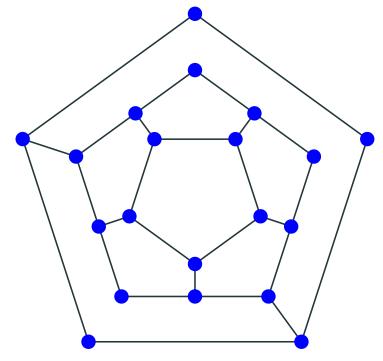
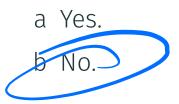
Pre-lecture brain teaser

Does this graph have a hamiltonian cycle?

Heur isti c





ECE-374-B: Lecture 21 - Lots of NP-Complete reductions

Instructor: Nickvash Kani

November 13, 2025

University of Illinois Urbana-Champaign

Today

NP-Completeness of two problems:

- · Hamiltonian Cycle
- · 3-Color

Important: understanding the problems and that they are hard.

Proofs and reductions will be sketchy and mainly to give a flavor

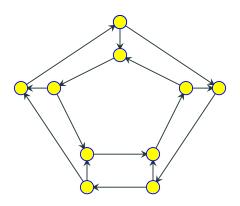
Reduction from 3SAT to Hamiltonian Cycle

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once

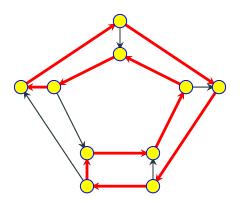


Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does *G* have a Hamiltonian cycle?

• A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once



Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
 Hardness: We will show 3-SAT ≤_P Directed Hamiltonian Cycle

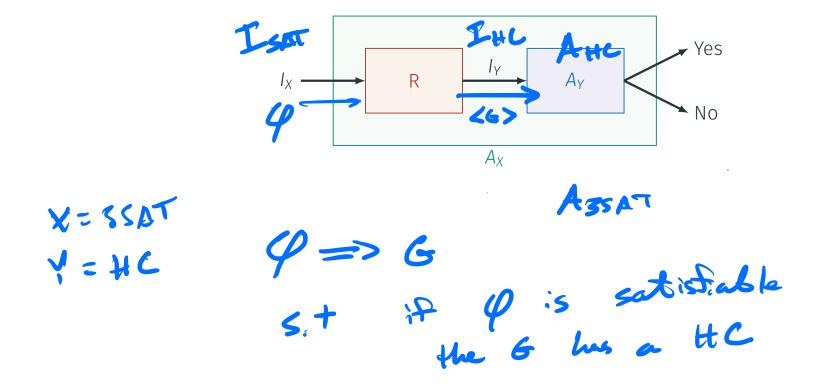
check [c] = [V]

and all
$$v \in c$$
 distinct

check that all $(v_i, v_{i+1}) \in E$

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in NP: exercise
- Hardness: We will show 3-SAT \leq_P Directed Hamiltonian Cycle



Reduction

Given 3-SAT formula φ create a graph G_{φ} such that

- G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
- G_{φ} should be constructible from φ by a polynomial time algorithm ${\mathcal A}$

Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

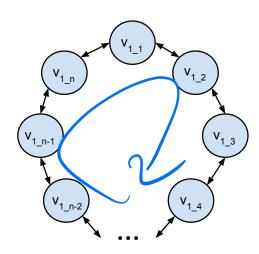
Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$$f(x_1) = 1 \tag{1}$$

Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$$f(x_1) = 1 \tag{1}$$

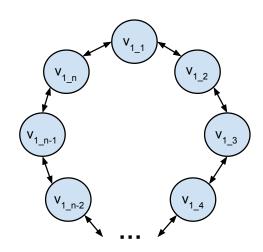
We create a cyclic graph that always has a hamiltonian:



Need to create a graph from any arbitrary boolean assignment. Consider the expression:

$$f(x_1) = 1 \tag{1}$$

We create a cyclic graph that always has a hamiltonian:

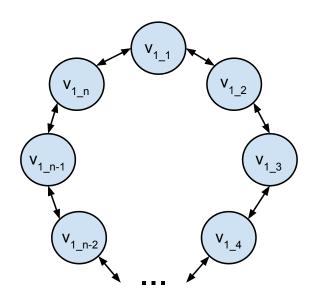


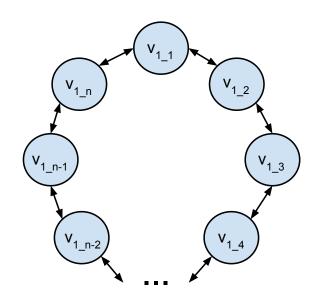
But how do we encode the variable?

Need to create a graph from any arbitrary boolean assignment. Consider:

$$f(x_1) = 1 \tag{2}$$

Maybe we can encode the variable x_1 in terms of the cycle direction:

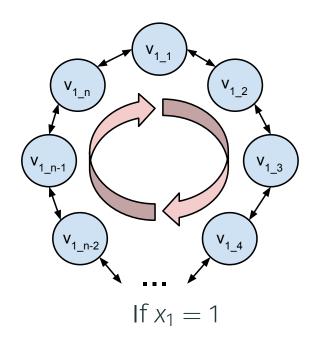


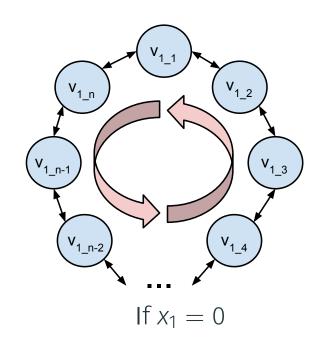


Need to create a graph from any arbitrary boolean assignment. Consider:

$$f(x_1) = 1 \tag{2}$$

Maybe we can encode the variable x_1 in terms of the cycle direction:





How do we encode multiple variables?

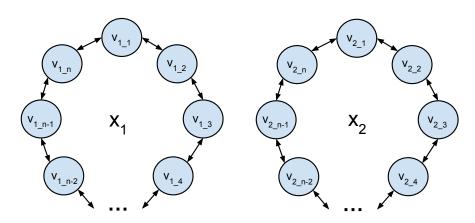
$$f(x_1, x_2) = 1 (3)$$

Maybe two circles? Now we need to connect them so that we have a single hamiltonian path

How do we encode multiple variables?

$$f(x_1, x_2) = 1 (3)$$

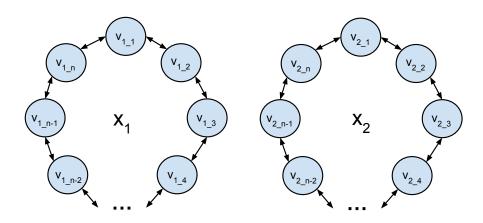
Maybe two circles? Now we need to connect them so that we have a single hamiltonian path



How do we encode multiple variables?

$$f(x_1, x_2) = 1 (4)$$

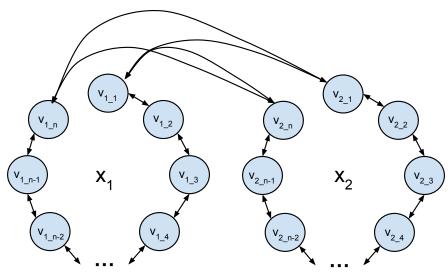
Now we need to connect them so that we have a single hamiltonian path



How do we encode multiple variables?

$$f(x_1, x_2) = 1 (4$$

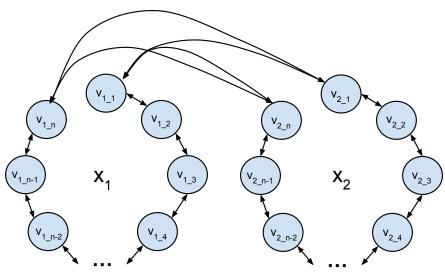
Now we need to connect them so that we have a single hamiltonian path



How do we encode multiple variables?

$$f(x_1, x_2) = 1 (5)$$

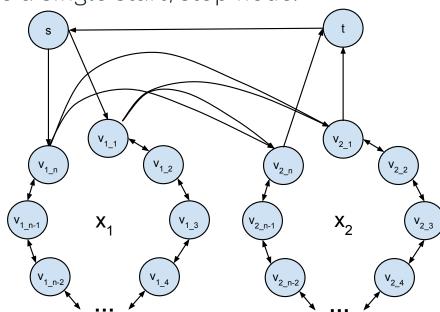
Would be nice to have a single start/stop node.



How do we encode multiple variables?

$$f(x_1, x_2) = 1 (5)$$

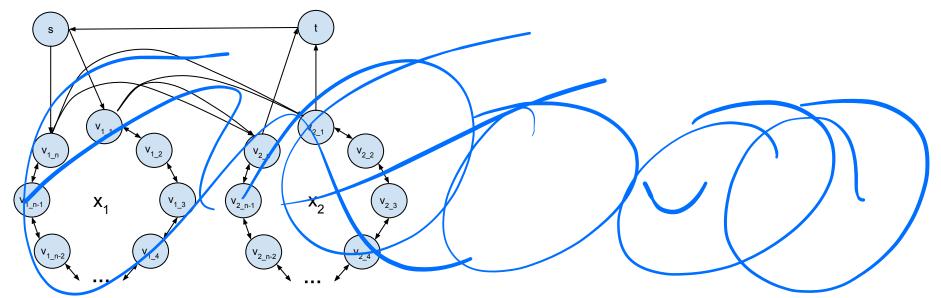
Would be nice to have a single start/stop node.



How do we encode multiple variables?

$$f(x_1, x_2) = 1 \tag{6}$$

Getting a bit messy. Let's reorganize:

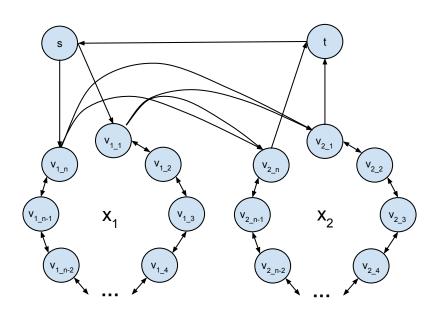


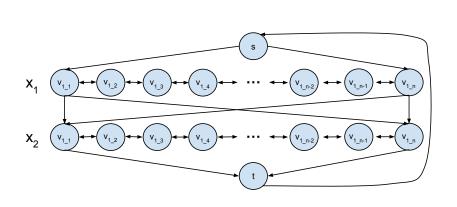
1

How do we encode multiple variables?

$$f(x_1, x_2) = 1 (6)$$

Getting a bit messy. Let's reorganize:

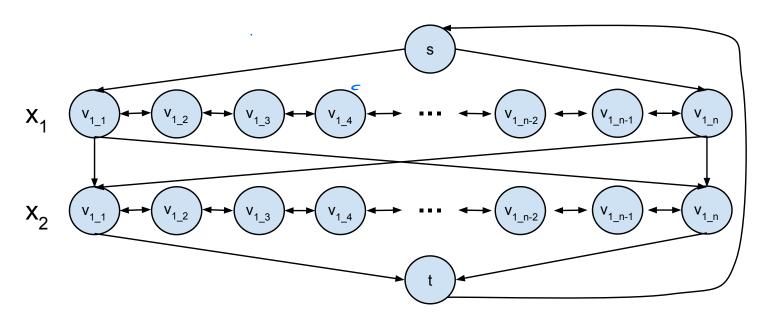




How do we encode multiple variables?

$$f(x_1, x_2) = 1 (7)$$

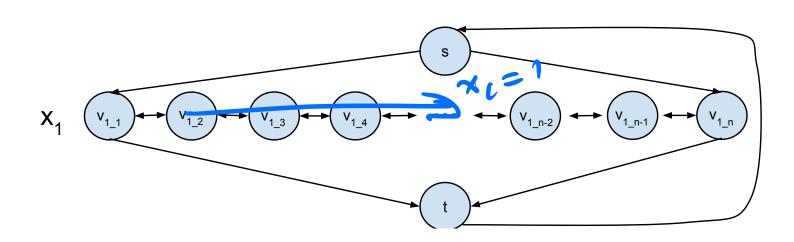
This is how we encode variable assignments in a variable loop!



How do we handle clauses?

$$f(x_1) = x_1 \tag{8}$$

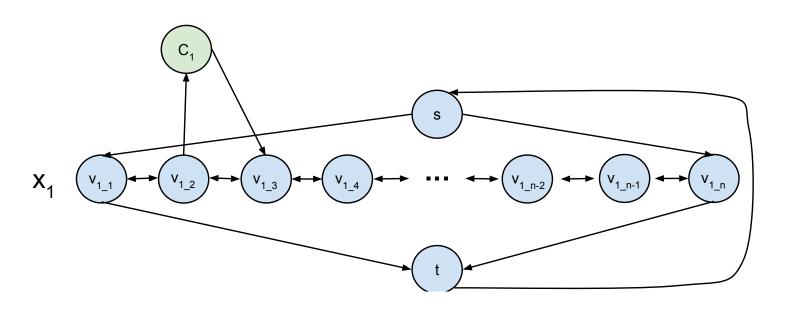
Lets go back to our one variable graph:



How do we handle clauses?

$$f(x_1) = x_1 \tag{9}$$

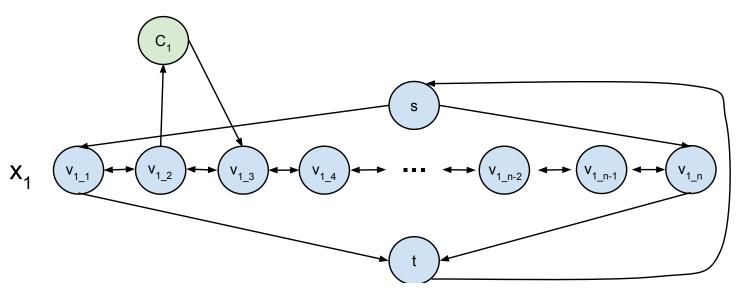
Add node for clause:



How do we handle clauses?

$$f(x_1, x_2) = (x_1 \vee \overline{x_2}) \tag{10}$$

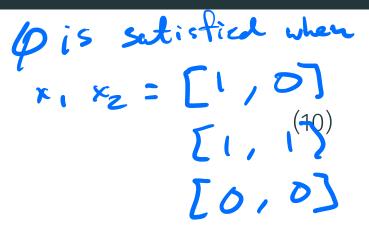
What do we do if the clause has two literals:

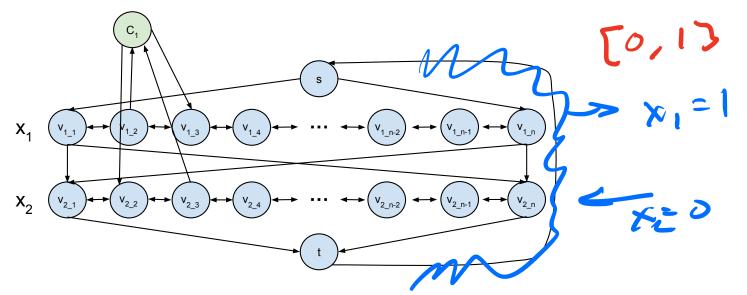


How do we handle clauses?

$$f(x_1,x_2) = (\overline{X_1} \vee \overline{X_2})$$

What do we do if the clause has two literals:

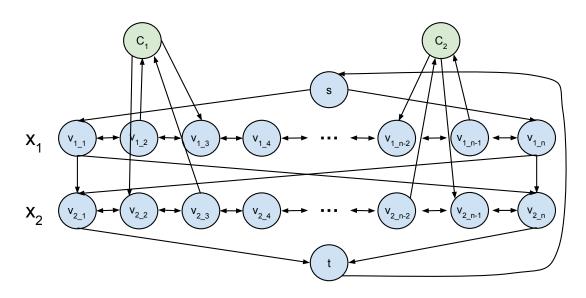




How do we handle clauses?

$$f(x_1, x_2) = (x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2) \tag{11}$$

What if the expression has multiple clauses:



The Reduction: Review

Suppose we have a SAT formula:

- Create Hamiltonian path graph gadget (G) with n rows with 2m literals in each row.
- For each of the m clauses, add a vertex C_i to the graph.
- For every literal in C_i add two edges (v_{2i}^n, C_i) and (C_i, v_{2i+1}^n) if it is a positive literal or (v_{2i+1}^n, C_i) and (C_i, v_{2i}^n) if the literal is negated

This graph G only has a hamiltonian path if the SAT formula is satisfiable. Therefore, $SAT \leq_P HamPath$

graph

Hamiltonian cycle in undirected

Hamiltonian Cycle in <u>Undirected</u> Graphs

Problem

```
Input Given undirected graph G = (V, E)
```

Goal Does G have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly (except start and end vertex)?

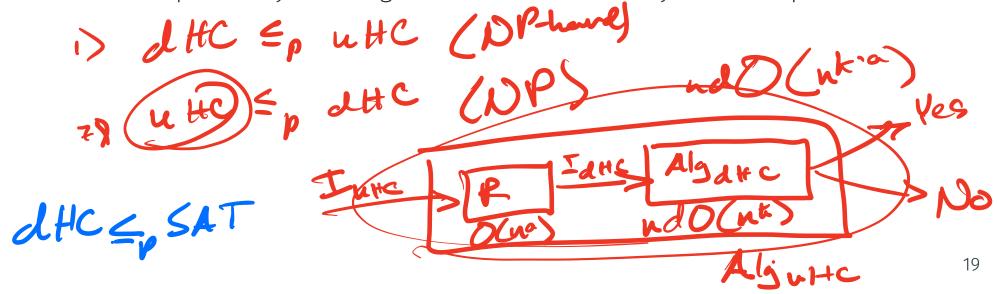
NP-Completeness

Theorem Hamiltonian cycle problem for <u>undirected</u> graphs is NP-Complete.

Proof.

• The problem is in **NP**; proof left as exercise.

• Hardness proved by reducing Directed Hamiltonian Cycle to this problem $\ \square$



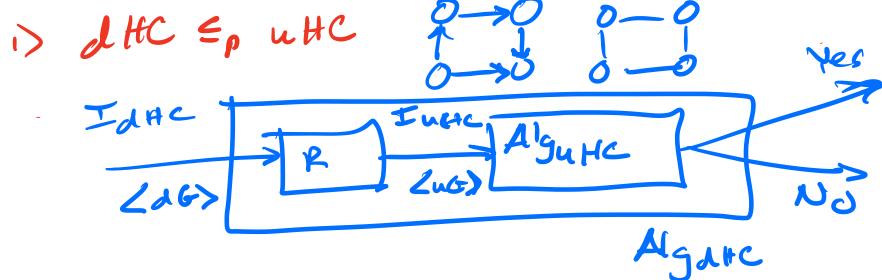
NP-Completeness

Theorem Hamiltonian cycle problem for <u>undirected</u> graphs is NP-Complete.

Proof.

• The problem is in **NP**; proof left as exercise.

· Hardness proved by reducing Directed Hamiltonian Cycle to this problem



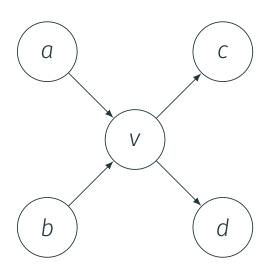
Reduction Sketch

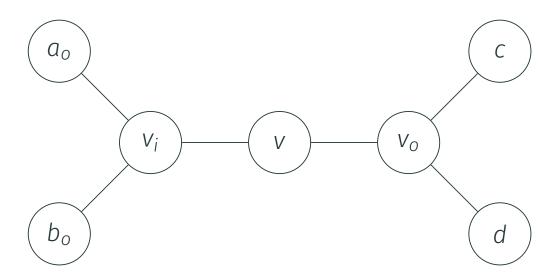
Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

•

•



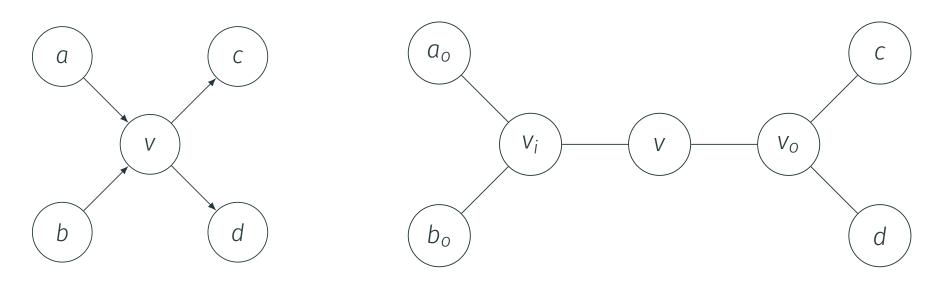


Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

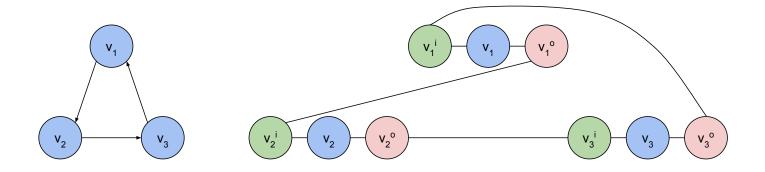
Reduction

- Replace each vertex v by 3 vertices: v_{in} , v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



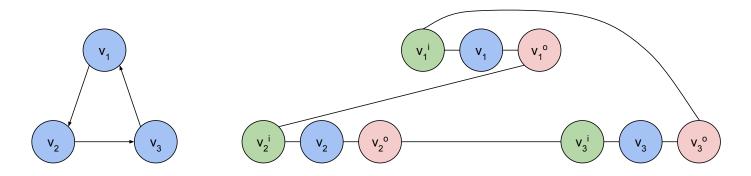
Reduction Sketch Example

Graph with cycle:

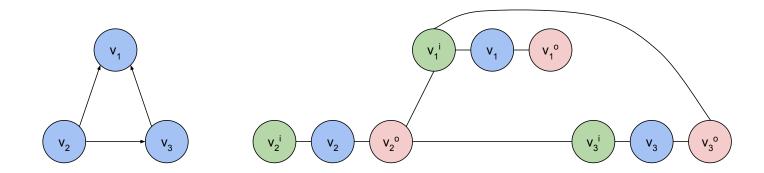


Reduction Sketch Example

Graph with cycle:



Graph without cycle:



Reduction: Wrapup

- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)

Hamiltonian Path

Input Given a graph G = (V, E) with n vertices

Goal Does *G* have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Hamiltonian Path

Input Given a graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Theorem

Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from **3-SAT** to **Halitonian Cycle** or do a reduction from **Halitonian Cycle**

Hamiltonian Path

Input Given a graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian path?

• A Hamiltonian path is a path in the graph that visits every vertex in *G* exactly once

Theorem

Directed Hamiltonian Path and Undirected Hamiltonian Path are NP-Complete.

Easy to modify the reduction from **3-SAT** to **Halitonian Cycle** or do a reduction from **Halitonian Cycle**

Implies that Longest Simple Path in a graph is NP-Complete.

NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k.

Question: Can the vertices of the graph be colored using *k* colors

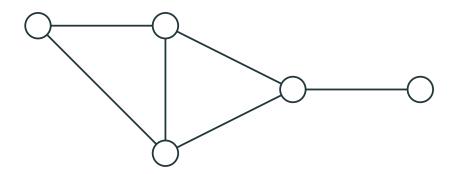
so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?



•

Graph 3-Coloring

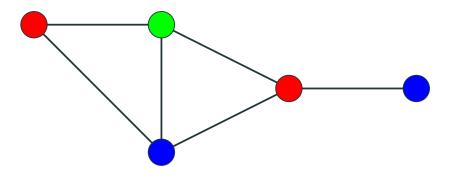
k Colorins

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be colored using 3 colors

so that vertices connected by an edge do not get the same color?



ı

Graph Coloring

Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G. Thus, G can be partitioned into k independent sets iff G is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G is 2-colorable iff G is bipartite! There is a linear time algorithm to check if G is bipartite using Breadth-first-Search

Problems related to graph coloring

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) *k* registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- Moreover, 3-COLOR $\leq_P k$ Register Allocation, for any $k \geq 3$

Class Room Scheduling

Given *n* classes and their meeting times, are *k* rooms sufficient?

Reduce to Graph k-Coloring problem

Create graph G

- a node v_i for each class i
- an edge between v_i and v_j if classes i and j conflict

Exercise: G is k-colorable iff k rooms are sufficient

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Frequency Assignments in Cellular Networks

Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)

- Breakup a frequency range [a, b] into disjoint <u>bands</u> of frequencies $[a_0, b_0], [a_1, b_1], \dots, [a_k, b_k]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference

Problem: given *k* bands and some region with *n* towers, is there a way to assign the bands to avoid interference?

Can reduce to k-coloring by creating intereference/conflict graph on towers.

Showing hardness of 3 COLORING

3-Coloring is NP-Complete

• 3-Coloring is in NP.

Confinite Non-deterministically guess a 3-coloring for each node Check if for each edge (u, v), the color of u is different from that of v.

Hardness: We will show 3-SAT ≤_P 3-Coloring.

Reduction Idea

Start with **3SAT** formula (i.e., 3CNF formula) φ with n variables x_1, \ldots, x_n and m clauses C_1, \ldots, C_m . Create graph G_{φ} such that G_{φ} is 3-colorable iff φ is satisfiable

- need to establish truth assignment for x_1, \ldots, x_n via colors for some nodes in G_{φ} .
- create triangle with node True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- If graph is 3-colored, either v_i or $\overline{v_i}$ gets the same color as True. Interpret this as a truth assignment to v_i
- Need to add constraints to ensure clauses are satisfied (next phase)

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

$$f(x_1, x_2) = (x_1 \lor x_2) \tag{12}$$

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's start off with the simplest SAT we can think of:

$$f(x_1,x_2) = (x_1) \lor (x_2)$$

Assume green=true and red=false,

(12)

We want to create a gadget that:

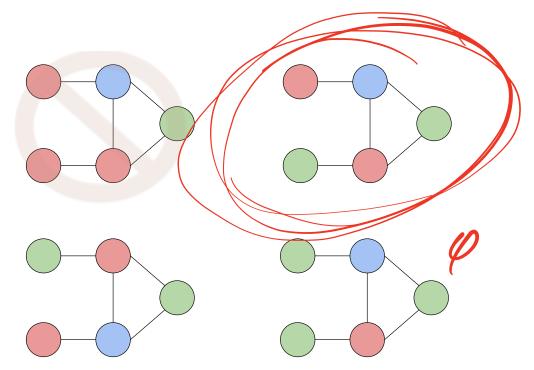
- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Let's try some stuff:

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

Seems to work:



We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true

How do we do the same thing for 3 variables?:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \tag{13}$$

We want to create a gadget that:

- Is 3 colorable if at least one of the literals is true
- Not 3-colorable if none of the literals are true.

How do we do the same thing for 3 variables?:

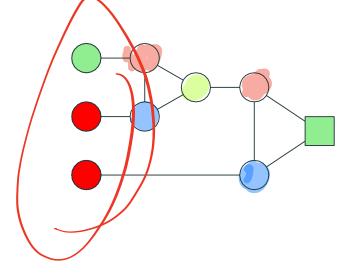
$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \tag{13}$$

Assume green=true and red=false,

3 color this gadget II

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as

indicated).

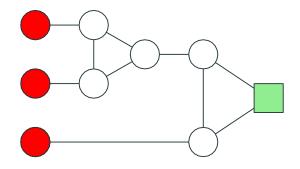


a Yes.

b No.

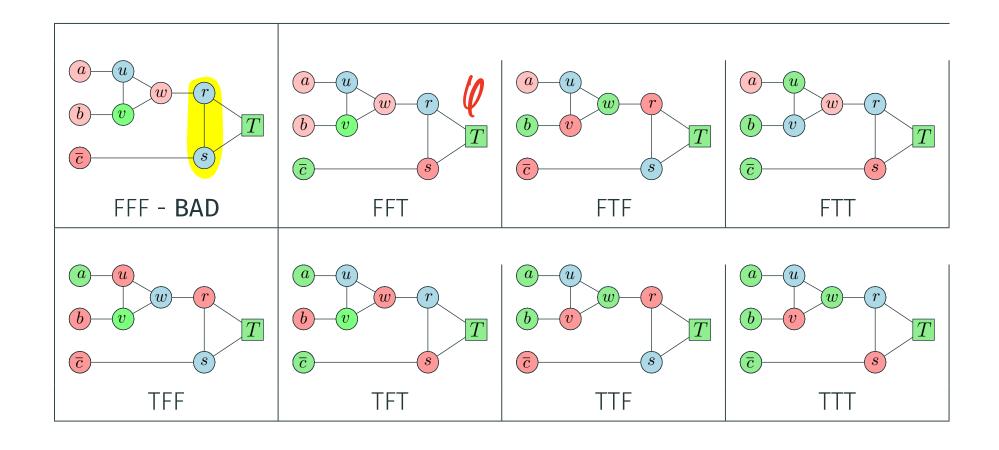
3 color this gadget.

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming that some of the nodes are already colored as indicated).



- a Yes.
- b No.

3-coloring of the clause gadget

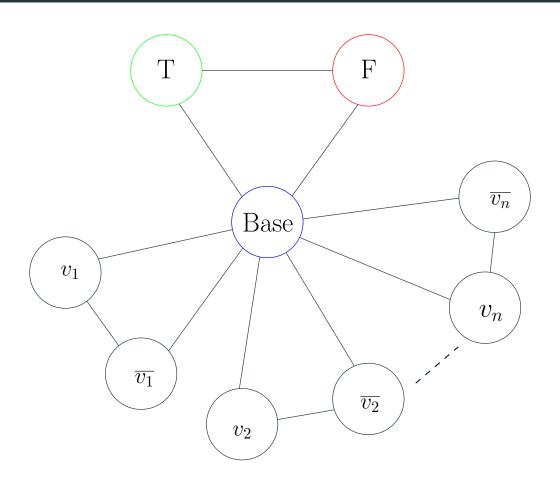


Reduction Idea II - Literal Assignment I

Next we need a gadget that assigns literals. Our previously constructed gadget assumes:

- · All literals are either red or green.
- Need to limit graph so only x_1 or $\overline{x_1}$ is green. Other must be red

Reduction Idea II - Literal Assignment II

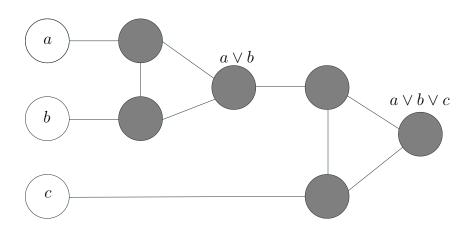


Review Clause Satisfiability Gadget

For each clause $C_i = (a \lor b \lor c)$, create a small gadget graph

- gadget graph connects to nodes corresponding to a, b, c
- needs to implement OR

OR-gadget-graph:



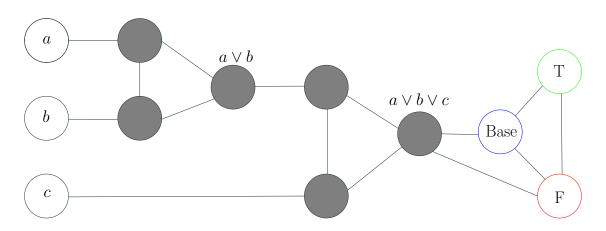
OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

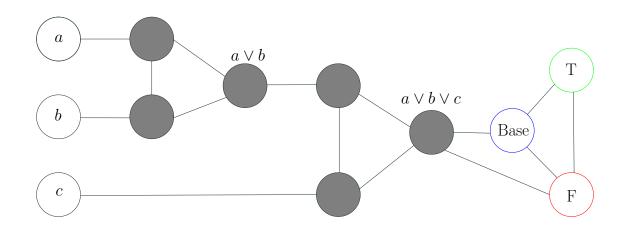
Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- · create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base



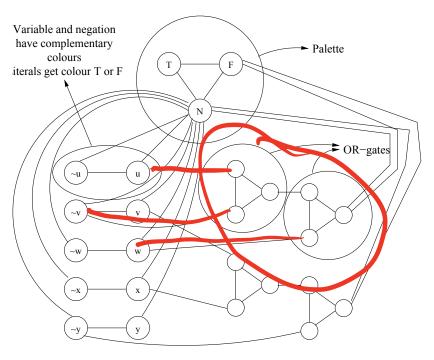
Reduction



Lemma

No legal 3-coloring of above graph (with coloring of nodes T, F, B fixed) in which a, b, c are colored False. If any of a, b, c are colored True then there is a legal 3-coloring of above graph.

Reduction Outline



 φ is satisfiable implies G_{φ} is 3-colorable

• if x_i is assigned True, color v_i True and $\bar{v_i}$ False

 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 G_{φ} is 3-colorable implies φ is satisfiable

• if v_i is colored True then set x_i to be True, this is a legal truth assignment

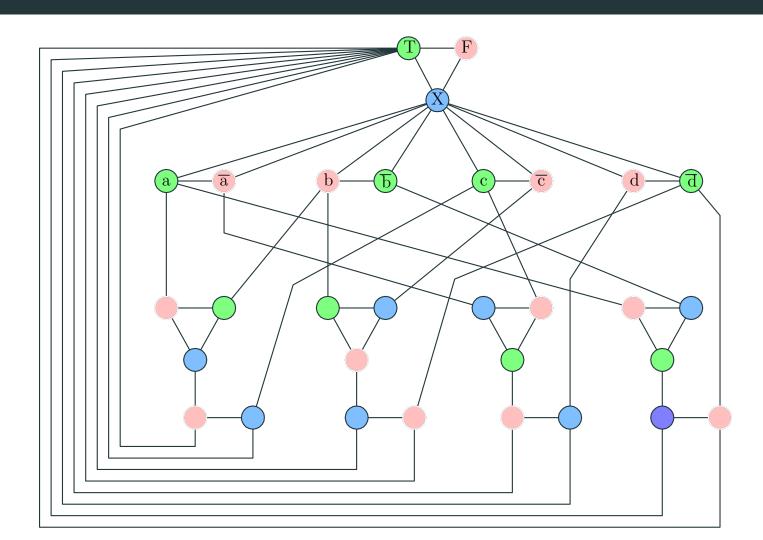
 φ is satisfiable implies G_{φ} is 3-colorable

- if x_i is assigned True, color v_i True and $\bar{v_i}$ False
- for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 G_{φ} is 3-colorable implies φ is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

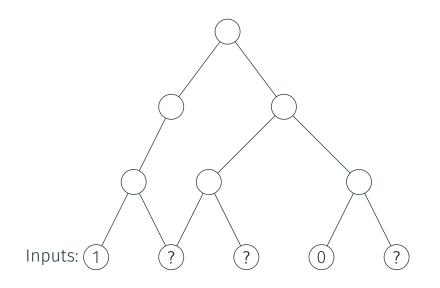
Graph generated in reduction from 3SAT to 3COLOR



Circuit-Sat Problem

Circuits

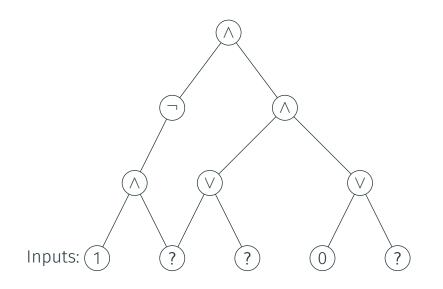
A circuit is a directed acyclic graph with



- Input vertices (without incoming edges) labeled with 0, 1 or a distinct variable.
- Every other vertex is labeled ∨, ∧ or
 ¬.
- Single node output vertex with no outgoing edges.

Circuits

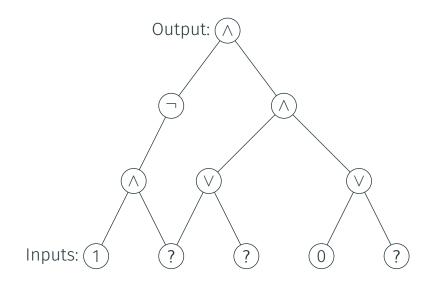
A circuit is a directed acyclic graph with



- Input vertices (without incoming edges) labeled with 0, 1 or a distinct variable.
- Every other vertex is labeled ∨, ∧ or
 ¬.
- Single node output vertex with no outgoing edges.

Circuits

A circuit is a directed acyclic graph with



- Input vertices (without incoming edges) labeled with 0, 1 or a distinct variable.
- Every other vertex is labeled ∨, ∧ or
 ¬.
- Single node output vertex with no outgoing edges.

<u>CSAT:</u> Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

CSAT is in **NP**.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem $SAT \leq_P SSAT \leq_P CSAT$.

Theorem $CSAT \leq_P SAT \leq_P 3SAT$.

Converting a CNF formula into a Circuit

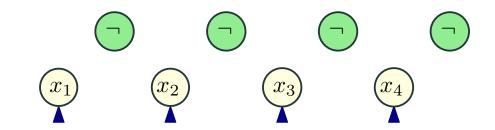
Given 3CNF formula φ with n variables and m clauses, create a Circuit C.

- Inputs to C are the n boolean variables x_1, x_2, \ldots, x_n
- Use NOT gate to generate literal $\neg x_i$ for each variable x_i
- For each clause $(\ell_1 \vee \ell_2 \vee \ell_3)$ use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

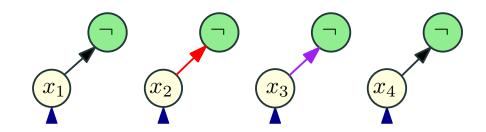
$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$

$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$

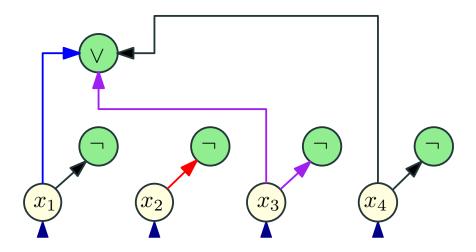
$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$



$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$

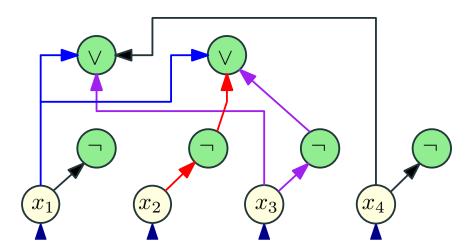


$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$

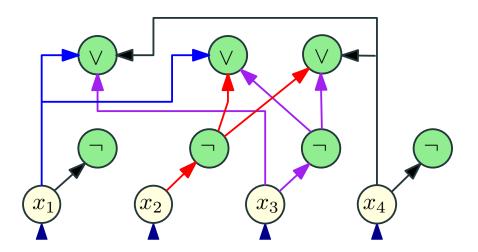


Example: $3SAT \leq_{P} CSAT$

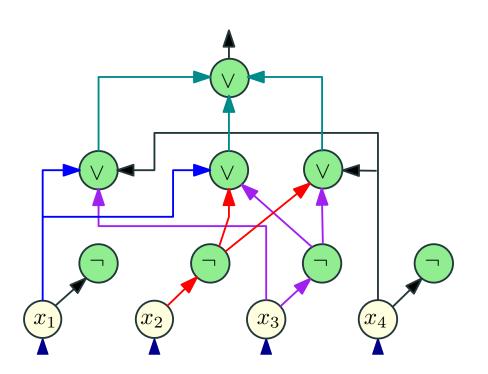
$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$



$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$



$$\varphi = (x_1 \vee \vee x_3 \vee x_4) \wedge (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_3 \vee x_4)$$



Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

Converting a circuit to a SAT formula

What will converting a circuit to a SAT formula prove?

But first we need to look back at a gadget!

Z	X	У			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Z	X	У	$ z = x \wedge y $		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Z	Χ	У	$ z = x \wedge y $				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$z = x \wedge y$	$z \vee \overline{x} \ vee\overline{y}$			
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$z = x \wedge y$	$z \vee \overline{x} \ vee\overline{y}$	$\overline{Z} \lor X \lor y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$z = x \wedge y$	$z \vee \overline{x} \ vee\overline{y}$	$\overline{Z} \lor X \lor y$	$\overline{Z} \lor X \lor \overline{Y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$ z = x \wedge y $	$z \vee \overline{x} \ vee\overline{y}$	$\overline{Z} \lor X \lor y$	$\overline{Z} \lor X \lor \overline{Y}$	$\overline{z} \vee \overline{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$z = x \wedge y$	$z \vee \overline{x} \ vee\overline{y}$	$\overline{Z} \lor X \lor y$	$\overline{Z} \lor X \lor \overline{Y}$	$\overline{z} \vee \overline{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Z	Χ	У	$ z = x \wedge y $	$z \vee \overline{x} \ vee\overline{y}$	$\overline{Z} \lor X \lor y$	$\overline{Z} \lor X \lor \overline{Y}$	$\overline{Z} \vee \overline{X} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

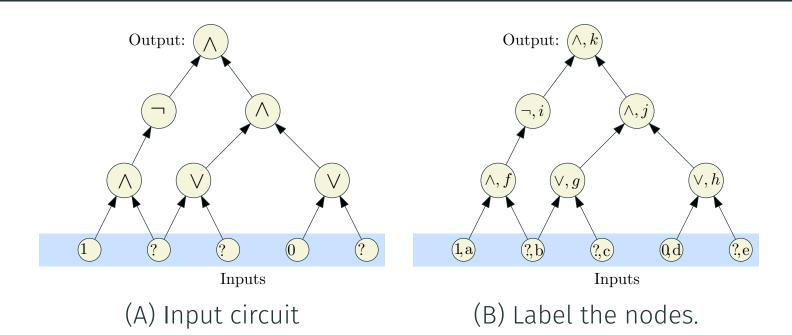
$$\left(z=x\wedge y\right)$$

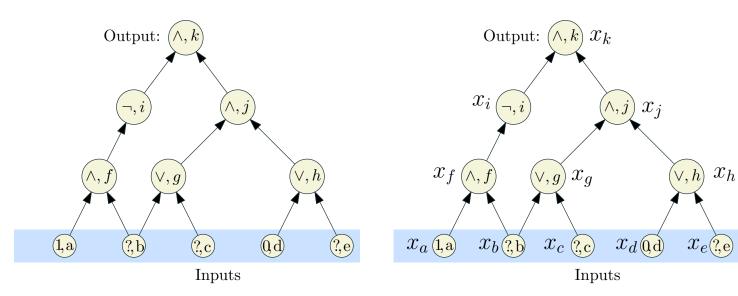
 \equiv

Summary of formulas we derived

Lemma

The following identities hold:

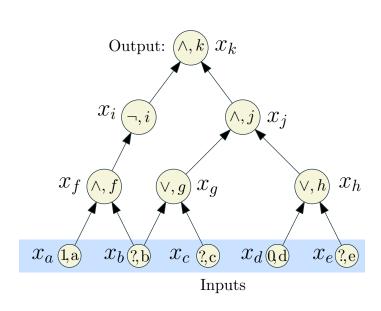




(B) Label the nodes.

(C) Introduce var for each node.

 x_h

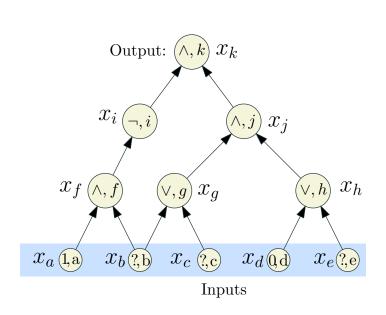


(C) Introduce var for each node.

$$x_k$$
 (Demand a sat' assignment!)
 $x_k = x_i \land x_j$
 $x_j = x_g \land x_h$
 $x_i = \neg x_f$
 $x_h = x_d \lor x_e$
 $x_g = x_b \lor x_c$
 $x_f = x_a \land x_b$
 $x_d = 0$
 $x_a = 1$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

X _k	X _k
$X_k = X_i \wedge X_j$	$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$
$X_j = X_g \wedge X_h$	
$X_i = \neg X_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee \neg x_f)$
$X_h = X_d \vee X_e$	$(x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)$
$X_g = X_b \vee X_c$	$(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$
$X_f = X_a \wedge X_b$	$(\neg x_f \vee x_a) \wedge (\neg x_f \vee x_b) \wedge (x_f \vee \neg x_a \vee \neg x_b)$
$X_d = 0$	$\neg x_d$
$X_a = 1$	Xa



$$x_{k} \wedge (\neg x_{k} \vee x_{i}) \wedge (\neg x_{k} \vee x_{j})$$

$$\wedge (x_{k} \vee \neg x_{i} \vee \neg x_{j}) \wedge (\neg x_{j} \vee x_{g})$$

$$\wedge (\neg x_{j} \vee x_{h}) \wedge (x_{j} \vee \neg x_{g} \vee \neg x_{h})$$

$$\wedge (x_{i} \vee x_{f}) \wedge (\neg x_{i} \vee \neg x_{f})$$

$$\wedge (x_{h} \vee \neg x_{d}) \wedge (x_{h} \vee \neg x_{e})$$

$$\wedge (\neg x_{h} \vee x_{d} \vee x_{e}) \wedge (x_{g} \vee \neg x_{b})$$

$$\wedge (x_{g} \vee \neg x_{c}) \wedge (\neg x_{g} \vee x_{b} \vee x_{c})$$

$$\wedge (\neg x_{f} \vee x_{a}) \wedge (\neg x_{f} \vee x_{b})$$

$$\wedge (x_{f} \vee \neg x_{a} \vee \neg x_{b}) \wedge (\neg x_{d}) \wedge x_{a}$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

- For each gate (vertex) v in the circuit, create a variable x_v
- Case \neg : v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u$$
 is true \iff $\frac{(x_u \lor x_v)}{(\neg x_u \lor \neg x_v)}$ both true.

• Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe that

$$(x_{V} = x_{U} \lor x_{W})$$
 is true \iff $(x_{V} \lor \neg x_{U}),$ $(x_{V} \lor \neg x_{W}),$ all true. $(\neg x_{V} \lor x_{U} \lor x_{W})$

• Case \wedge : So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again observe that

$$x_{v} = x_{u} \wedge x_{w} \text{ is true} \iff \begin{aligned} & (\neg x_{v} \vee x_{u}), \\ & (\neg x_{v} \vee x_{w}), \end{aligned} \quad \text{all true.}$$
 $(x_{v} \vee \neg x_{u} \vee \neg x_{w})$

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- Add the clause x_v where v is the variable for the output gate

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment a for C
 - Find values of all gates in C under a
 - Give value of gate v to variable x_v ; call this assignment a'
 - a' satisfies $\varphi_{\mathcal{C}}$ (exercise)
- \leftarrow Consider a satisfying assignment a for $\varphi_{\mathcal{C}}$
 - Let a' be the restriction of a to only the input variables
 - Value of gate v under a' is the same as value of x_v in a
 - Thus, a' satisfies C