

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a
vertex s

The algorithm Is a represents a greedy
algorithm which finds a clique

FindClique (G,5s)

C=-+s
for each vertex v eV depending on a start vertex s.
flag = 1 - How fast is this algorithm?

for each vertex uecC

if (u,v)¢E
flag = 0
if flag ==
C = Cu{v}

return C

ECE-374-B: Lecture 20 - P/NP and NP-completeness

Instructor: Nickvash Kani
November 11, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a
vertex s

The algorithm Is a represents a greedy
algorithm which finds a clique

FindClique (G,5s)

C=-+s
for each vertex v eV depending on a start vertex s.
flag = 1 - How fast is this algorithm?

for each vertex uecC

if (u,v)¢E
flag = 0
if flag ==

C = Cu{v}

return C

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected.graph(G) and a

vertex s
FindClique (G,5s)
C =5
for each vertex veVv
flag = 1 ‘/QD\
for each vertex uecC
if (u,v)¢E ’ §
flag = 0
if flag ==
C = Cu{v} @ @
return C

The Clique-problem is NP-complete. But this algorithm provides us with the

maximal clique.containing s If we run it |V| times, does that solve the)
cliaiie=nrohlem

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a

vertex s
FindClique (G,5s)
C =5
for each vertex veVv
flag = 1
for each vertex uecC
if (u,v)¢E
flag = 0

S
if flag == @ @
e

C = CU{v}
return C

The Satisfiability Problem (SAT)

Propositional Formulas

Definition .
Consider a set of boolean variables xq, X5, ... Xp.

- A literal Is either a boojean variable x; or its negation —x;.

. L .
- Aclause is a d|SJanct|on of literals.
For example, X1 V X2 V =X, IS a clause.
J.J

- Aformula in conj‘[rrTctive normal form (CNF) is propositional formula which is
a conjunction of clauses

(X1 VX2 VX,) A (X2 V—X3) A Xs IS a CNF formula.

[1‘ 1‘53 =[_' @/0 ﬂ

<X VZ‘LS Aéﬂ ! 7‘Z> N é)t V ?‘LS/\ <?Q \’x_;_)
Crnex): (o, = [1)

Propositional Formulas

Definition .
Consider a set of boolean variables xq, X5, ... Xp.

- A literal Is either a boolean variable x; or its negation —x;.

- A clause is a disjunction of literals.
For example, X1 V X2 V =X, IS a clause.

- A formula in conjunctive normal form (CNF) is propositional formula which is
a conjunction of clauses
© (X1 VX2 V=X,) A (X2 V—X3) A Xs IS a CNF formula.

- Aformula ¢ Is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.
- (X1 VX2 V—X,) A (X2 VX3V xq) is a 3CNF formula, but
(X1 V X2 V=X4) A (X2 V —X3) A X5 1S not.

Satisfiability

Problem: SAT

Instance: A CNF formula .
Question: Is there a truth assignment to the variable of ¢ such
that ¢ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula .
Question: Is there a truth assignment to the variable of ¢ such
that ¢ evaluates to true?

Satisfiability

SAT
Given a CNF formula ¢, Is there a truth assignment to variables such that ¢
evaluates to true?

Example
© (X1 VX2 V=Xe) A (X2 V—X3) A Xs IS satisfiable; take xq, X2, ... x5 to be all true

(X1 V) A (=X VXo) A (=X V —x2) A (X V X2) 1S not satisfiable.

3SAT
Given a 3CNF formula ¢, Is there a truth assignment to variables such that ¢
evaluates to true?

Importance of and

- SAT and 3SAT are basic constraint satisfaction problems.

- Many different problems can reduced to them because of the simple yet
powerful expressively of logical constraints.

- Arise naturally in many applications involving hardware and software
verification and correctness.

- As we will see, it is a fundamental problem in theory of NP-Completeness.

SAT <p 3SAT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3,... variables:

(X\/y\/Z\/W\/u)/\<ﬂX\/—|y\/—IZ\/W\/U) /\(ﬂx)

In 3SAT every clause must have exactly 3 different literals.

SAT <p 3SAT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3,... variables:

(X\/y\/Z\/W\/u>/\<ﬂX\/—|y\/—IZ\/W\/U> /\(ﬂx)

SIAT < SAT

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all

clauses to have exactly 3 variables... \’> §LT P4 2AT Jeg
Basic idea
- Pad short clauses so they have 3 lite@#;ke s N
- Break long clauses into shorter clauses. — '

- Repeat the above till we have a 3CNF.

SAT <p 3SAT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3,... variables:

(X\/y\/Z\/W\/u)/\<ﬂX\/—|y\/—IZ\/W\/U) /\(ﬂx)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must ma|<e aaLr A

clauses to have exactly 3 variables... £3% - ""‘*L T
'4S m '5 SA

- Pad short clauses so they have 3 literals. C" ﬁ\ (”" \ 7*3 \IC_'“\,-')

- Break long clauses into shorter clauses. 1 _\,,g,a,\

- Repeat the above till we have a 3CNF.

Basic idea

>

7

SAT <p 3SAT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3,... variables:

(X\/y\/Z\/W\/u)/\<ﬂX\/—|y\/—IZ\/W\/U) /\(ﬂx)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instanee of 3SAT, we must make all cerlls

clauses to have exactly 3 variables... >7 g 9;.(s '—5 cpT
Basic idea ~VyV=z VoW (,c\)y\lz\)a\)
- Pad short clauses so they have 3 literals.
’ A GaN wiv)

- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Overview of Complexity Classes

Algorithmic Complexity Space

This represents all problems that exist.

Algorithmic Complexity Space

All problems solvable in a polynomial
amount of time.

Most of the problems we discussed in
the second part of the course.

@ P problems:

- Longest whatever subsequence
- Various shortest path problems

- Graph connectivity

Algorithmic Complexity Space

Undecidable(w» oc»‘pu“&[‘) Set of all problems that can be
Decidable (eompicabled computed by a TM (or not).

Decidable problems:

- Anything you can compute

@ Undecidable problems:

Halting problem
- TM equivalence

- All non-trivial programs (Rice’s
theorem)

Algorithmic Complexity Space

Undecidable Set of all decision problem solvable by a
Decidable TM in OP(" space.

EXPSPACE problems:

- Given regular expressions r; and ro,
does L (r1) = L(r)

- Convertibility and reachability for
Petri Nets

&)

EXPSpace

Equivalent to NEXPSPACE (Savitch's
theorem), and

Algorithmic Complexity Space

Undecidable

Decidable

Set of all decision problem solvable by a
™ in OP(") time.

EXPSPACE problems:

- Succinct circuits

&)

EXPTIME
EXPSpace

Algorithmic Complexity Space

Undecidable

Set of all decision problem solvable by a

Decidable TM using a polynomial amount of space.

PSPACE problems:
- Glven a regular expression rq, Is
L(rh)=1%*
- Quantified boolean problem

()

PSPACE

- Reconfiguration problems

- Various puzzle problems
EXPSpace

Algorithmic Complexity Space

Undecidable

Set of all decision problem solvable by a
NTM in a polynomial amount of time.

Decidable

EXPSpace

Alternatively, NP contains the problems
whose YES instances are checkable in a
polynomial amount of time by a TM
(DTM). coNP is same for NO instances.

NP problems: e /)()'7"49“:‘1
- SA, Y ‘
pc)‘*’wg . i
> - Integer factorization

cONP problems:

- Tautology (opposite of SAT)

- Integer factorization 8

Algorithmic Complexity Space

Undecidable

EXPSpace

Class of problems that are atleast as
hard as the hardest problems in NP.

NP-hard problems:
- SAT, 35AT, ...
- Cligue, Independent set
- Hamiltonian path/cycle

- 3+ Coloring

Algorithmic Complexity Space

Undecidable

EXPSpace

The intersection of NP-hard and NP Is
called NP-complete. These are all the
NP problems which all other NP
problems can reduce to.

NP-complete problems:
» 3+ SAT, SAT
- Cligue, Independent set

- 3+ Coloring

Non-deterministic polynomial time -
NP

P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.

- NP: set of decision problems that have polynomial time non-deterministic
algorithms.

- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- PC NP

- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have anlgorithm? Same as
asking whether P = NP. po)/nou..i R

Problems with no known deterministic polynomial time algorithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many
problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

10

Problems with no known deterministic polynomial time algorithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many
problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in polynomial time!

10

Non-determinism in computing

Non-determinism is a special property
of algorithms.

An algorithm that is capable of taking
multiple states concurrently. Whenever
It reaches a choice, it takes both paths.

If there is a path for the string to be
accepted by the machine, then the string
Is part of the language.

Deterministic

f(n)

&—o &0 &—o

[]
accept or

I
./ reject

Non-Deterministic

o/.\o
accept — o/ 0/4’\0
0/4'\.

f(n)

N :
e — reject
'
® —accept

1

Problems with no known deterministic polynomial time algorithms

Problems
- Independent Set & Vertex Cover - Can build algorithm to check all possible
collection of vertices

- Set Cover - Can check all possible collection of sets

- SAT -Can build a non-deterministic algorithm that checks every possible
boolean assignment.

But we don’t have access to a non-deterministic computer. So how can a
deterministic computer verify that a algorithm is in NP?

12

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance Iy of X there is a proof/certificate/solution that is of length

poly(|lx|) such that given a proof one can efficiently check that Iy is indeed a YES
Instance.

13

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance Iy of X there is a proof/certificate/solution that is of length

poly(|lx|) such that given a proof one can efficiently check that Iy is indeed a YES
Instance.

Examples:

- SAT formula ¢: proof Is a satisfying assignment.

- Independent Set in graph G and k: a subset S of vertices.
- Homework

13

Definition _ . N
An algorithm C(-,-) is a certifier for problem X if the following two conditions

hold:

+ For every s € X there is some string t such that C(s, t) = "yes”
- If s ¢ X, C(s,t) ="no" for every t.

The stringﬁs the problem instance. (Example: particular graph in independent
set problem) The string t is called a certificate or proof for s.

tr A zizs et

14

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.) | | |
A certifier C is an efficient certifier for problem X if there is a polynomial p(-) such

that the following conditions hold:

- For every s € X there is some string t such that C(s,t) ="yes” and |t| < p(]|s]).
- If s ¢ X, C(s,t) ="no” for every t.

+ C(+,-) runs in polynomial time.

15

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size > R?

- Certificate: Set S C V.
- Certifier: Check |S| > k and no pair of vertices in S is connected by an edge.

(o vims ¥~ V”L{ e

16

Example: SAT

- Problem: Does formula ¢ have a satisfying truth assignment?

- Certificate: Assignment a of 0/1 values to each variable.
- Certifier: Check each clause under a and say “yes” if all clauses are true.

Lshoo #HA Hoy vew v wly E
L? . §A,T I SPTS | VI

17

Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(/, ¢) with two inputs:

- | Instance.

- ¢: proof/certificate that the instance is indeed a YES instance of the given
problem.

One can think about C as an algorithm for the original problem, If:

- Given [, the algorithm guesses (non-deterministically, and who knows how) a
certificate c.

- The algorithm now verifies the certificate ¢ for the instance I.

NP can be equivalently described using Turing machines.

18

Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested In
polynomial-time reductions. Reductions that take longer are not useful.

If we have a polynomial-time reduction from problem X to problem Y (we write

X <p Y), and a poly-time algorithm Ay for Y, we have a polynomial-time/efficient
algorithm for X.

X £ grp OV’
(D

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is
an algorithm A that has the following properties:

- given an instance Iy of X, A produces an instance ly of Y
- A runs in time polynomial in |lx|.
- Answer to Iy YES <= answer to Iy Is YES.

Lemma
If X <p Y then a polynomial time algorithm for Y implies a polynomial time

algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are
Karp reductions.Karp reductions are the same as mapping reductions when
specialized to polynomial time for the reduction step.

20

Review question: Reductions again...

Let X and Y be two decision problems, such tha®gX can be solved in polynomial
. P
time, and X <p Y. Then

v <
AT A
A) Y can be solved in polynomial time. "')

(A)
(B) Y can NOT be solved in polynomial time.
(

If Y Is hard then X Is also hard.
(D)ANone of the above.

(E) Al of the abewve—

21

Cook-Levin Theorem

“Hardest” Problems

Question . _
What Is the hardest problem in NP? How do we define It?

Towards a definition

- Hardest problem must be in NP.

- Hardest problem must be at least as "difficu(t” as every other problem in NP,

wwa X N Awn QP

22

NP-Complete Problems

Deﬁnit;cfon o l f }?’ w DP’ l‘ﬁva

A problem X is said to be NP-Complete |

" ’ P (% i< v~ ”P
- X € NP, and

- (Hardness) Forany Y € NP, Y <p X.

23

Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial time if and only If

P = NP.

Proof.

= Suppose X can be solved in polynomial time

- LetY € NP. We know Y <p X.
- We showed that if Y <p X and X can be solved in polynomial time, then Y can be

solved in polynomial time.
- Thus, every problem Y € NP is such thatY € P; NP C P.

- Since P C NP, we have P = NP.
< Since P = NP, and X € NP, we have a polynomial time algorithm for X. H

24

NP-Hard Problems

Definition |
A problem Y is said to be NP-Hard if

- (Hardness) For any X € NP, we have that X <p Y.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

25

Consequences of proving NP-Completeness

If X i1s NP-Complete

- Since we believe P # NP,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X.

26

Consequences of proving NP-Completeness

If X i1s NP-Complete

- Since we believe P # NP,
- and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient
algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

26

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

27

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

P =, =AY

28

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete. X < pgpf)’

Need to show

- SAT is in NP,
- every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

28

Proving that a problem X is NP-Complete

To prove X Is NP- e, show
@w that X is in NP.

- Glve a polynomial-time reduction from a known NP-Complete problem such

asZSAT ?OX
SAT < KA

29

Proving that a problem X is NP-Complete

To prove X Is NP-Complete, show

- Show that X Is in NP.

- Give a polynomial-time reduction from a known NP-Complete problem such
as SAT to X

SAT <p X implies that every NP-complete problem Y <p X. Why?

29

iIs NP-Complete

+ 3-SAT is in NP
- SAT <p 3-SAT as we saw

30

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set <, Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

31

NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set <, Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and

engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

31

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size R?

32

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size R?

32

Independent Set

g SAT € NP-wnplede

Problem:| Independent Setl AT c NP
Instance: A graph G, integer k. <S ATE P-\
Question: Is there an independent set in G of size R?

) — | 2 T¢
e \ &
NPeor lete \Sp
O poFf-baet

16 Lo ME SNy :

[,

32

Interpreting

There are two ways to think about 3SAT

- Find a way to assign 0/1 (false/true) to the variables such that the formula
evaluates to true, that is each clause evaluates to true.

- Pick a literal from each clause and find a truth assignment to make all of
them true. You will fail if two of the literals you pick are in conflict, i.e., you
pick x; and —x;

We will take the second view of 3SAT to construct the reduction.

T = PP k= =
~3—;z:r4 (Eé]__%“ K‘i

A‘ngT— 33

The Reduction

* G, will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the

literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that

the literals corresponding to the independent set do not have a conflict
- 5- Take k to be the number of clauses

C=) G2 &)
® ©®6 6 ®

Figure 1: Graph for o = (=x1 VX2 V.X3) A (X1 V =X2 V X3) A (X1 V X2 V Xy,) 34

The Reduction

* G, will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the

literal to be set to true

- 4- Connect 2 vertices if they label complementary literals; this ensures that
the literals corresponding to the independent set do not have a conflict

- 5- Take k to be the number of clauses

C=) =))
OO CHOIONO

Figure 1: Graph for o = (=x1 VX2 V.X3) A (X1 V =X2 V X3) A (X1 V X2 V Xy,) 34

The Reduction

* G, will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the

literal to be set to true

- 4- Connect 2 vertices if they label complementary literals; this ensures that
the literals corresponding to the independent set do not have a conflict

- 5- Take k to be the number of clauses

Q[& [&
ofRolo2clo®e

Figure 1: Graph for o = (=x1 VX2 V.X3) A (X1 V =X2 V X3) A (X1 V X2 V Xy,) 34

The Reduction

* G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the
literal to be set to true

- 4- Connect 2 vertices if they label complementary literals; this ensures that
the literals corresponding to the independent set do not have a conflict

- 5- Take k to be the number of clauses K >

Figure 12 Graph for ¢ = (—=x1 VX2 V. X3) A (X1 V =X2 V X3) A (—X1 V. X0 \VoXep) 34

The Reduction

* G, will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the independent set
will pick at most one vertex from each clause, which will correspond to the
literal to be set to true

- 4- Connect 2 vertices if they label complementary literals; this ensures that
the literals corresponding to the independent set do not have a conflict

- 5- Take k to be the number of clauses p)p-mk

Figure 1: Graph for o = (=x1 VX2 V.X3) A (X1 V =X2 V X3) A (X1 V X2 V Xy,) 34

Correctness

Lemma
¢ is satisfiable iff G, has an independent set of size k (= number of clauses in).

Proof.

= Let a be the truth assignment satisfying ¢

- 2- Pick one of the vertices, corresponding to true literals under a, from each
triangle. This is an independent set of the appropriate size. Why? H

35

Correctness (contd)

Lemma
¢ is satisfiable iff G, has an independent set of size k (= number of clauses in).

Proof.

< Let S be an independent set of size k

- S must contain exactly one vertex from each clause triangle

- S cannot contain vertices labeled by conflicting literals

- Thus, it Is possible to obtain a truth assignment that makes in the literals in S
true; such an assignment satisfies one literal in every clause H

36

Other NP-Complete problems

Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer R.
Question: Can the vertices of the graph be colored using k colors
so that vertices connected by an edge do not get the same color?

37

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

O

38

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

38

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G. Thus, G can be partitioned into k
Independent sets Iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G Is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G Is
bipartite using Breadth-first-Search

39

Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once

40

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once

40

