
1

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s

FindClique (G, s)
C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

The algorithm is a represents a
greedy algorithm which finds a
clique depending on a start
vertex s.
• How fast is this algorithm?

1

3 4

5 6

1

ECE-374-B: Lecture 21 - P/NP and
NP-completeness

Instructor: Nickvash Kani
April 11, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s

FindClique (G, s)
C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

The algorithm is a represents a
greedy algorithm which finds a
clique depending on a start
vertex s.
• How fast is this algorithm?

1

3 4

5 6

2

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s
FindClique (G, s)

C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

1

3 4

5 6

The Clique-problem is NP-complete. But this algorithm
provides us with the maximal clique containing s. If we run it
|V| times, does that solve the clique-problem. 2

Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s
FindClique (G, s)

C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

1

3 4

5 6

2

2

The Satisfiability Problem (SAT)

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi.
• A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

• A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

3

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi.
• A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

• A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

3

CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a
CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2x3 ∨ x4 ∨ x5 ∨ x6
0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.

Take the and (
∧
) of all the CNF clauses computed

Resulting CNF formula equivalent to f .

4

Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the vari-
able of ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the vari-
able of ϕ such that ϕ evaluates to true?

5

Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to
variables such that ϕ evaluates to true?

6

Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.
• Many different problems can reduced to them because of
the simple yet powerful expressively of logical constraints.

• Arise naturally in many applications involving hardware
and software verification and correctness.

• As we will see, it is a fundamental problem in theory of
NP-Completeness.

7

z = x

Given two bits x, z which of the following SAT formulas is
equivalent to the formula z = x:

(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x.
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).

8

z = x: Solution

Given two bits x, z which of the
following SAT formulas is equiv-
alent to the formula z = x:
(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x.
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧

(z ∨ x).

x y z = x
0 0 0
0 1 1
1 0 1
1 1 0

9

z = x ∧ y

Given three bits x, y, z which of the following SAT formulas is
equivalent to the formula z = x ∧ y:

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

10

z = x ∧ y

Given three bits x, y, z which of
the following SAT formulas is
equivalent to the formula z =

x ∧ y:
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

x y z z = x ∧ y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

11

Reducing SAT to 3SAT

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.
• Break long clauses into shorter clauses.
• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures!

12

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.
• Break long clauses into shorter clauses.
• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures! 12

Overview of Complexity Classes

In the beginning...

13

In the beginning...

Undecidable

13

In the beginning...

Undecidable

EXP

13

In the beginning...

Undecidable

EXP
PSPACE

13

In the beginning...

Undecidable

EXP
PSPACE

P

13

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

13

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

13

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

13

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

13

In the beginning...

NP

co-NP

Undecidable

EXP
PSPACE

P

NP −Hard

NPC

13

Non-deterministic polynomial time -
NP

P and NP and Turing Machines

• P: set of decision problems that have polynomial time
algorithms.

• NP: set of decision problems that have polynomial time
non-deterministic algorithms.

• Many natural problems we would like to solve are in NP.
• Every problem in NP has an exponential time algorithm
• P ⊆ NP
• Some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

14

Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set
• Vertex Cover
• Set Cover
• SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in
polynomial time!

15

Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set
• Vertex Cover
• Set Cover
• SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in
polynomial time! 15

Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string
to be accepted by the machine,
then the string is part of the
language.

16

Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set & Vertex Cover - Can build algorithm to
check all possible collection of vertices

• Set Cover - Can check all possible collection of sets
• SAT -Can build a non-deterministic algorithm that checks
every possible boolean assignment.

But we don’t have access to a non-deterministic computer. So
how can a deterministic computer verify that a algorithm is in
NP?

17

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX|) such that given a proof one can
efficiently check that IX is indeed a YES instance.

Examples:

• SAT formula ϕ: proof is a satisfying assignment.
• Independent Set in graph G and k: a subset S of vertices.
• Homework

18

Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX|) such that given a proof one can
efficiently check that IX is indeed a YES instance.

Examples:

• SAT formula ϕ: proof is a satisfying assignment.
• Independent Set in graph G and k: a subset S of vertices.
• Homework

18

Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following
two conditions hold:

• For every s ∈ X there is some string t such that
C(s, t) = ”yes”

• If s 6∈ X, C(s, t) = ”no” for every t.

The string s is the problem instance. (Example: particular
graph in independent set problem) The string t is called a
certificate or proof for s.

19

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that the following conditions hold:

• For every s ∈ X there is some string t such that
C(s, t) = ”yes” and |t| ≤ p(|s|).

• If s 6∈ X, C(s, t) = ”no” for every t.
• C(·, ·) runs in polynomial time.

20

Example: Independent Set

• Problem: Does G = (V, E) have an independent set of size
≥ k?

• Certificate: Set S ⊆ V .
• Certifier: Check |S| ≥ k and no pair of vertices in S is
connected by an edge.

21

Example: SAT

• Problem: Does formula ϕ have a satisfying truth
assignment?

• Certificate: Assignment a of 0/1 values to each variable.
• Certifier: Check each clause under a and say “yes” if all
clauses are true.

22

Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

• I: instance.
• c: proof/certificate that the instance is indeed a YES
instance of the given problem.

One can think about C as an algorithm for the original
problem, if:

• Given I, the algorithm guesses (non-deterministically, and
who knows how) a certificate c.

• The algorithm now verifies the certificate c for the
instance I.

NP can be equivalently described using Turing machines.
23

Cook-Levin Theorem

“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition

• Hardest problem must be in NP.
• Hardest problem must be at least as “difficult” as every
other problem in NP.

24

NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

• X ∈ NP, and
• (Hardness) For any Y ∈ NP, Y ≤P X.

25

Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.

⇒ Suppose X can be solved in polynomial time
• Let Y ∈ NP. We know Y ≤P X.
• We showed that if Y ≤P X and X can be solved in
polynomial time, then Y can be solved in polynomial time.

• Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
• Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X.

26

NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

• (Hardness) For any X ∈ NP, we have that X ≤P Y .

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

27

Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP,
• and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

28

Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP,
• and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

28

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

• SAT is in NP.
• every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30

Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

• SAT is in NP.
• every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

• Show that X is in NP.
• Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

31

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

• Show that X is in NP.
• Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?

Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

31

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

• Show that X is in NP.
• Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.

31

3-SAT is NP-Complete

• 3-SAT is in NP
• SAT ≤P 3-SAT as we saw

32

NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem
• SAT ≤P 3-SAT
• 3-SAT ≤P Independent Set
• Independent Set ≤P Vertex Cover
• Independent Set ≤P Clique
• 3-SAT ≤P 3-Color
• 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be
NP-Complete.

A surprisingly frequent phenomenon!

33

NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem
• SAT ≤P 3-SAT
• 3-SAT ≤P Independent Set
• Independent Set ≤P Vertex Cover
• Independent Set ≤P Clique
• 3-SAT ≤P 3-Color
• 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be
NP-Complete.

A surprisingly frequent phenomenon!

33

Reducing 3-SAT to Independent Set

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
k?

34

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
k?

34

Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
k?

34

Interpreting 3SAT

There are two ways to think about 3SAT

• Find a way to assign 0/1 (false/true) to the variables such
that the formula evaluates to true, that is each clause
evaluates to true.

• Pick a literal from each clause and find a truth assignment
to make all of them true. You will fail if two of the literals
you pick are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the
reduction.

35

The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36

The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36

The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36

The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36

The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36

Correctness

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.

⇒ Let a be the truth assignment satisfying ϕ
• 2- Pick one of the vertices, corresponding to true literals
under a, from each triangle. This is an independent set of
the appropriate size. Why?

37

Correctness (contd)

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.

⇐ Let S be an independent set of size k
• S must contain exactly one vertex from each clause triangle
• S cannot contain vertices labeled by conflicting literals
• Thus, it is possible to obtain a truth assignment that makes
in the literals in S true; such an assignment satisfies one
literal in every clause

38

Other NP-Complete problems

Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?

39

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

‘

40

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

‘

40

Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search

41

Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once

42

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once

42

	The Satisfiability Problem (SAT)
	Reducing SAT to 3SAT
	Overview of Complexity Classes
	Non-deterministic polynomial time - NP
	Certifiers/Verifiers

	NP-Completeness
	Cook-Levin Theorem
	Completeness
	Preliminaries

	Reducing 3-SAT to Independent Set
	Other NP-Complete problems
	Graph Coloring
	Hamiltonian Cycle

