## Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a vertex s

```
Find Clique ( \(G, s\) )
\(C=s\)
for each vertex \(v \in V\)
        flag = 1
        for each vertex \(u \in C\)
            if \((u, v) \notin E\)
            flag = 0
        if flag == 1
        \(C=C \cup\{v\}\)
    return C
```

The algorithm is a represents a greedy algorithm which finds a clique depending on a start vertex s.

- How fast is this algorithm?



## ECE-374-B: Lecture 21 - P/NP and NP-completeness

Instructor: Nickvash Kani
April 11, 2023

University of Illinois at Urbana-Champaign

## Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a vertex s

```
Find Clique ( \(G, s\) )
\(C=s\)
for each vertex \(v \in V\)
        flag = 1
        for each vertex \(u \in C\)
            if \((u, v) \notin E\)
            flag = 0
        if flag == 1
        \(C=C \cup\{v\}\)
    return C
```

The algorithm is a represents a greedy algorithm which finds a clique depending on a start vertex s.

- How fast is this algorithm?



## Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph (G) and a vertex s
FindClique $(G, s)$

```
C=S
for each vertex v\inV
        flag = 1
        for each vertex u\inC
        if (u,v)\not\inE
        flag = 0
        if flag == 1
        C=C\cup{v}
```

return C

return C

The Clique-problem is NP-complete. But this algorithm provides us with the maximal clique containing s. If we run it $|V|$ times, does that solve the clique-problem.

## Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected graph ( $G$ ) and a vertex s
FindClique ( $G, s$ )

```
\(C=s\)
for each vertex \(v \in V\)
        flag = 1
        for each vertex \(u \in C\)
        if \((u, v) \notin E\)
                        flag = 0
        if flag == 1
            \(C=C \cup\{v\}\)
```

return C


The Satisfiability Problem (SAT)

## Propositional Formulas

## Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.

- A literal is either a boolean variable $x_{i}$ or its negation $\neg x_{i}$.
- A clause is a disjunction of literals. For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.


## Propositional Formulas

## Definition

Consider a set of boolean variables $x_{1}, x_{2}, \ldots x_{n}$.

- A literal is either a boolean variable $x_{i}$ or its negation $\neg x_{i}$.
- A clause is a disjunction of literals.

For example, $x_{1} \vee x_{2} \vee \neg x_{4}$ is a clause.

- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
- A formula $\varphi$ is a 3CNF:

A CNF formula such that every clause has exactly 3 literals.

- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.


## CNF is universal

Every boolean formula $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be written as a CNF formula.

| $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $f\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ | $\overline{x_{1}} \vee x_{2} \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}} \vee x_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | $f(0, \ldots, 0,0)$ | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | $f(0, \ldots, 0,1)$ | 1 |
| $\vdots$ |
| 1 | 0 | 1 | 0 | 0 | 1 | $?$ | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 1 | $?$ | 1 |
| $\vdots$ |  |
| 1 | 1 | 1 | 1 | 1 | 1 | $f(1, \ldots, 1)$ | 1 |

For every row that $f$ is zero compute corresponding CNF clause.
Take the and $(\Lambda)$ of all the CNF clauses computed

## Satisfiability

## Problem: SAT

Instance: A CNF formula $\varphi$.
Question: Is there a truth assignment to the variable of $\varphi$ such that $\varphi$ evaluates to true?

## Problem: 3SAT

Instance: A 3CNF formula $\varphi$.
Question: Is there a truth assignment to the variable of $\varphi$ such that $\varphi$ evaluates to true?

## Satisfiability

## SAT

Given a CNF formula $\varphi$, is there a truth assignment to variables such that $\varphi$ evaluates to true?

## Example

- $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
- $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.


## 3SAT

Given a 3CNF formula $\varphi$, is there a truth assignment to variables such that $\varphi$ evaluates to true?

## Importance of SAT and 3SAT

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.


## $z=\bar{x}$

Given two bits $x, z$ which of the following SAT formulas is equivalent to the formula $z=\bar{x}$ :
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.
(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x)$.

## $z=\bar{x}:$ Solution

Given two bits $x, z$ which of the following SAT formulas is equivalent to the formula $z=\bar{x}$ :
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.

| $x$ | $y$ | $z=\bar{x}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge$ $(\bar{z} \vee x)$.

## $z=x \wedge y$

Given three bits $x, y, z$ which of the following SAT formulas is equivalent to the formula $z=x \wedge y$ :
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.

## $z=x \wedge y$

Given three bits $x, y, z$ which of the following SAT formulas is equivalent to the formula $z=$ $x \wedge y$ :
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge$ $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge$

| $x$ | $y$ | $z$ | $z=x \wedge y$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

$(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$
$(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge$

Reducing SAT to 3SAT

## SAT $\leq_{p} 3 S A T$

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1,2,3, ... variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.

## $S A T \leq_{p} 3 S A T$

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: $1,2,3, \ldots$ variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly 3 different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables...

## Basic idea

- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled's async lectures!

Overview of Complexity Classes

## In the beginning...



## In the beginning...



In the beginning...


In the beginning...


In the beginning...


## In the beginning...



## In the beginning...



## In the beginning...



## In the beginning...



## In the beginning...



Non-deterministic polynomial time NP

## P and NP and Turing Machines

- P: set of decision problems that have polynomial time algorithms.
- NP: set of decision problems that have polynomial time non-deterministic algorithms.
- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- $P \subseteq N P$
- Some problems in NP are in $P$ (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether $P=N P$. rithms

## Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems? rithms

## Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?
They can all be solved via a non-deterministic computer in polynomial time!

## Non-determinism in computing

Non-determinism is a special property of algorithms.

An algorithm that is capable of taking multiple states
concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.
 rithms

## Problems

- Independent Set \& Vertex Cover - Can build algorithm to check all possible collection of vertices
- Set Cover - Can check all possible collection of sets
- SAT -Can build a non-deterministic algorithm that checks every possible boolean assignment.

But we don't have access to a non-deterministic computer. So how can a deterministic computer verify that a algorithm is in NP?

## Efficient Checkability

Above problems share the following feature:
Checkability
For any YES instance $I_{X}$ of $X$ there is a proof/certificate/solution
that is of length poly $\left(\left|I_{x}\right|\right)$ such that given a proof one can
efficiently check that $I_{X}$ is indeed a YES instance.

## Efficient Checkability

Above problems share the following feature:
Checkability
For any YES instance $I_{X}$ of $X$ there is a proof/certificate/solution
that is of length poly $(||x|)$ such that given a proof one can
efficiently check that $I_{x}$ is indeed a YES instance.

Examples:

- SAT formula $\varphi$ : proof is a satisfying assignment.
- Independent Set in graph $G$ and $k$ : a subset $S$ of vertices.
- Homework


## Certifiers

## Definition

An algorithm $C(\cdot, \cdot)$ is a certifier for problem $X$ if the following two conditions hold:

- For every $s \in X$ there is some string $t$ such that $C(s, t)=$ "yes"
- If $s \notin X, C(s, t)=$ "no" for every $t$.

The string $s$ is the problem instance. (Example: particular graph in independent set problem) The string $t$ is called a certificate or proof for s.

## Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)
A certifier $C$ is an efficient certifier for problem $X$ if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string $t$ such that $C(s, t)=$ "yes" and $|t| \leq p(|s|)$.
- If $s \notin X, C(s, t)=" n o "$ for every $t$.
- $C(\cdot, \cdot)$ runs in polynomial time.


## Example: Independent Set

- Problem: Does $G=(V, E)$ have an independent set of size $\geq k$ ?
- Certificate: Set $S \subseteq$ V.
- Certifier: Check $|S| \geq k$ and no pair of vertices in $S$ is connected by an edge.


## Example: SAT

- Problem: Does formula $\varphi$ have a satisfying truth assignment?
- Certificate: Assignment a of 0/1 values to each variable.
- Certifier: Check each clause under a and say "yes" if all clauses are true.


## Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm $C(I, c)$ with two inputs:

- I: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about $C$ as an algorithm for the original problem, if:

- Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate $c$.
- The algorithm now verifies the certificate c for the instance I.

NP can be equivalently described using Turing machines.

Cook-Levin Theorem

## "Hardest" Problems

## Question

What is the hardest problem in NP? How do we define it?

## Towards a definition

- Hardest problem must be in NP.
- Hardest problem must be at least as "difficult" as every other problem in NP.


## NP-Complete Problems

Definition
A problem $X$ is said to be NP-Complete if

- $X \in N P$, and
- (Hardness) For any $Y \in N P, Y \leq_{p} X$.


## Solving NP-Complete Problems

## Lemma

Suppose $X$ is NP-Complete. Then $X$ can be solved in polynomial time if and only if $P=N P$.

## Proof.

$\Rightarrow$ Suppose $X$ can be solved in polynomial time

- Let $Y \in N P$. We know $Y \leq_{p} X$.
- We showed that if $Y \leq_{p} X$ and $X$ can be solved in polynomial time, then $Y$ can be solved in polynomial time.
- Thus, every problem $Y \in N P$ is such that $Y \in P ; N P \subseteq P$.
- Since $P \subseteq N P$, we have $P=N P$.
$\Leftarrow$ Since $P=N P$, and $X \in N P$, we have a polynomial time algorithm for $X$.


## NP-Hard Problems

Definition
A problem $Y$ is said to be NP-Hard if

- (Hardness) For any $X \in N P$, we have that $X \leq_{P} Y$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

## Consequences of proving NP-Completeness

If $X$ is NP-Complete

- Since we believe $P \neq N P$,
- and solving $X$ implies $P=N P$.
$X$ is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for $X$.

## Consequences of proving NP-Completeness

If $X$ is NP-Complete

- Since we believe $P \neq N P$,
- and solving $X$ implies $P=N P$.
$X$ is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for $X$.
(This is proof by mob opinion - take with a grain of salt.)

## NP-Complete Problems

Question
Are there any problems that are NP-Complete?
Answer
Yes! Many, many problems are NP-Complete.

## Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

## Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.
Need to show

- SAT is in NP.
- every NP problem $X$ reduces to SAT.

Steve Cook won the Turing award for his theorem.

## Proving that a problem $X$ is NP-Complete

To prove $X$ is NP-Complete, show

- Show that $X$ is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to $X$


## Proving that a problem $X$ is NP-Complete

To prove $X$ is NP-Complete, show

- Show that $X$ is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to $X$

SAT $\leq_{p} X$ implies that every NP problem $Y \leq_{p} X$. Why?

## Proving that a problem $X$ is NP-Complete

To prove $X$ is NP-Complete, show

- Show that $X$ is in NP.
- Give a polynomial-time reduction from a known NP-Complete problem such as SAT to $X$

SAT $\leq_{p} X$ implies that every NP problem $Y \leq_{p} X$. Why?
Transitivity of reductions:
$Y \leq_{p}$ SAT and SAT $\leq_{p} X$ and hence $Y \leq_{p} X$.

## 3-SAT is NP-Complete

- 3-SAT is in NP
- SAT $\leq_{p}$ 3-SAT as we saw


## NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT $\leq p$ 3-SAT
- 3-SAT $\leq p$ Independent Set
- Independent Set $\leq_{p}$ Vertex Cover
- Independent Set $\leq_{p}$ Clique
- 3-SAT $\leq$ p 3-Color
- 3-SAT $\leq_{p}$ Hamiltonian Cycle


## NP-Completeness via Reductions

- SAT is NP-Complete due to Cook-Levin theorem
- SAT $\leq p$ 3-SAT
- 3-SAT $\leq p$ Independent Set
- Independent Set $\leq_{p}$ Vertex Cover
- Independent Set $\leq p$ Clique
- 3-SAT $\leq$ p 3-Color
- 3-SAT $\leq_{p}$ Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Reducing 3-SAT to Independent Set

## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $k$.
Question: Is there an independent set in $G$ of size k?

## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $k$.
Question: Is there an independent set in $G$ of size $k$ ?


## Independent Set

## Problem: Independent Set

Instance: A graph G, integer $k$.
Question: Is there an independent set in $G$ of size $k$ ?


## Interpreting

There are two ways to think about 3SAT

- Find a way to assign $0 / 1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick $x_{i}$ and $\neg x_{i}$

We will take the second view of 3SAT to construct the reduction.

## The Reduction

- $G_{\varphi}$ will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4 - Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5 - Take $k$ to be the number of clauses


Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

- $G_{\varphi}$ will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take $k$ to be the number of clauses


Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

- $G_{\varphi}$ will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take $k$ to be the number of clauses


Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

- $G_{\varphi}$ will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5- Take $k$ to be the number of clauses


Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## The Reduction

- $G_{\varphi}$ will have one vertex for each literal in a clause
- 2- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- 4 - Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- 5 - Take $k$ to be the number of clauses


Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

## Correctness

## Lemma

$\varphi$ is satisfiable iff $G_{\varphi}$ has an independent set of size $k(=$ number of clauses in $\varphi$ ).

Proof.
$\Rightarrow$ Let $a$ be the truth assignment satisfying $\varphi$

- 2- Pick one of the vertices, corresponding to true literals under $a$, from each triangle. This is an independent set of the appropriate size. Why?


## Correctness (contd)

## Lemma

$\varphi$ is satisfiable iff $G_{\varphi}$ has an independent set of size $k(=$ number of clauses in $\varphi$ ).

Proof.
$\Leftarrow$ Let $S$ be an independent set of size $k$

- S must contain exactly one vertex from each clause triangle
- S cannot contain vertices labeled by conflicting literals
- Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Other NP-Complete problems

Graph Coloring

## Graph Coloring

## Problem: Graph Coloring

Instance: $G=(V, E)$ : Undirected graph, integer $k$.
Question: Can the vertices of the graph be colored using $k$ colors so that vertices connected by an edge do not get the same color?

## Graph 3-Coloring

## Problem: 3 Coloring

Instance: $G=(V, E)$ : Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?


## Graph 3-Coloring

## Problem: 3 Coloring

Instance: $G=(V, E)$ : Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?


## Graph Coloring

Observation: If $G$ is colored with $k$ colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into $k$ independent sets iff $G$ is $k$-colorable.

Graph 2-Coloring can be decided in polynomial time.
$G$ is 2-colorable iff $G$ is bipartite! There is a linear time algorithm to check if $G$ is bipartite using Breadth-first-Search

Hamiltonian Cycle

## Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with $n$ vertices Goal Does $G$ have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph that visits every vertex in $G$ exactly once



## Directed Hamiltonian Cycle

Input Given a directed graph $G=(V, E)$ with $n$ vertices Goal Does $G$ have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph that visits every vertex in $G$ exactly once


