
1



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s

FindClique (G, s)
C = s
for each vertex v ∈ V

flag = 1
for each vertex u ∈ C

if (u, v) /∈ E
flag = 0

if flag == 1
C = C ∪ {v}

return C

The algorithm is a represents a
greedy algorithm which finds a
clique depending on a start
vertex s.
• How fast is this algorithm?
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The Clique-problem is NP-complete. But this algorithm
provides us with the maximal clique containing s. If we run it
|V| times, does that solve the clique-problem. 2
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The Satisfiability Problem (SAT)



Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

• A literal is either a boolean variable xi or its negation ¬xi.
• A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

• A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

• A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.
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CNF is universal

Every boolean formula f : {0, 1}n → {0, 1} can be written as a
CNF formula.

x1 x2 x3 x4 x5 x6 f (x1, x2, . . . , x6) x1 ∨ x2x3 ∨ x4 ∨ x5 ∨ x6
0 0 0 0 0 0 f (0, . . . , 0, 0) 1
0 0 0 0 0 1 f (0, . . . , 0, 1) 1
...

...
...

...
...

...
...

...
1 0 1 0 0 1 ? 1
1 0 1 0 1 0 0 0
1 0 1 0 1 1 ? 1
...

...
...

...
...

...
...

1 1 1 1 1 1 f (1, . . . , 1) 1

For every row that f is zero compute corresponding CNF clause.

Take the and (
∧
) of all the CNF clauses computed

Resulting CNF formula equivalent to f .
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Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the vari-
able of ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the vari-
able of ϕ such that ϕ evaluates to true?
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Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example

• (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take
x1, x2, . . . x5 to be all true

• (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to
variables such that ϕ evaluates to true?
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Importance of SAT and 3SAT

• SAT and 3SAT are basic constraint satisfaction problems.
• Many different problems can reduced to them because of
the simple yet powerful expressively of logical constraints.

• Arise naturally in many applications involving hardware
and software verification and correctness.

• As we will see, it is a fundamental problem in theory of
NP-Completeness.
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z = x

Given two bits x, z which of the following SAT formulas is
equivalent to the formula z = x:

(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x.
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
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z = x: Solution

Given two bits x, z which of the
following SAT formulas is equiv-
alent to the formula z = x:
(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x.
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧

(z ∨ x).

x y z = x
0 0 0
0 1 1
1 0 1
1 1 0
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z = x ∧ y

Given three bits x, y, z which of the following SAT formulas is
equivalent to the formula z = x ∧ y:

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
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z = x ∧ y

Given three bits x, y, z which of
the following SAT formulas is
equivalent to the formula z =

x ∧ y:
(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y).
(C) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧

(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y).

x y z z = x ∧ y
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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Reducing SAT to 3SAT



SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea

• Pad short clauses so they have 3 literals.
• Break long clauses into shorter clauses.
• Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures!
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Overview of Complexity Classes



In the beginning...
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In the beginning...
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Non-deterministic polynomial time -
NP



P and NP and Turing Machines

• P: set of decision problems that have polynomial time
algorithms.

• NP: set of decision problems that have polynomial time
non-deterministic algorithms.

• Many natural problems we would like to solve are in NP.
• Every problem in NP has an exponential time algorithm
• P ⊆ NP
• Some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.
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Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set
• Vertex Cover
• Set Cover
• SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer in
polynomial time!
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Non-determinism in computing

Non-determinism is a special
property of algorithms.

An algorithm that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string
to be accepted by the machine,
then the string is part of the
language.
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Problems with no known deterministic polynomial time algo-
rithms

Problems

• Independent Set & Vertex Cover - Can build algorithm to
check all possible collection of vertices

• Set Cover - Can check all possible collection of sets
• SAT -Can build a non-deterministic algorithm that checks
every possible boolean assignment.

But we don’t have access to a non-deterministic computer. So
how can a deterministic computer verify that a algorithm is in
NP?
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Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX|) such that given a proof one can
efficiently check that IX is indeed a YES instance.

Examples:

• SAT formula ϕ: proof is a satisfying assignment.
• Independent Set in graph G and k: a subset S of vertices.
• Homework
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following
two conditions hold:

• For every s ∈ X there is some string t such that
C(s, t) = ”yes”

• If s 6∈ X, C(s, t) = ”no” for every t.

The string s is the problem instance. (Example: particular
graph in independent set problem) The string t is called a
certificate or proof for s.
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Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that the following conditions hold:

• For every s ∈ X there is some string t such that
C(s, t) = ”yes” and |t| ≤ p(|s|).

• If s 6∈ X, C(s, t) = ”no” for every t.
• C(·, ·) runs in polynomial time.
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Example: Independent Set

• Problem: Does G = (V, E) have an independent set of size
≥ k?

• Certificate: Set S ⊆ V .
• Certifier: Check |S| ≥ k and no pair of vertices in S is
connected by an edge.
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Example: SAT

• Problem: Does formula ϕ have a satisfying truth
assignment?

• Certificate: Assignment a of 0/1 values to each variable.
• Certifier: Check each clause under a and say “yes” if all
clauses are true.
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Why is it called Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

• I: instance.
• c: proof/certificate that the instance is indeed a YES
instance of the given problem.

One can think about C as an algorithm for the original
problem, if:

• Given I, the algorithm guesses (non-deterministically, and
who knows how) a certificate c.

• The algorithm now verifies the certificate c for the
instance I.

NP can be equivalently described using Turing machines.
23



Cook-Levin Theorem



“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition

• Hardest problem must be in NP.
• Hardest problem must be at least as “difficult” as every
other problem in NP.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

• X ∈ NP, and
• (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.

⇒ Suppose X can be solved in polynomial time
• Let Y ∈ NP. We know Y ≤P X.
• We showed that if Y ≤P X and X can be solved in
polynomial time, then Y can be solved in polynomial time.

• Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
• Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X.
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NP-Hard Problems

Definition
A problem Y is said to be NP-Hard if

• (Hardness) For any X ∈ NP, we have that X ≤P Y .

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

• Since we believe P 6= NP,
• and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
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Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

• SAT is in NP.
• every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

• Show that X is in NP.
• Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT ≤P X implies that every NP problem Y ≤P X. Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X.
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3-SAT is NP-Complete

• 3-SAT is in NP
• SAT ≤P 3-SAT as we saw
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NP-Completeness via Reductions

• SAT is NP-Complete due to Cook-Levin theorem
• SAT ≤P 3-SAT
• 3-SAT ≤P Independent Set
• Independent Set ≤P Vertex Cover
• Independent Set ≤P Clique
• 3-SAT ≤P 3-Color
• 3-SAT ≤P Hamiltonian Cycle

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be
NP-Complete.

A surprisingly frequent phenomenon!
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Reducing 3-SAT to Independent Set



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
k?
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Interpreting 3SAT

There are two ways to think about 3SAT

• Find a way to assign 0/1 (false/true) to the variables such
that the formula evaluates to true, that is each clause
evaluates to true.

• Pick a literal from each clause and find a truth assignment
to make all of them true. You will fail if two of the literals
you pick are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the
reduction.
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The Reduction

• Gϕ will have one vertex for each literal in a clause
• 2- Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

• 4- Connect 2 vertices if they label complementary literals;
this ensures that the literals corresponding to the
independent set do not have a conflict

• 5- Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure 1: Graph for ϕ = (¬x1 ∨ x2 ∨ x3)∧ (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2 ∨ x4) 36
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Correctness

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.

⇒ Let a be the truth assignment satisfying ϕ
• 2- Pick one of the vertices, corresponding to true literals
under a, from each triangle. This is an independent set of
the appropriate size. Why?
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Correctness (contd)

Lemma
ϕ is satisfiable iff Gϕ has an independent set of size k (=
number of clauses in ϕ).

Proof.

⇐ Let S be an independent set of size k
• S must contain exactly one vertex from each clause triangle
• S cannot contain vertices labeled by conflicting literals
• Thus, it is possible to obtain a truth assignment that makes
in the literals in S true; such an assignment satisfies one
literal in every clause
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Other NP-Complete problems



Graph Coloring



Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be col-
ored using k colors so that vertices connected by
an edge do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

‘
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

‘
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Graph Coloring

Observation: If G is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time
algorithm to check if G is bipartite using Breadth-first-Search
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Hamiltonian Cycle



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once
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Directed Hamiltonian Cycle
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