


Pre-lecture brain teaser

Does this graph have a hamiltonian cycle?
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ECE-374-B: Lecture 21 - Lots of NP-Complete reductions

Instructor: Nickvash Kani
November 13, 2025

University of Illinois Urbana-Champaign



NP-Completeness of two problems:

- Hamiltonian Cycle
- 3-Color

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor



Reduction from 3SAT to Hamiltonian
Cycle



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- A Hamiltonian cycle is a cycle in the graph that visits every
vertex in G exactly once



Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is.in NP: gexercise

- Hardness: We will shoy 3-SAT <p Directed Hamiltonian Cycle?
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Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise

- Hardness: We will show 3-SAT <p Directed Hamiltonian Cycle
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Given 3-SAT formula ¢ create a graph G, such that

* G, has a Hamiltonian cycle if and only if ¢ is satisfiable

- G, should be constructible from ¢ by a polynomial time algorithm A

Notation: ¢ has n variables x1,x2, ..., X, and m clauses Gy, Gy, ..., Cy.



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment. Consider the
expression:

flxa) =1 (1)
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We create a cyclic graph that always has a hamiltonian:




Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment. Consider the
expression:

f(x1) =1 (1)

We create a cyclic graph that always has a hamiltonian:

But how do we encode the variable? 6



Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment. Consider:

fx) =1 (2)

Maybe we can encode the variable x; in terms of the cycle direction:




Reduction: Encoding idea |

Need to create a graph from any arbitrary boolean assignment. Consider:

fx) =1 (2)

Maybe we can encode the variable x; in terms of the cycle direction:




Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (3)

Maybe two circles? Now we need to connect them so that we have a single
hamiltonian path
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (4)

Now we need to connect them so that we have a single hamiltonian path




Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (4)

Now we need to connect them so that we have a single hamiltonian patk




Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (5)

Would be nice to have a single start/stop node.
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (5)

Would be nice to have a single start/stop node.
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Reduction: Encoding idea Il

How do we encode multiple variables?

1



Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (6)

Getting a bit messy. Let's reorganize:
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Reduction: Encoding idea Il

How do we encode multiple variables?

f(x1,%2) =1 (7)

This is how we encode variable assignments in a variable loop!
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Reduction: Encoding idea Il

How do we handle clauses?

f(x1) =X (8)

Lets go back to our one variable graph:
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Reduction: Encoding idea Il

How do we handle clauses?

Foxr) ) (9)

Add node for clause:
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Reduction: Encoding idea Il

How do we handle clauses?

]C(Xq,Xz) = (X1 \/)(_2) (10)

What do we do if the clause has two literals:
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Reduction: Encoding idea Il

How do we handle clauses?

Foa,x2) B %)

What do we do if the clause has two literals:




Reduction: Encoding idea Il

How do we handle clauses?

f(X1,X2) = (X1 \/)(_2) A\ (X_1\/X2) (T])

What If the expression has multiple clauses:
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The Reduction: Review

Suppose we have a SAT formu ae:'
- Create Hamiltonian_pao-b\g graph gadget (G) with n rows with 2m literals in each
row.
- For each of the m clauses, add a vertex C; to the graph.
+ For every literal in C; add two edges (v}, C;) and (C,‘,VQI-_H) if it is a positive
literal or (vgi+1, C,-) and (G, v2) if the literal is negated

This graph G only has a hamiltonian path if the SAT formula is satisfiable.
Therefore, SAT <p HamPath

17



Hamiltonian cycle in undirected
graph




Hamiltonian Cycle in Undirected Graphs

Problem
Input Given undirected graph G = (V, E)

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits

every vertex exactly aae (except start and end vertex)?
Y, P

18



NP-Completeness

'” T
Theorem uHO . a

Hamiltonian cycle problem for undirected graphs is NP-Complete. {?
Proof. 0

- The problem is in NP; proof left as exercise. JE&Q

- Hardness proved by reducing Directed Hamiltonian Cycle to this problem [
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NP-Completeness

"” T
Theorem uHO . a

Hamiltonian cycle problem for undirected graphs is NP-Complete. {?
Proof. 0

- The problem is in NP; proof left as exercise. JE&Q

- Hardness proved by reducing Directed Hamiltonian Cycle to this problem [
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G’ such that G
has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
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Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G’ such that G
has Hamiltonian Path iff G’ has Hamiltonian path

Reduction
+ Replace each vertex v by 3 vertices: vj,, Vv, and Vot

- A directed edge (a, b) is replaced by edge (aout, bin)
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Reduction Sketch Example

Graph with cycle:

21



Reduction Sketch Example

Graph with cycle:

21




Reduction: Wrapup

- The reduction is polynomial time (exercise)

- The reduction is correct (exercise)

22



Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex
In G exactly once
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex
In G exactly once

Theorem
Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction
from Halitonian Cycle
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Hamiltonian Path

Input Given a graph G = (V, E) with n vertices
Goal Does G have a Hamiltonian path?

- A Hamiltonian path is a path in the graph that visits every vertex
In G exactly once

Theorem
Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from 3-SAT to Halitonian Cycle or do a reduction
from Halitonian Cycle n

Implies that Longest Simple Path in a graph is NP-Complete.
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NP-Completeness of Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer R.
Question: Can the vertices of the graph be colored using k colors
so that vertices connected by an edge do not get the same color?

24



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

O
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Graph 3-Coloring

k(olovias

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors
so that vertices connected by an edge do not get the same color?

25



Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same
color) form an independent set in G. Thus, G can be partitioned into k
Independent sets Iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G Is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G Is
bipartite using Breadth-first-Search

26



Problems related to graph coloring




Graph Coloring and Register Allocation

Register Allocation
Assign variables to (at most) k registers such that variables needed at the same

time are not assigned to the same register

Interference Graph _ _ _
Vertices are variables, and there i1s an edge between two vertices, If the two

variables are “live” at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the
Interference graph with k colors

- Moreover, 3-COLOR <p k — Register Allocation, for any k > 3

27



Class Room Scheduling

Given n classes and their meeting times, are k rooms sufficient?
Reduce to Graph k-Coloring problem

Create graph G

- a node v; for each class |

- an edge between v; and v; if classes i and j conflict

Exercise: G is R-colorable iff k rooms are sufficient

28



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies

[aO7 b0]7 [017 b’l]a ceey [a/?7 b/?]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals

will interference

29



Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA)
(example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint bands of frequencies

[aO7 b0]7 [017 b’l]a ceey [a/?7 b/?]
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals

will interference

Problem: given kR bands and some region with n towers, is there a way to assign
the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

29



Showing hardness of 3 COLORING




3-Coloring is NP-Complete

- 3-Coloring is in NP.
ce,h'Pde‘Non—deterministically guess a 3-coloring for each node
ﬂ 41-)7):# Check if for each edge (u,v), the color of u iIs different from that of v.

- Hardness: We will show 3-SAT <p 3-Coloring. Nes

—
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Reduction Idea

Start with 3SAT formula (i.e., 3CNF formula) ¢ with n variables xq,...,x, and m
clauses Cy, ..., Cn. Create graph G, such that G, is 3-colorable iff ¢ is satisfiable

- need to establish truth assignment for x4, ..., X, via colors for some nodes In
Ge.
- create triangle with node True, False, Base

- for each variable x; two nodes v; and v; connected in a triangle with common
Base

- If graph Is 3-colored, either v; or v; gets the same color as True. Interpret this
as a truth assignment to v,

- Need to add constraints to ensure clauses are satisfied (next phase)

31



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

32



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

]C(Xq,Xz) = (X1 \/X2) (12)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Assume green=true and red=false,

32



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

Let's try some stuff:
&,

33



Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

f(X’],X2,X3) = (X1 V Xy \/X3) (13)
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Reduction Idea | - Simple 3-color gadget

We want to create a gadget that:

- |s 3 colorable if at least one of the literals is true

- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:
f(x1,%2,X3) = (X1 V X2 V X3) (13)

Assume green=true and red=false,

35



3 color this gadget Il

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming that some of the nodes are already colored as
indicated).

a Yes.
b No.

36



3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three
colored in a valid way (assuming that some of the nodes are already colored as
indicated).

a Yes.
b No.
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Reduction Idea Il - Literal Assignment |

Next we need a gadget that assigns literals. Our previously constructed gadget
assumes:

- All literals are either red or green.

- Need to limit graph so only x7 or X; Is green. Other must be red

39



Reduction Idea Il - Literal Assignment Il

40



Review Clause Satisfiability Gadget

For each clause C; = (a Vv bV c), create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, ¢
- needs to implement OR

OR-gadget-graph:

41



OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget
has to be colored False.

Property: If one of a, b, c 1s colored True then OR-gadget can be 3-colored such
that output node of OR-gadget is colored True.

42



- create triangle with nodes True, False, Base

- for each variable x; two nodes v; and v; connected in a triangle with common
Base

- for each clause C; = (aV bV c), add OR-gadget graph with input nodes a, b, c
and connect output node of gadget to both False and Base

43



Lemma
No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which

a, b, c are colored False. If any of a, b, c are colored True then there is a legal
3-coloring of above graph.

A



Reduction Outline

Exapble N\
o€ (UV-vVv (VVXV-ay)
Variable and negation
have complementa
colours
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Correctness of Reduction

¢ Is satisfiable implies G, is 3-colorable

- If x; Is assigned True, color v; True and v; False

46



Correctness of Reduction

¢ Is satisfiable implies G, is 3-colorable

- If x; Is assigned True, color v; True and v; False

- for each clause (; = (aV bV c) at least one of a, b, c is colored True.
OR-gadget for C; can be 3-colored such that output is True.
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Correctness of Reduction

¢ Is satisfiable implies G, is 3-colorable

- If x; Is assigned True, color v; True and v; False

- for each clause (; = (aV bV c) at least one of a, b, c is colored True.
OR-gadget for C; can be 3-colored such that output is True.

G, Is 3-colorable implies ¢ Is satisfiable

- If v; Is colored True then set x; to be True, this is a legal truth assignment
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Correctness of Reduction

¢ Is satisfiable implies G, is 3-colorable

- If x; Is assigned True, color v; True and v; False

- for each clause (; = (aV bV c) at least one of a, b, c is colored True.
OR-gadget for C; can be 3-colored such that output is True.

G, Is 3-colorable implies ¢ Is satisfiable

- If v; Is colored True then set x; to be True, this is a legal truth assignment

- consider any clause C; = (a Vv bV c). it cannot be that all a, b, c are False. If
so, output of OR-gadget for C; has to be colored False but output is

connected to Base and False!
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Graph generated in reduction from 3SAT to 3COLOR
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Circuit-Sat Problem




A circuit is a directed acyclic graph with

- Input vertices (without incoming
edges) labeled with 0, 1 or a distinct
variable.

- Every other vertex is labeled Vv, A or

-,

- Single node output vertex with no
outgoing edges.

48



A circuit is a directed acyclic graph with
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A circuit is a directed acyclic graph with

- Input vertices (without incoming
edges) labeled with 0, 1 or a distinct
variable.

- Every other vertex is labeled Vv, A or

-,

- Single node output vertex with no
outgoing edges.
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: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) | |
Given a circult as input, 1s there an assignment to the input variables that causes

the output to get value 1?7

49



: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).) | |
Given a circult as input, 1s there an assignment to the input variables that causes

the output to get value 1?7

Lemma
CSAT is in NP.

- Certificate: Assignment to input variables.

- Certifier: Evaluate the value of each gate in a topological sort of DAG and
check the output gate value.
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Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean
formulas

50



Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean
formulas
However they are equivalent in terms of polynomial-time solvability.

Theorem
SAT <p 3SAT <p CSAT.

Theorem
CSAT <p SAT <p 3SAT.
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Converting a formula into a Circuit

Given 3CNF formula ¢ with n variables and m clauses, create a Circuit C.

- Inputs to C are the n boolean variables x4, X, ..., Xn
- Use NOT gate to generate literal —x; for each variable x;
+ For each clause (41 V ¢, Vv £3) use two OR gates to mimic formula

- Combine the outputs for the clauses using AND gates to obtain the final
output

57



Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —|X3) N (—|X2 V X3V X4)
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Example: <p

O = (X1 V VX3V X4> N\ (X1 V =X V —'X3) N (—|X2 V X3V X4>
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?
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Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!
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Summary of formulas we derived

Lemma N
The following identities hold:

Z7=X = (zVX)A(ZVX).
-(z:xvy) = VY AZVI)AZVXVY)
'(Z:X/\y) — (Z\/>_<\/)7)/\(2\/X)/\(Z\/y>
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Converting a circuit into a formula

(A) Input circuit (B) Label the nodes.
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Converting a circuit into a formula

(B) Label the nodes. (C) Introduce var for each node.
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Converting a circuit into a formula

X, (Demand a sat’ assignment!)

Xp =X,'/\Xj
Xj = Xg N Xh
Xj = —Xf
Xp = Xq V Xe
Xg = Xp V Xc
Xf = Xa A Xp
Xqg =0

Xqg =1

(D) Write a sub-formula for each vari-
(C) Introduce var for each node. able that is true if the var is com-

puted correctly.
58



Converting a circuit into a formula

Xk Xk

Xp = Xi N X (—Xk V Xi) A (—xp V Xj) A (Xp V =X V —IXJ')
Xj = Xg NXp || (=X VXg) A (=X VXp) A (X V —Xg V —Xp)

Xj = —Xf (Xi V X£) A (=X V =Xr)

Xn =XgVXe || (XnV =Xg) A (XpV =Xe) A (=X V Xg V Xe)
Xg =Xp VXc || (XgV =Xp) A(XgV —Xc)A(—Xg V Xp V Xc)
Xr=Xa AXp || (=Xr V Xa) A (=X V Xp) A (Xr V =Xgq V —Xp)
Xg =20

Xa:1
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Converting a circuit into a formula

Xp N\ (—IX;? \/X,‘) A (—IX/? V Xj)

A (Xp V=XV =X) A (=X V Xg)
A (=X V Xp) A (X V —Xg V —Xp)
A (X V Xf) A (=X V —le)

A (Xp V —Xg) A (Xp V —Xe)
A(—Xp V Xg V Xe) A(Xg V —Xp)

We got a CNF formula that is satisfiable if and only if the original circuit is
satisfiable.
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Reduction: CSAT <, SAT

- For each gate (vertex) v in the circuit, create a variable x,

- Case —: v is labeled — and has one incoming edge from u (so x, = —x). In
SAT formula generate, add clauses (x, V xy), (—xy V —xy). Observe that

| Xy V X
X, = =X, IS true <= (Xu v xv) both true.
(_'Xu \/ _‘X\/)
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Reduction: CSAT <, SAT

+ Case V: So xy, = Xy V Xy. In SAT formula generated, add clauses (x, V —xy),
(xy V =Xy ), and (—xy V Xy V Xy ). Again, observe that

(X\/ \/ _'Xu)7
(XV = Xy \/XW> Istrue <<= (xy V Xy), all true.
(_|X\/ \/Xu \/Xw)
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Reduction: CSAT <, SAT

-+ Case A S0 xy = Xy A Xy. In SAT formula generated, add clauses (—xy V xy),
(—xy V Xw), and (x, V =xy V =Xy ). Again observe that

(_|X\/ \/Xu),
Xy =Xy AXp Istrue <= (=xy V Xy), all true.
(XV \/ _‘Xu \/ _|Xw)

63



Reduction: CSAT <, SAT

- If vis an input gate with a fixed value then we do the following. If x, = 1 add
clause xy. If x, = 0 add clause —xy

- Add the clause x, where v is the variable for the output gate
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Correctness of Reduction

Need to show circuit C is satisfiable Iff ¢ is satisfiable

= Consider a satisfying assignment a for C

- Find values of all gates in C under a
- Give value of gate v to variable x,; call this assignment a’
- a’ satisfies ¢ (exercise)

< Consider a satisfying assignment a for ¢¢

- Let @’ be the restriction of a to only the input variables
- Value of gate v under a’ is the same as value of x, in a
- Thus, a’ satisfies C
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