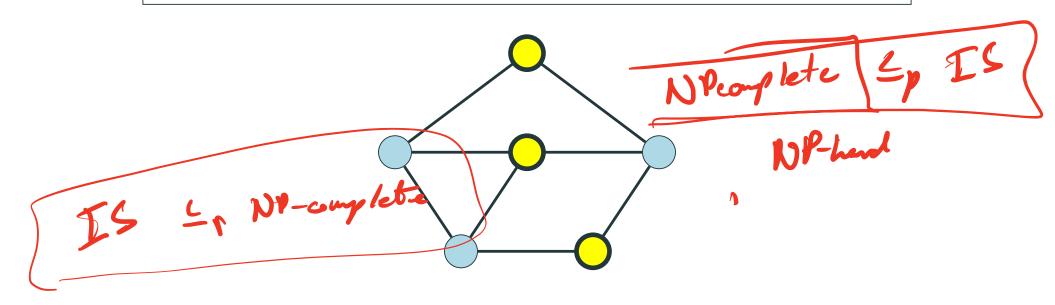
Independent Set

Problem: Independent Set

3SATENP-unplete 3SATENP-lund

Instance: A graph G, integer k.

Question: Is there an independent set in G of size k?

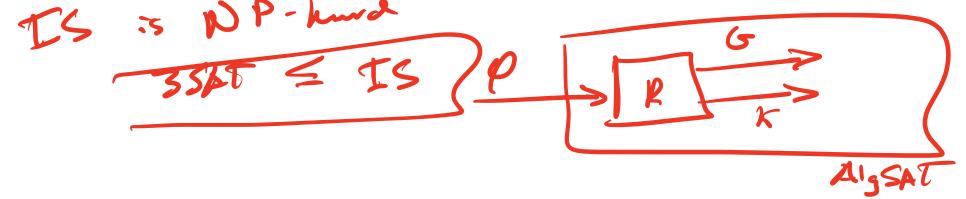


Interpreting 3SAT

There are two ways to think about **3SAT**

- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of 3SAT to construct the reduction.



- G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

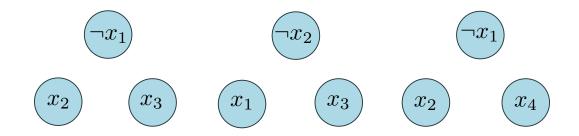


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

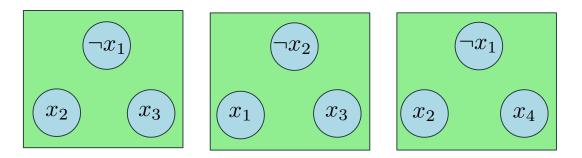
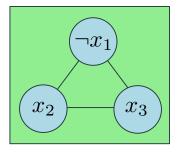
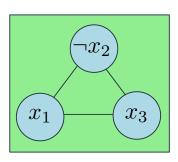


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses





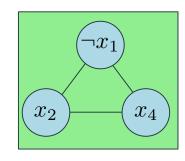


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict K=#elmses
- 5- Take k to be the number of clauses

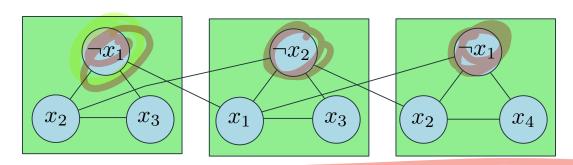


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- G_{φ} will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take *k* to be the number of clauses

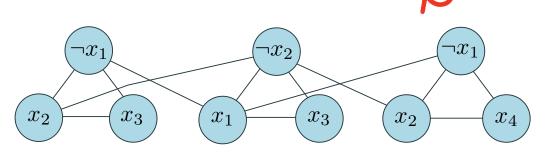


Figure 1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying φ
 - 2- Pick one of the vertices, corresponding to true literals under *a*, from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Lemma

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let S be an independent set of size k
 - S must contain exactly one vertex from each clause triangle
 - S cannot contain vertices labeled by conflicting literals
 - Thus, it is possible to obtain a truth assignment that makes in the literals in *S* true; such an assignment satisfies one literal in every clause

Other NP-Complete problems

Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.

Question: Can the vertices of the graph be colored using *k* colors

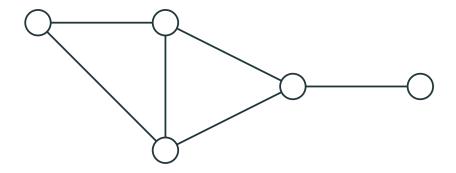
so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?



•

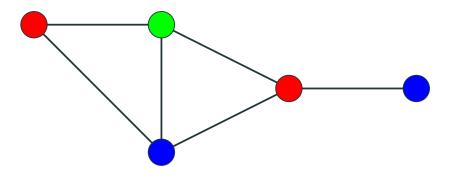
Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors

so that vertices connected by an edge do not get the same color?



ı

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using Breadth-first-Search

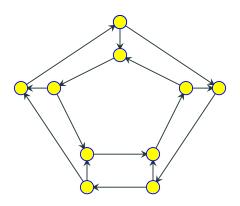
Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does *G* have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does *G* have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once

