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Pre-lecture brain teaser

Does this graph have a hamiltonian cycle?

a Yes.
b No.
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ECE-374-B: Lecture 21 - Lots of NP-Complete reductions

Instructor: Nickvash Kani
November 13, 2025

University of Illinois Urbana-Champaign



Today

NP-Completeness of two problems:

• Hamiltonian Cycle
• 3-Color

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor
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Reduction from 3SAT to Hamiltonian
Cycle



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once

3



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once
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Directed Hamiltonian Cycle is NP-Complete

• Directed Hamiltonian Cycle is in NP: exercise
• Hardness: We will show 3-SAT P Directed Hamiltonian Cycle
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Directed Hamiltonian Cycle is NP-Complete

• Directed Hamiltonian Cycle is in NP: exercise
• Hardness: We will show 3-SAT P Directed Hamiltonian Cycle
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Reduction

Given 3-SAT formula ' create a graph G' such that

• G' has a Hamiltonian cycle if and only if ' is satisfiable
• G' should be constructible from ' by a polynomial time algorithm A

Notation: ' has n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm.
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Reduction: Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider the
expression:

f (x1) = 1 (1)

We create a cyclic graph that always has a hamiltonian:

But how do we encode the variable?
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Reduction: Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider the
expression:

f (x1) = 1 (1)

We create a cyclic graph that always has a hamiltonian:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

But how do we encode the variable?
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Reduction: Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider the
expression:

f (x1) = 1 (1)

We create a cyclic graph that always has a hamiltonian:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

But how do we encode the variable? 6



Reduction: Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider:

f (x1) = 1 (2)
Maybe we can encode the variable x1 in terms of the cycle direction:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

···

v1_1
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v1_n-1

v1_n
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Reduction: Encoding idea I

Need to create a graph from any arbitrary boolean assignment. Consider:

f (x1) = 1 (2)
Maybe we can encode the variable x1 in terms of the cycle direction:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

If x1 = 1
···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

If x1 = 0 7



Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (3)

Maybe two circles? Now we need to connect them so that we have a single
hamiltonian path
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (3)

Maybe two circles? Now we need to connect them so that we have a single
hamiltonian path

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

···

v2_1

v2_2

v2_3

v2_4v2_n-2

v2_n-1

v2_n

x1 x2
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (4)

Now we need to connect them so that we have a single hamiltonian path

···

v1_1
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v2_4v2_n-2
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v2_n

x1 x2
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (4)

Now we need to connect them so that we have a single hamiltonian path

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

···

v2_1

v2_2

v2_3

v2_4v2_n-2

v2_n-1

v2_n

x1 x2
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (5)

Would be nice to have a single start/stop node.

···

v1_1

v1_2
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v1_4v1_n-2

v1_n-1

v1_n

···

v2_1

v2_2

v2_3

v2_4v2_n-2

v2_n-1

v2_n

x1 x2
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (5)

Would be nice to have a single start/stop node.

···

v1_1

v1_2

v1_3
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (6)

Getting a bit messy. Let’s reorganize:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

···

v2_1
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v2_4v2_n-2

v2_n-1

v2_n

x1 x2

s t
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (6)

Getting a bit messy. Let’s reorganize:

···

v1_1

v1_2

v1_3

v1_4v1_n-2

v1_n-1

v1_n

···

v2_1

v2_2

v2_3

v2_4v2_n-2

v2_n-1

v2_n

x1 x2

s t

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t

x2 ···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_n
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Reduction: Encoding idea II

How do we encode multiple variables?

f (x1, x2) = 1 (7)

This is how we encode variable assignments in a variable loop!

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t

x2 ···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_n
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Reduction: Encoding idea III

How do we handle clauses?
f (x1) = x1 (8)

Lets go back to our one variable graph:

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t
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Reduction: Encoding idea III

How do we handle clauses?
f (x1) = x1 (9)

Add node for clause:

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t

C1
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Reduction: Encoding idea III

How do we handle clauses?

f (x1, x2) = (x1 _ x2) (10)

What do we do if the clause has two literals:

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1
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Reduction: Encoding idea III

How do we handle clauses?

f (x1, x2) = (x1 _ x2) (10)

What do we do if the clause has two literals:

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t

x2 ···v2_1 v2_2 v2_3 v2_4 v2_n-2 v2_n-1 v2_n

C1
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Reduction: Encoding idea III

How do we handle clauses?

f (x1, x2) = (x1 _ x2) ^ (x1 _ x2) (11)

What if the expression has multiple clauses:

···v1_1 v1_2 v1_3 v1_4 v1_n-2 v1_n-1 v1_nx1

s

t

x2 ···v2_1 v2_2 v2_3 v2_4 v2_n-2 v2_n-1 v2_n

C1 C2

16



The Reduction: Review

Suppose we have a SAT formula:

• Create Hamiltonian path graph gadget (G) with n rows with 2m literals in each
row.

• For each of the m clauses, add a vertex Ci to the graph.
• For every literal in Ci add two edges

�
vn2i, Ci

�
and

⇣
Ci, vn2i+1

⌘
if it is a positive

literal or
⇣
vn2i+1, Ci

⌘
and

�
Ci, vn2i

�
if the literal is negated

This graph G only has a hamiltonian path if the SAT formula is satisfiable.
Therefore, SAT P HamPath

17
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Hamiltonian cycle in undirected
graph



Hamiltonian Cycle in Undirected Graphs

Problem
Input Given undirected graph G = (V, E)
Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits

every vertex exactly one (except start and end vertex)?

18
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NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.
• The problem is in NP; proof left as exercise.
• Hardness proved by reducing Directed Hamiltonian Cycle to this problem
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NP-Completeness

Theorem
Hamiltonian cycle problem for undirected graphs is NP-Complete.

Proof.
• The problem is in NP; proof left as exercise.
• Hardness proved by reducing Directed Hamiltonian Cycle to this problem
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G0 such that G
has Hamiltonian Path iff G0 has Hamiltonian path
Reduction
•
•

v

a

b

c

d

vvi vo

ao

bo

c

d
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G0 such that G
has Hamiltonian Path iff G0 has Hamiltonian path
Reduction
• Replace each vertex v by 3 vertices: vin, v, and vout
• A directed edge (a,b) is replaced by edge (aout,bin)

v

a

b

c

d

vvi vo

ao

bo

c

d 20



Reduction Sketch Example

Graph with cycle:

v1

v3v2

v1v1
i v1

o

v2v2
i v2

o v3v3
i v3

o

Graph without cycle:
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Reduction Sketch Example

Graph with cycle:

v1

v3v2

v1v1
i v1

o

v2v2
i v2

o v3v3
i v3

o

Graph without cycle:

v1

v3v2

v1v1
i v1

o

v2v2
i v2

o v3v3
i v3

o 21



Reduction: Wrapup

• The reduction is polynomial time (exercise)
• The reduction is correct (exercise)
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex
in G exactly once

Theorem
Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction
from Halitonian Cycle

Implies that Longest Simple Path in a graph is NP-Complete.
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex
in G exactly once

Theorem
Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction
from Halitonian Cycle

Implies that Longest Simple Path in a graph is NP-Complete.
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex
in G exactly once

Theorem
Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction
from Halitonian Cycle

Implies that Longest Simple Path in a graph is NP-Complete.

23

mA



NP-Completeness of Graph Coloring



Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.
Question: Can the vertices of the graph be colored using k colors
so that vertices connected by an edge do not get the same color?
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

‘
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Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

‘
25
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Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G. Thus, G can be partitioned into k
independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is
bipartite using Breadth-first-Search
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Problems related to graph coloring



Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables needed at the same
time are not assigned to the same register

Interference Graph
Vertices are variables, and there is an edge between two vertices, if the two
variables are “live” at the same time.

Observations
• [Chaitin] Register allocation problem is equivalent to coloring the
interference graph with k colors

• Moreover, 3-COLOR P k� Register Allocation, for any k � 3
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Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

• a node vi for each class i
• an edge between vi and vj if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

28



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

• Breakup a frequency range [a,b] into disjoint bands of frequencies
[a0,b0], [a1,b1], . . . , [ak,bk]

• Each cell phone tower (simplifying) gets one band
• Constraint: nearby towers cannot be assigned same band, otherwise signals
will interference

Problem: given k bands and some region with n towers, is there a way to assign
the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.
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Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

• Breakup a frequency range [a,b] into disjoint bands of frequencies
[a0,b0], [a1,b1], . . . , [ak,bk]

• Each cell phone tower (simplifying) gets one band
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will interference

Problem: given k bands and some region with n towers, is there a way to assign
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Can reduce to k-coloring by creating intereference/conflict graph on towers.
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Showing hardness of 3 COLORING



3-Coloring is NP-Complete

• 3-Coloring is in NP.
• Non-deterministically guess a 3-coloring for each node
• Check if for each edge (u, v), the color of u is different from that of v.

• Hardness: We will show 3-SAT P 3-Coloring.

30
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ' with n variables x1, . . . , xn and m
clauses C1, . . . , Cm. Create graph G' such that G' is 3-colorable iff ' is satisfiable

• need to establish truth assignment for x1, . . . , xn via colors for some nodes in
G'.

• create triangle with node True, False, Base
• for each variable xi two nodes vi and v̄i connected in a triangle with common
Base

• If graph is 3-colored, either vi or v̄i gets the same color as True. Interpret this
as a truth assignment to vi

• Need to add constraints to ensure clauses are satisfied (next phase)

31



Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we can think of:

f (x1, x2) = (x1 _ x2) (12)

Assume green=true and red=false,

32



Reduction Idea I - Simple 3-color gadget
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Let’s start off with the simplest SAT we can think of:

f (x1, x2) = (x1 _ x2) (12)

Assume green=true and red=false,
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Let’s try some stuff:
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

Seems to work:

34



Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

f (x1, x2, x3) = (x1 _ x2 _ x3) (13)

Assume green=true and red=false,
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Reduction Idea I - Simple 3-color gadget
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Reduction Idea I - Simple 3-color gadget

We want to create a gadget that:

• Is 3 colorable if at least one of the literals is true
• Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:
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Assume green=true and red=false,
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3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming that some of the nodes are already colored as
indicated).

a Yes.
b No.

36
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3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming that some of the nodes are already colored as
indicated).

a Yes.
b No.
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3-coloring of the clause gadget
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Reduction Idea II - Literal Assignment I

Next we need a gadget that assigns literals. Our previously constructed gadget
assumes:

• All literals are either red or green.
• Need to limit graph so only x1 or x1 is green. Other must be red

39



Reduction Idea II - Literal Assignment II

v1

v1

v2

v2

vn

vn

T F

Base
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Review Clause Satisfiability Gadget

For each clause Cj = (a _ b _ c), create a small gadget graph

• gadget graph connects to nodes corresponding to a,b, c
• needs to implement OR

OR-gadget-graph:

a

b

c

a _ b

a _ b _ c
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OR-Gadget Graph

Property: if a,b, c are colored False in a 3-coloring then output node of OR-gadget
has to be colored False.

Property: if one of a,b, c is colored True then OR-gadget can be 3-colored such
that output node of OR-gadget is colored True.
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Reduction

• create triangle with nodes True, False, Base
• for each variable xi two nodes vi and v̄i connected in a triangle with common
Base

• for each clause Cj = (a _ b _ c), add OR-gadget graph with input nodes a,b, c
and connect output node of gadget to both False and Base

a

b

c

a _ b

a _ b _ c

T

F

Base
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Reduction

a

b

c

a _ b

a _ b _ c

T

F

Base

Lemma
No legal 3-coloring of above graph (with coloring of nodes T, F,B fixed) in which
a,b, c are colored False. If any of a,b, c are colored True then there is a legal
3-coloring of above graph.
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Reduction Outline

Example
' = (u _ ¬v _ w) ^ (v _ x _ ¬y)

v

u

~w

y

x

w

~y

~x

~v

~u

FT

N

Literals get colour T or F
colours

have complementary
Variable and negation

OR−gates

Palette
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Correctness of Reduction

' is satisfiable implies G' is 3-colorable

• if xi is assigned True, color vi True and v̄i False

• for each clause Cj = (a _ b _ c) at least one of a,b, c is colored True.
OR-gadget for Cj can be 3-colored such that output is True.

G' is 3-colorable implies ' is satisfiable

• if vi is colored True then set xi to be True, this is a legal truth assignment
• consider any clause Cj = (a _ b _ c). it cannot be that all a,b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is
connected to Base and False!
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OR-gadget for Cj can be 3-colored such that output is True.

G' is 3-colorable implies ' is satisfiable

• if vi is colored True then set xi to be True, this is a legal truth assignment
• consider any clause Cj = (a _ b _ c). it cannot be that all a,b, c are False. If
so, output of OR-gadget for Cj has to be colored False but output is
connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR

d

X

ca b

T

a b c d

F
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Circuit-Sat Problem



Circuits

A circuit is a directed acyclic graph with

1 ? ? 0 ?

^ _ _

¬ ^

^

Inputs:

Output:

• Input vertices (without incoming
edges) labeled with 0, 1 or a distinct
variable.

• Every other vertex is labeled _, ^ or
¬.

• Single node output vertex with no
outgoing edges.
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CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes
the output to get value 1?

Lemma
CSAT is in NP.

• Certificate: Assignment to input variables.
• Certifier: Evaluate the value of each gate in a topological sort of DAG and
check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean
formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem
SAT P 3SAT P CSAT.

Theorem
CSAT P SAT P 3SAT.
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Converting a CNF formula into a Circuit

Given 3CNF formula ' with n variables and m clauses, create a Circuit C.

• Inputs to C are the n boolean variables x1, x2, . . . , xn
• Use NOT gate to generate literal ¬xi for each variable xi
• For each clause (`1 _ `2 _ `3) use two OR gates to mimic formula
• Combine the outputs for the clauses using AND gates to obtain the final
output
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Example: 3SAT P CSAT

' =
⇣
x1 _ _x3 _ x4

⌘
^
⇣
x1 _ ¬x2 _ ¬x3

⌘
^
⇣
¬x2 _ ¬x3 _ x4

⌘
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!
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Converting z = x ^ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ^ y to 3SAT

z x y z = x ^ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1
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Converting z = x ^ y to 3SAT

z x y z = x ^ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x ^ y to 3SAT

z x y z = x ^ y z _ x veey

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x ^ y to 3SAT

z x y z = x ^ y z _ x veey z _ x _ y
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1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x ^ y to 3SAT
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Converting z = x ^ y to 3SAT

z x y z = x ^ y z _ x veey z _ x _ y z _ x _ y z _ x _ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x ^ y to 3SAT

z x y z = x ^ y z _ x veey z _ x _ y z _ x _ y z _ x _ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

⇣
z = x ^ y

⌘

⌘
(z _ x _ y) ^(z _ x _ y) ^(z _ x _ y) ^(z _ x _ y)
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Summary of formulas we derived

Lemma
The following identities hold:

• z = x ⌘ (z _ x) ^(z _ x) .
•
⇣
z = x _ y

⌘
⌘ (z _ y) ^(z _ x) ^(z _ x _ y)

•
⇣
z = x ^ y

⌘
⌘

⇣
z _ x _ y

⌘
^
⇣
z _ x

⌘
^
⇣
z _ y

⌘
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Converting a circuit into a CNF formula

1 ? ? 0 ?

Inputs

Output:

^

^

^

_ _

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ^, k

¬, i ^, j

^, f _, g _, h

(A) Input circuit (B) Label the nodes.
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Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ^, k

¬, i ^, j

^, f _, g _, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ^, k

¬, i ^, j

^, f _, g _, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.

57



Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ^, k

¬, i ^, j

^, f _, g _, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ^ xj
xj = xg ^ xh
xi = ¬xf
xh = xd _ xe
xg = xb _ xc
xf = xa ^ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for each vari-
able that is true if the var is com-
puted correctly.
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Converting a circuit into a CNF formula

xk xk
xk = xi ^ xj (¬xk _ xi) ^ (¬xk _ xj) ^ (xk _ ¬xi _ ¬xj)
xj = xg ^ xh (¬xj _ xg) ^ (¬xj _ xh) ^ (xj _ ¬xg _ ¬xh)
xi = ¬xf (xi _ xf ) ^ (¬xi _ ¬xf )

xh = xd _ xe (xh _ ¬xd) ^ (xh _ ¬xe) ^ (¬xh _ xd _ xe)
xg = xb _ xc (xg _ ¬xb) ^ (xg _ ¬xc) ^ (¬xg _ xb _ xc)
xf = xa ^ xb (¬xf _ xa) ^ (¬xf _ xb) ^ (xf _ ¬xa _ ¬xb)
xd = 0 ¬xd
xa = 1 xa
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Converting a circuit into a CNF formula

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ^, k

¬, i ^, j

^, f _, g _, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ^ (¬xk _ xi) ^ (¬xk _ xj)
^ (xk _ ¬xi _ ¬xj) ^ (¬xj _ xg)
^ (¬xj _ xh) ^ (xj _ ¬xg _ ¬xh)
^ (xi _ xf ) ^ (¬xi _ ¬xf )
^ (xh _ ¬xd) ^ (xh _ ¬xe)
^ (¬xh _ xd _ xe) ^ (xg _ ¬xb)
^ (xg _ ¬xc) ^ (¬xg _ xb _ xc)
^ (¬xf _ xa) ^ (¬xf _ xb)
^ (xf _ ¬xa _ ¬xb) ^ (¬xd) ^ xa

We got a CNF formula that is satisfiable if and only if the original circuit is
satisfiable.
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Reduction: CSAT P SAT

• For each gate (vertex) v in the circuit, create a variable xv
• Case ¬: v is labeled ¬ and has one incoming edge from u (so xv = ¬xu). In
SAT formula generate, add clauses (xu _ xv), (¬xu _ ¬xv). Observe that

xv = ¬xu is true () (xu _ xv)
(¬xu _ ¬xv)

both true.
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Reduction: CSAT P SAT

• Case _: So xv = xu _ xw . In SAT formula generated, add clauses (xv _ ¬xu),
(xv _ ¬xw), and (¬xv _ xu _ xw). Again, observe that

⇣
xv = xu _ xw

⌘
is true ()

(xv _ ¬xu),
(xv _ ¬xw),
(¬xv _ xu _ xw)

all true.
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Reduction: CSAT P SAT

• Case ^: So xv = xu ^ xw . In SAT formula generated, add clauses (¬xv _ xu),
(¬xv _ xw), and (xv _ ¬xu _ ¬xw). Again observe that

xv = xu ^ xw is true ()
(¬xv _ xu),
(¬xv _ xw),
(xv _ ¬xu _ ¬xw)

all true.
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Reduction: CSAT P SAT

• If v is an input gate with a fixed value then we do the following. If xv = 1 add
clause xv . If xv = 0 add clause ¬xv

• Add the clause xv where v is the variable for the output gate
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Correctness of Reduction

Need to show circuit C is satisfiable iff 'C is satisfiable

) Consider a satisfying assignment a for C
• Find values of all gates in C under a
• Give value of gate v to variable xv ; call this assignment a0
• a0 satisfies 'C (exercise)

( Consider a satisfying assignment a for 'C
• Let a0 be the restriction of a to only the input variables
• Value of gate v under a0 is the same as value of xv in a
• Thus, a0 satisfies C
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