
1

Pre-lecture brain teaser

What do each of the reductions prove?

1. u − v shortest path ≤P All pairs shortest path

2. SAT ≤P Longest path 1

3. Shortest path ≤P SAT 2

1Given a graph G = (V ,E) and integer k, is there a simple path that uses at

least k vertices.
2http://www.aloul.net/Papers/faloul_iceee06.pdf.

1

http://www.aloul.net/Papers/faloul_iceee06.pdf

ECE-374-B: Lecture 22 - Decidability I

Instructor: Abhishek Kumar Umrawal

November 14, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

What do each of the reductions prove?

1. u − v shortest path ≤P All pairs shortest path

2. SAT ≤P Longest path 3

3. Shortest path ≤P SAT 4

3Given a graph G = (V ,E) and integer k, is there a simple path that uses at

least k vertices.
4http://www.aloul.net/Papers/faloul_iceee06.pdf.

2

http://www.aloul.net/Papers/faloul_iceee06.pdf

Cantor’s diagonalization argument

Diagonalization Intro

Published in 1891 by George Cantor, is a proof that sought to

answer the following question.

Are all infinite sets (N,Q,Z,R,C) the same size?

Let’s say two sets are the same size if

there is a 1-1 mapping between them.

First we need an anchor point (N). Let’s say the set of natural

numbers has a particular size ℵ0.

3

Diagonalization Intro

Published in 1891 by George Cantor, is a proof that sought to

answer the following question.

Are all infinite sets (N,Q,Z,R,C) the same size?

Let’s say two sets are the same size if

there is a 1-1 mapping between them.

First we need an anchor point (N). Let’s say the set of natural

numbers has a particular size ℵ0.

3

Countable Sets I

We say the set N is countable because you can list out all it’s

elements systematically, i.e., enumerate them.

1, 2, 3, 4, 5, 6, . . . (1)

Set of integers is also countable.

4

Countable Sets I

We say the set N is countable because you can list out all it’s

elements systematically, i.e., enumerate them.

1, 2, 3, 4, 5, 6, . . . (1)

Set of integers is also countable.

4

Countable Sets II

Set of rational numbers is also countable.

1 2 3 4 5 6 . . .

1 1
1

1
2

1
3

1
4

1
5

1
6

2 2
1

2
2

2
3

2
4

2
5

2
6

3 3
1

3
2

3
3

3
4

3
5

3
6

4 4
1

4
2

4
3

4
4

4
5

4
6

5 5
1

5
2

5
3

5
4

5
5

5
6

6 6
1

6
2

6
3

6
4

6
5

6
6

...

Focus on ordering numbers based on the diagonals.
5

Countable Sets III

Is the set of complex integers countable?

6

Countable Sets IV

Is R countable?

1 0. 9 8 2 1 2 . . .

2 0. 4 8 6 8 5 . . .

3 0. 1 7 3 7 9

4 0. 0 6 7 2 7

5 0. 3 2 3 4 8

6 0. 0 3 2 7 0

...

How do we draw a 1-1 mapping between N and R?
7

Countable Sets IV

Is R countable?

1 0. 9 8 2 1 2 . . .

2 0. 4 8 6 8 5 . . .

3 0. 1 7 3 7 9

4 0. 0 6 7 2 7

5 0. 3 2 3 4 8

6 0. 0 3 2 7 0

...

D

How do we draw a 1-1 mapping between N and R

8

You can not count the real numbers II

I = (0, 1), N = {1, 2, 3, . . .}.
Claim (Cantor)
|N| 6= |I |, where I = (0, 1).

Proof.
Write every number in (0, 1) in its decimal expansion. E.g.,

1/3 = 0.33333333333333333333

Assume that |N| = |I |. Then there exists a one-to-one mapping

f : N→ I . Let βi be the i th digit of f (i) ∈ (0, 1).

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
D = 0.d1d2d3 . . . ∈ (0, 1).

D is a well defined unique number in (0, 1),

But there is no j such that f (j) = D. A contradiction.
9

“Most General” computer?

• DFAs are simple model of computation.

• Accept only the regular languages.

• Is there a kind of computer that can accept any language, or

compute any function?

• Recall counting argument. Set of all languages:

{L | L ⊆ {0, 1}∗} is (((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:

{P | P is a finite length computer program}:
is countably infinite / ((((((((((hhhhhhhhhhuncountably infinite.

• Conclusion: There are languages for which there are no

programs.

10

“Most General” computer?

• DFAs are simple model of computation.

• Accept only the regular languages.

• Is there a kind of computer that can accept any language, or

compute any function?

• Recall counting argument. Set of all languages:

{L | L ⊆ {0, 1}∗} is (((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:

{P | P is a finite length computer program}:
is countably infinite / ((((((((((hhhhhhhhhhuncountably infinite.

• Conclusion: There are languages for which there are no

programs.

10

Program Diagonalization

How do we know that there are languages that cannot be

represented by programs? Use Cantor!

Recall a program can be

represented by a string where:

• M is the Turing machine (program), and

• 〈M〉 is the string representation of the TM M.

11

Program Diagonalization

How do we know that there are languages that cannot be

represented by programs? Use Cantor! Recall a program can be

represented by a string where:

• M is the Turing machine (program), and

• 〈M〉 is the string representation of the TM M.

11

Program Diagonalization

Define f (i , j) = 1 if Mi accepts 〈Mj〉, else 0.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 0 1 1 1 1 1

M2 1 1 0 0 0 0

M3 0 0 0 1 0 0

M4 1 1 1 0 1 1

M5 1 0 0 0 1 0

M6 0 1 0 1 1 0
...

12

Program Diagonalization

Let’s define a new program as follows.

D = {〈M〉|M does not accept 〈M〉}

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . . 〈MD〉
M1 0 1 1 1 1 1 1

M2 1 1 0 0 0 0 1

M3 0 0 0 1 0 0 1

M4 1 1 1 0 1 1 0

M5 1 0 0 0 1 0 0

M6 0 1 0 1 1 0 1
...

MD 1 0 1 1 0 1 �

13

Program Diagonalization

Let’s define a new program as follows.

D = {〈M〉|M does not accept 〈M〉}

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . . 〈MD〉
M1 0 1 1 1 1 1 1

M2 1 1 0 0 0 0 1

M3 0 0 0 1 0 0 1

M4 1 1 1 0 1 1 0

M5 1 0 0 0 1 0 0

M6 0 1 0 1 1 0 1
...

MD 1 0 1 1 0 1 �
13

Recap of decidability

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages:

L = {L(M) | M some Turing machine} .

• Recursive / decidable languages:

L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language decidable?

14

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages: (bad)

L = {L(M) | M some Turing machine} .

• Recursive / decidable languages: (good)

L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language decidable?

14

Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages: (bad)

L = {L(M) | M some Turing machine} .

• Recursive / decidable languages: (good)

L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language decidable?

14

Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable)

could be:

• Decidable - equivalent of recursive (TM always accepts or

rejects).

• Undecidable - Problem is not recursive (doesn’t always halt

on negative)

There are undecidable problem that are not semi-decidable

(recursively enumerable).

15

Problem (Language) Space

Context-Sensitive

Context-Free

Regular

Decidable
(Recursive)

Semi-Decidable
(recursively-enumerable, recognizable,

Turing-acceptable/recognizable, partially-decidable)

Turing-unrecognizable
(everything outside of the complexity classes below)

16

Un-/Decidable anchor

Like in the case of NP-complete-ness, we need an anchor point to

compare languages to to determine whether they are decidable (or

not)!

17

Introduction to the halting theorem

The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program P, that always stops, and solves the

halting problem.

Theorem (“Halting theorem”)
There is no program that always stops and solves the halting

problem.

18

The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program P, that always stops, and solves the

halting problem.

Theorem (“Halting theorem”)
There is no program that always stops and solves the halting

problem.

18

Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19

Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19

Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19

Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem. 19

If you can halt, you can prove or disprove anything...

• Consider any math claim C .

• Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings)

into a pipe/queue.

(B) 〈p〉 ← pop top of queue.

(C) Feed 〈p〉 and 〈C 〉, into a proof verifier (“easy”).

(D) If 〈p〉 valid proof of 〈C 〉, then stop and accept.

(E) Go to (B).

• PC halts ⇐⇒ C is true and has a proof.

• If halting is decidable, then can decide if any claim in math is

true.

20

If you can halt, you can prove or disprove anything...

• Consider any math claim C .

• Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings)

into a pipe/queue.

(B) 〈p〉 ← pop top of queue.

(C) Feed 〈p〉 and 〈C 〉, into a proof verifier (“easy”).

(D) If 〈p〉 valid proof of 〈C 〉, then stop and accept.

(E) Go to (B).

• PC halts ⇐⇒ C is true and has a proof.

• If halting is decidable, then can decide if any claim in math is

true.

20

If you can halt, you can prove or disprove anything...

• Consider any math claim C .

• Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings)

into a pipe/queue.

(B) 〈p〉 ← pop top of queue.

(C) Feed 〈p〉 and 〈C 〉, into a proof verifier (“easy”).

(D) If 〈p〉 valid proof of 〈C 〉, then stop and accept.

(E) Go to (B).

• PC halts ⇐⇒ C is true and has a proof.

• If halting is decidable, then can decide if any claim in math is

true.

20

If you can halt, you can prove or disprove anything...

• Consider any math claim C .

• Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings)

into a pipe/queue.

(B) 〈p〉 ← pop top of queue.

(C) Feed 〈p〉 and 〈C 〉, into a proof verifier (“easy”).

(D) If 〈p〉 valid proof of 〈C 〉, then stop and accept.

(E) Go to (B).

• PC halts ⇐⇒ C is true and has a proof.

• If halting is decidable, then can decide if any claim in math is

true.

20

Turing machines...

TM = Turing machine = program.

21

Reminder: Undecidability

Definition
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as

input, can always stop and output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.)

22

Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23

Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23

Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23

The halting problem

ATM is not TM decidable!

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Theorem (The halting theorem.)
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable.

Halt: TM deciding ATM . Halt always halts, and works as follows.

Halt
(
〈M,w〉

)
=

accept M accepts w

reject M does not accept w .

24

ATM is not TM decidable!

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Theorem (The halting theorem.)
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable.

Halt: TM deciding ATM . Halt always halts, and works as follows.

Halt
(
〈M,w〉

)
=

accept M accepts w

reject M does not accept w .

24

ATM is not TM decidable!

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Theorem (The halting theorem.)
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable.

Halt: TM deciding ATM . Halt always halts, and works as follows.

Halt
(
〈M,w〉

)
=

accept M accepts w

reject M does not accept w .

24

Halting theorem proof continued 1

We build the following new function.

Flipper(〈M〉)
res← Halt(〈M, 〈M〉〉)
if res is accept then

reject

else

accept

Flipper always stops.

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

25

Halting theorem proof continued 1

We build the following new function.

Flipper(〈M〉)
res← Halt(〈M, 〈M〉〉)
if res is accept then

reject

else

accept

Flipper always stops.

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

25

Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26

Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26

Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26

Unrecognizable

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops,

such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on

some inputs, such that L(M) = L.

Theorem (Halting)

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
is TM

recognizable, but not decidable.

27

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops,

such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on

some inputs, such that L(M) = L.

Theorem (Halting)

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
is TM

recognizable, but not decidable.

27

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops,

such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on

some inputs, such that L(M) = L.

Theorem (Halting)

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
is TM

recognizable, but not decidable.

27

TM recognizable

Lemma
If L and L = Σ∗ \ L are both TM recognizable, then L and L are

decidable.

Proof.
M: TM recognizing L.

Mc : TM recognizing L.

Given input x , using UTM simulating running M and Mc on x in

parallel. One of them must stop and accept. Return result.

=⇒ L is decidable.

28

TM recognizable

Lemma
If L and L = Σ∗ \ L are both TM recognizable, then L and L are

decidable.

Proof.
M: TM recognizing L.

Mc : TM recognizing L.

Given input x , using UTM simulating running M and Mc on x in

parallel. One of them must stop and accept. Return result.

=⇒ L is decidable.

28

Complement language for ATM

ATM = Σ∗ \
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

But don’t really care about invalid inputs. So, really:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

29

Complement language for ATM

ATM = Σ∗ \
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

But don’t really care about invalid inputs. So, really:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

29

Complement language for ATM is not TM-recognizable

Theorem
The language

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.

If ATM is TM-recognizable

=⇒ (by Lemma)

ATM is decidable. A contradiction.

30

Complement language for ATM is not TM-recognizable

Theorem
The language

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.

If ATM is TM-recognizable

=⇒ (by Lemma)

ATM is decidable. A contradiction.

30

Complement language for ATM is not TM-recognizable

Theorem
The language

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.

If ATM is TM-recognizable

=⇒ (by Lemma)

ATM is decidable. A contradiction.

30

Reductions

Reduction

Meta definition: Problem X reduces to problem B, if given a

solution to B, then it implies a solution for X. Namely, we can

solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a word

w , returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y , if one can construct a TM

decider for X using a given oracle ORACY for Y .

We will denote this fact by X =⇒ Y .

31

Reduction

Meta definition: Problem X reduces to problem B, if given a

solution to B, then it implies a solution for X. Namely, we can

solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a word

w , returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y , if one can construct a TM

decider for X using a given oracle ORACY for Y .

We will denote this fact by X =⇒ Y .

31

Reduction

Meta definition: Problem X reduces to problem B, if given a

solution to B, then it implies a solution for X. Namely, we can

solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a word

w , returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y , if one can construct a TM

decider for X using a given oracle ORACY for Y .

We will denote this fact by X =⇒ Y .

31

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.

32

Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =⇒ Y . If Y

is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X

reduces to Y , it follows that there is a procedure TX |Y (i.e.,

decider) for X that uses an oracle for Y as a subroutine. We

replace the calls to this oracle in TX |Y by calls to T. The resulting

program TX is a decider and its language is X . Thus X is

decidable (or more formally TM decidable).

33

The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =⇒ Y . If X

is undecidable then Y is undecidable.

34

Halting

The halting problem

Language of all pairs 〈M,w〉 such that M halts on w :

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

35

On way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for

AHalt one can build a decider (that uses this oracle) for ATM .

36

On way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following

decider for ATM .

AnotherDecider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.

// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for

ATM .
37

The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As

such, there is a TM, denoted by TMHalt, that is a decider for

AHalt. We can use TMHalt as an implementation of an oracle for

AHalt, which would imply that one can build a decider for ATM .

However, ATM is undecidable. A contradiction. It must be that

AHalt is undecidable.

38

The same proof by figure...

〈M,w〉 〈M,w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

... if AHalt is decidable, then ATM is decidable, which is impossible.

39

More reductions next time

	Cantor's diagonalization argument
	Recap of decidability
	Introduction to the halting theorem
	The halting problem
	Unrecognizable
	Reductions
	Halting
	More reductions next time

