


Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected

oraph (G) and a vertex s

FindClique (G,5s)

C =5
for each vertex veV
flag = 1
for each vertex uecC
If (u,v)¢E
flag = 0
if flag ==
C = Cu{v}
return C

The algorithm Is a represents a
greedy algorithm which finds a

cligue depending on a start
vertex s.

- How fast Is this algorithm?

=i

()



ECE-374-B: Lecture 21 - P/NP and
NP-completeness

Instructor: Nickvash Kani
April 11, 2023

University of Illinois at Urbana-Champaign



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected

oraph (G) and a vertex s

FindClique (G,5s)

C =5
for each vertex veV
flag = 1
for each vertex uecC
If (u,v)¢E
flag = 0
if flag ==
C = Cu{v}
return C

The algorithm Is a represents a
greedy algorithm which finds a

cligue depending on a start
vertex s.

- How fast Is this algorithm?

OO\(MMA

()



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected

oraph (G) and a vertex s

FindClique (G,5s)

C =5
for each vertex veV
flag = 1
for each vertex uecC
If (u,v)¢E
flag = 0
If flag == 1
C = Cu{v}
return C

=i

()

The Cligue-problem i1s NP-complete. But this algorithm
provides us with the maximal cliqgue containing s. If we run it
V| times, does that solve the clique-problem. )



Pre-lecture brain teaser

Consider the following algorithm which takes in a undirected
graph (G) and a vertex s
FindClique (G,5s)
C =5
for each vertex veV
flag = 1

for each vertex uecC
If (u,v)¢E
flag = 0 ::

()

If flag ==
C = Cu{v} \@/

return C




The Satisfiability Problem (SAT)



Propositional Formulas

Definition |
Consider a set of boolean variables xq, x5, ... Xp.

- A literal Is either a booleapw\iariabl@r Its negation@
o
- A clause I1s a disjunction of literals.

For example, X1 V X3 V =X, IS a clause.

- A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction‘(of clauses
(X VX VX)) A (X V—x3) AXs Is a CNF formula.

/ XX’-D{O/{?

——

Deptic  Kikz ¥ X3l Ko Xe
Dol
v o




Propositional Formulas

Definition |
Consider a set of boolean variables xq, x5, ... Xp.

- A literal Is either a boolean variable x; or 1ts negation —x.

- A clause Is a disjunction of literals.
For example, X1 V X3 V =X, IS a clause.

- A formula in conjunctive normal form (CNF) is
propositional formula which Is a conjunction of clauses
(X VX VX)) A (X V—x3) AXs Is a CNF formula.

- A formula ¢ 1s a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

(X1 VXV X,) A (X VX3 V Xq) 1S a 3CNF formula, but
(X1 VX2 V=X4) A (X2 V =X3) A X5 1S Not.



IS universal

Every boolean formula f : {0,1}" — {0,1} can be written as a

CNF formula.
X1 | Xo | X3 | Xa | X5 | Xe || f(X1,X2, ..., X6) || X1 VX2X3 V X4 V X5 V Xe
ololofololol fo,.. 0,0 1
ololololol|1]| f@o,..01 1
T 0 T 0 0 T ? T
T 0 1 0 T 0 0
T 0 ] 0 T T ? T
HEEEEERERE (..., 1

For every row that f I1s zero compute corresponding CNF clause.

Take the and (A) of all the CNF clauses computed



Satisfiability

Problem: SAT

Instance: A formula ¢.
Question: Is there a truth assignment to the vari-
able of ¢ such that ¢ evaluates to true?

Problem: 3SAT

Instance: A formula .
Question: Is there a truth assignment to the vari-
able of ¢ such that ¢ evaluates to true?




Satisfiability

SAT
Given a CNF formula ¢, 1s there a truth assignment to variables

such that ¢ evaluates to true?
Example

© (X VX2 Vax,) A (X2 V —x3) A Xs IS satisfiable; take
X1,X2,...Xs to be all true

. (X1 V —IXz) /\ (—IX1 V X2) A\ (—IX1 V ﬁXz) /\ (X1 \/Xz) IS not
satisfiable.

3SAT
Given a 3CNF formula ¢, Is there a truth assignment to

variables such that ¢ evaluates to true?



Importance of and

- SAT and 3SAT are basic constraint satisfaction problems.

- Many different problems can reduced to them because of
the simple yet powerful expressively of logical constraints.

- Arise naturally in many applications involving hardware
and software verification and correctness.

- As we will see, it Is a fundamental problem in theory of
NP-Completeness.



Given two bits x, z which of the following SAT formulas Is
equivalent to the formula z = x:

(A) ZVX)A(zVX).

(B) (zZVX)A(ZVX).

(C) @ZVX)A(ZVX)A(ZVX).
(D)

(E)

D) z® X.

F) (zVX)AGEVR)A(ZVE)A(ZVx). O

X | 2o | vaiH
2 | |
l O ’
b l

Q) O

| (xeq) e (Y DGy

a<79 *_\7/} 8



Given two bits x,z which of the
following SAT formulas Is equiv-
alent to the formula z = x:

Xyl z=X
(A) (ZVX)A(zVX). ol ol o
(B) (zVX)A(ZVX). ol 11 1
(C) @ZVX)AEZVX)A(EZVX). 110 1
(D) z& x. 1|1 0
(E)

E) (ZVX)AN(ZVX)A(ZVX)A
(Z V X).



Given three bits x, v,z which of the following SAT formulas Is
equivalent to the formulaz =x A y:

(A) ZVXVYy)A(ZVXVY).

(B) @VXVY)A(ZVXVY)A(ZVXVY).

(C) ZVxVY)A(zZ \/X\/y)/\(Z\/X\/y)/\(Z\/X\/y)

(D) ZVXVY)AEZVXVY)A(ZVXVY)A(ZVXVY).

(E) ZVXVY)A(ZVXVY)A(ZVXVY)A(ZVXVY)A
(ZVXVY)AN@ZVXVY)N(ZVXVY)N(ZVXVY).

10



Given three bits x,y,z which of
the following SAT formulas Is
equivalent to the formula z =
XAV

X |y |lz|z=xAy
(A) ZVXVY)A(ZVXVY). ololo 1
(B) ZVXVY)A(ZVXVY)A 0101 0
(zVXVY). 01110 1
(C) ZVXVY)AEZVIVY)A 011 0
(ZVXVY)A(ZVXVY). 110710 1
(D) (ZVXVY)A(EZVIVY)A LA 0
(ZVXVY)A(ZVIVY). L] L] 0
_ 1111 1
(E) ZVXVY)A(ZVXVY)A
(ZVXVY)A(ZVXVY)A
(ZVXVY)N(ZVXVY)A [



Reducing SAT to 3SAT




SAT <p 35AT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(xvyvzvvvvu) /\(ﬁx\/ﬂy\/ﬂZ\/W\/u) /\(ﬂ()

In 3SAT every clause must have exactly 3 different literals.

12



SAT <p 35AT

How SAT is different from 3SAT? |
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(xvyvzvvvvu) /\(ﬁx\/ﬂy\/ﬂZ\/W\/u) /\(ﬂ()

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
- Pad short clauses so they have 3 literals.
- Break long clauses into shorter clauses.

- Repeat the above till we have a 3CNF.

Proof of this in Prof. Har-Peled’s async lectures! 12



Overview of Complexity Classes




In the beginning...

13



In the beginning...
Undecidable

13



In the beginning...
Undecidable

13



In the beginning...
Undecidable

13



In the beginning...
Undecidable

®

PSPACE

13



In the beginning...

Undecidable

13



In the beginning...

13



In the beginning...

13



In the beginning...

13



In the beginning...
' Undecidable -

13



Non-deterministic polynomial time -
NP




P and NP and Turing Machines

- P: set of decision problems that have polynomial time
algorithms.

- NP: set of decision problems that have polynomial time
non-deterministic algorithms.

- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm

. PC NP Pk o
- Some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP.

14



Problems with no known deterministic polynomial time algo-

rithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at
all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

15



Problems with no known deterministic polynomial time algo-

rithms

Problems
- Independent Set
- Vertex Cover
- Set Cover
- SAT

There are of course undecidable problems (no algorithm at

all!) but many problems that we want to solve are of similar
flavor to the above.

Question: What is common to above problems?

They can all be solved via a non-deterministic computer In

polynomial time! 15



Non-determinism in computing

Non-determinism Is a special
property of algorithms.

An algorithm that is capable of

taking multiple states N —
concurrently. Whenever it T N
reaches a choice, It takes both ¢ a“ept-’/,j/\*\“
paths. ) ¢ ) L

. \o—reject
If there is a path for the string i S | A

o reject

to be accepted by the machine,
then the string Is part of the
language.

16



Problems with no known deterministic polynomial time algo-

rithms

Problems

- Independent Set & Vertex Cover - Can build algorithm to
check all possible collection of vertices

- Set Cover - Can check all possible collection of sets

- SAT -Can build a non-deterministic algorithm that checks
every possible boolean assignment.

But we don't have access to a non-deterministic computer. So
how can a deterministic computer verify that a algorithm is in

NP?

17



Efficient Checkability

Above problems share the following feature:

Checkability | | |
For any YES instance Iy of X there is a proof/certificate/solution

that is of length poly(|/x|) such that given a proof one can
efficiently check that Iy Is indeed a YES instance.

18



Efficient Checkability

Above problems share the following feature:

Checkability | | |
For any YES instance Iy of X there is a proof/certificate/solution

that is of length poly(|/x|) such that given a proof one can
efficiently check that Iy Is indeed a YES instance.

Examples:

- SAT formula ¢: proof Is a satisfying assignment.
- Independent Set in graph G and k: a subset

 Hommusek-

yertices.

18



Definition
An algorithm C(-,-) is a certifier for problem X if the following

two conditions hold:

- For every s € X there is some string t such that
C(s,t) ="yes”
- If s € X, C(s,t) ="no” for every t.
The string s is the problem instance. (Example: particular

graph in independent set problem) The string t is called a
certificate or proof for s.

19



Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.) | |
A certifier C Is an efficient certifier for problem X if there Is a

polynomial p(-) such that the following conditions hold:

- For every s € X there is some string t such that
C(s,t) ="yes" and |t| < p(]|s]|).
- If s € X, C(s,t) ="no” for every t.

+ C(+,+) runs in polynomial time.

20



Example: Independent Set

+ Problem: Does G = (V, E) have an independent set of size
> R?

- Certificate: Set S C V.
+ Certifier: Check |S| > k and no pair of vertices in S is

connected by an edge. [4;{ Z @&’ZB

21



Example: SAT

- Problem: Does formula ¢ have a satistying truth
assignment?

- Certificate: Assignment a of 0/1 values to each variable.
- Certifier: Check each clause under a and say “yes” if all

clauses are true.  ~0) w | ¥)

22



Why is it called Nondeterministic Polynomial Time

A certifier i1s an algorithm C(/, ¢) with two inputs:

- |: Instance.
- ¢: proof/certificate that the instance is indeed a YES

Instance of the given problem.

One can think about C as an algorithm for the original
problem, If:

- Given [, the algorithm guesses (non-deterministically, and

who knows how) a certificate c.
- The algorithm now verifies the certificate ¢ for the

Instance /.

NP can be equivalently described using Turing machines.
23



Cook-Levin Theorem




“Hardest” Problems

Question | |
What is the hardest problem in NP? How do we define It?

Towards a definition
- Hardest problem must be in NP.

- Hardest problem must be at least as “difficult” as every
other problem in NP.

24



NP-Complete Problems

Definition |
A problem X Is said to be NP-Complete If

. X € NP, and Q\W)
- (Hardness) Forany Y € NP, Y <p X. CJ\)W’ L\Mi B

25



Solving NP-Complete Problems

Lemma
Suppose X is NP-Complete. Then X can be solved in polynomial

time if and only if P = NP.

Proof.

= Suppose X can be solved in polynomial time

- Let Y € NP. We know Y <p X.

- We showed that if Y <p X and X can be solved in
polynomial time, then Y can be solved in polynomial time.

- Thus, every problem Y € NP is such that Y € P; NP C P.

- Since P C NP, we have P = NP.

< Since P = NP, and X € NP, we have a polynomial time
algorithm for X. []

26



NP-Hard Problems

Definition
A problem Y is said to be NP-Hard If

- (Hardness) For any X € NP, we have that X <p Y.

An NP-Hard problem need not be in NP!

Fxample: Halting problem is NP-Hard (why?) but not

NP-Complete.
%T — HALTING

27



Consequences of proving NP-Completeness

If X 1s NP-Complete

- Since we believe P £ NP,
- and solving X implies P = NP.

X 1s unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

28



Consequences of proving NP-Completeness

If X 1s NP-Complete

- Since we believe P £ NP,
- and solving X implies P = NP.

X 1s unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to
find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

28



NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

29



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

30



Cook-Levin Theorem

Theorem (Cook-Levin)
SAT is NP-Complete.

Need to show

-+ SAT Is In NP.
- every NP problem X reduces to SAT.

Steve Cook won the Turing award for his theorem.

30



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show K= \/

- Show that X is in NP,

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

P Lo Y

AT = f# MITI

3



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- Show that X is in NP,

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT <p X Implies that every NP problem Y <p X. Why?

3



Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- Show that X is in NP,

- Give a polynomial-time reduction from a known
NP-Complete problem such as SAT to X

SAT <p X Implies that every NP problem Y <p X. Why?
Transitivity of reductions:

@ d SAT <p X and hence Y <p X.

QaO}f - LQ V.o

3



Is NP-Complete

+ 3-SAT is in NP
- SAT <p 3-SAT as we saw

32



NP-Completeness via Reductions

- SAT Is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set <, Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

33



NP-Completeness via Reductions

- SAT Is NP-Complete due to Cook-Levin theorem
- SAT <p 3-SAT

- 3-SAT <p Independent Set

- Independent Set <, Vertex Cover

- Independent Set <, Clique

- 3-SAT <p 3-Color

- 3-SAT <p Hamiltonian Cycle

Hundreds and thousands of different problems from many
areas of science and engineering have been shown to be

NP-Complete.

A surprisingly frequent phenomenon!

33



Reducing 3-SAT to Independent Set



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

34



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

34



Independent Set

Problem: Independent Set

Instance: A graph G, integer k.
Question: Is there an independent set in G of size
R?

34



Interpreting

-
There are two ways to think about 3SAT 5/?\/4\[7 \/%

- Find a way to assign 0/1 (false/true) to the variables such
that the formula evaluates to true, that is each clause

evaluates to true.

- Pick a literal from each clause and find a truth assignment
to make all of them true. You will fail If two of the literals
you pick are in conflict, 1.e., you pick x; and —x;

We will take the second view of 3SAT to construct the
reduction.

35



The Reduction

- G, Will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
Independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices If they label complementary literals;
this ensures that the literals corresponding to the
Independent set do not have a conflict

- 5- Take R to be the number of clauses

C=) &) &)
® ® 6 e

Figure 1: Graph for o = (= Vo VXG) A (X VX VX3) A (X VX V Xe) 5



The Reduction

- G, Will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
Independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices If they label complementary literals;
this ensures that the literals corresponding to the
Independent set do not have a conflict

- 5- Take R to be the number of clauses

(=) &) ™)
) @) @) @) e

Figure 1: Graph for o = (=X VX2 V.X3) A (X1 V =X V X3) A (=X V X5 V X4) 36




The Reduction

- G, Will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
Independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices If they label complementary literals;
this ensures that the literals corresponding to the
Independent set do not have a conflict

- 5- Take R to be the number of clauses

Q[ @ [ &
ofoloXollo®e

Figure 1: Graph for o = (=X VX2 V.X3) A (X1 V =X V X3) A (=X V X5 V X4) 36




The Reduction

- G, Will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
Independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

- 4- Connect 2 vertices If they label complementary literals;
this ensures that the literals corresponding to the
Independent set do not have a conflict

- 5- Take R to be the number of clauses

(o (e o
(ST =T
OOl OmORO =

Figure 1: Graph for o = (=X VX2 V.X3) A (X1 V =X V X3) A (=X V X5 V X4) 36



The Reduction

- G, Will have one vertex for each literal in a clause

- 2- Connect the 3 literals in a clause to form a triangle; the
Independent set will pick at most one vertex from each
clause, which will correspond to the literal to be set to true

% Connect 2 vertices If they label complementary literals;
this ensures that the literals corresponding to the
|rdeependent set do not have a conflict Sﬁ(( é (‘;g

: 4 ake k to be the number of clauses \

Figure 1: Graph for o = (= Vo VXG) A (X VX VX3) A (X VX V Xe) 5



Correctness

Lemma
o is satisfiable iff G, has an independent set of size k (=

number of clauses in o).

Proof.

= Let a be the truth assignment satisfying ¢

- 2- Pick one of the vertices, corresponding to true literals
under a, from each triangle. This is an independent set of
the appropriate size. Why? ]

37



Correctness (contd)

Lemma
o is satisfiable iff G, has an independent set of size k (=

number of clauses in o).

Proof.

< Let S be an independent set of size k

+ S must contain exactly one vertex from each clause triangle

- S cannot contain vertices labeled by conflicting literals

- Thus, It Is possible to obtain a truth assignment that makes
In the literals In S true; such an assignment satisfies one
literal In every clause ]

38



Other NP-Complete problems




Graph Coloring




Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer R.
Question: Can the vertices of the graph be col-
ored using kR colors so that vertices connected by
an edge do not get the same color?

39



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

40



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph.

Question: Can the vertices of the graph be col-
ored using 3 colors so that vertices connected by
an edge do not get the same color?

40



Graph Coloring

Observation: If G Is colored with k colors then each color class
(nodes of same color) form an independent set in G. Thus, G
can be partitioned into k independent sets Iff G Is k-colorable.

Graph 2-Coloring can be decided in polynomial time.

G Is 2-colorable Iff G Is bipartite! There Is a linear time
algorithm to check if G Is bipartite using Breadth-first-Search

41



Hamiltonian Cycle




Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once

42



Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does G have a Hamiltonian cycle?

- 2- A Hamiltonian cycle is a cycle in the graph
that visits every vertex in G exactly once

42



