
1



Pre-lecture brain teaser

What do each of the reductions prove?

1. u − v shortest path ≤P All pairs shortest path

2. SAT ≤P Longest path 1

3. Shortest path ≤P SAT 2

1Given a graph G = (V ,E) and integer k, is there a simple path that uses at

least k vertices.
2http://www.aloul.net/Papers/faloul_iceee06.pdf.
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Cantor’s diagonalization argument



Diagonalization Intro

Published in 1891 by George Cantor, is a proof that sought to

answer the following question.

Are all infinite sets (N,Q,Z,R,C) the same size?

Let’s say two sets are the same size if

there is a 1-1 mapping between them.

First we need an anchor point (N). Let’s say the set of natural

numbers has a particular size ℵ0.
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Countable Sets I

We say the set N is countable because you can list out all it’s

elements systematically, i.e., enumerate them.

1, 2, 3, 4, 5, 6, . . . (1)

Set of integers is also countable.
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Countable Sets II

Set of rational numbers is also countable.

1 2 3 4 5 6 . . .

1 1
1

1
2

1
3

1
4

1
5

1
6

2 2
1

2
2

2
3

2
4

2
5

2
6

3 3
1

3
2

3
3

3
4

3
5

3
6

4 4
1

4
2

4
3

4
4

4
5

4
6

5 5
1

5
2

5
3

5
4

5
5

5
6

6 6
1

6
2

6
3

6
4

6
5

6
6

...

Focus on ordering numbers based on the diagonals.
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Countable Sets III

Is the set of complex integers countable?
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Countable Sets IV

Is R countable?

1 0. 9 8 2 1 2 . . .

2 0. 4 8 6 8 5 . . .

3 0. 1 7 3 7 9

4 0. 0 6 7 2 7

5 0. 3 2 3 4 8

6 0. 0 3 2 7 0

...

How do we draw a 1-1 mapping between N and R?
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Countable Sets IV

Is R countable?

1 0. 9 8 2 1 2 . . .

2 0. 4 8 6 8 5 . . .

3 0. 1 7 3 7 9
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You can not count the real numbers II

I = (0, 1), N = {1, 2, 3, . . .}.
Claim (Cantor)
|N| 6= |I |, where I = (0, 1).

Proof.
Write every number in (0, 1) in its decimal expansion. E.g.,

1/3 = 0.33333333333333333333 . . ..

Assume that |N| = |I |. Then there exists a one-to-one mapping

f : N→ I . Let βi be the i th digit of f (i) ∈ (0, 1).

di = any number in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} \ {di−1, βi}
D = 0.d1d2d3 . . . ∈ (0, 1).

D is a well defined unique number in (0, 1),

But there is no j such that f (j) = D. A contradiction.
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“Most General” computer?

• DFAs are simple model of computation.

• Accept only the regular languages.

• Is there a kind of computer that can accept any language, or

compute any function?

• Recall counting argument. Set of all languages:

{L | L ⊆ {0, 1}∗} is (((((((((hhhhhhhhhcountably infinite / uncountably infinite

• Set of all programs:

{P | P is a finite length computer program}:
is countably infinite / ((((((((((hhhhhhhhhhuncountably infinite.

• Conclusion: There are languages for which there are no

programs.
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Program Diagonalization

How do we know that there are languages that cannot be

represented by programs? Use Cantor!

Recall a program can be

represented by a string where:

• M is the Turing machine (program), and

• 〈M〉 is the string representation of the TM M.
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Program Diagonalization

Define f (i , j) = 1 if Mi accepts 〈Mj〉, else 0.

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . .

M1 0 1 1 1 1 1

M2 1 1 0 0 0 0

M3 0 0 0 1 0 0

M4 1 1 1 0 1 1

M5 1 0 0 0 1 0

M6 0 1 0 1 1 0
...
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Program Diagonalization

Let’s define a new program as follows.

D = {〈M〉|M does not accept 〈M〉}

〈M1〉 〈M2〉 〈M3〉 〈M4〉 〈M5〉 〈M6〉 . . . 〈MD〉
M1 0 1 1 1 1 1 1

M2 1 1 0 0 0 0 1

M3 0 0 0 1 0 0 1

M4 1 1 1 0 1 1 0

M5 1 0 0 0 1 0 0

M6 0 1 0 1 1 0 1
...

MD 1 0 1 1 0 1 �
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Recap of decidability



Recursive vs. Recursively Enumerable

• Recursively enumerable (aka RE) languages:

L = {L(M) | M some Turing machine} .

• Recursive / decidable languages:

L = {L(M) | M some Turing machine that halts on all inputs} .

• Fundamental questions:

• What languages are RE?

• Which are recursive?

• What is the difference?

• What makes a language decidable?
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Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable)

could be:

• Decidable - equivalent of recursive (TM always accepts or

rejects).

• Undecidable - Problem is not recursive (doesn’t always halt

on negative)

There are undecidable problem that are not semi-decidable

(recursively enumerable).
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Problem (Language) Space

Context-Sensitive

Context-Free

Regular

Decidable
(Recursive)

Semi-Decidable
(recursively-enumerable, recognizable, 

Turing-acceptable/recognizable, partially-decidable)

Turing-unrecognizable
(everything outside of the complexity classes below)
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Un-/Decidable anchor

Like in the case of NP-complete-ness, we need an anchor point to

compare languages to to determine whether they are decidable (or

not)!
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Introduction to the halting theorem



The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program P, that always stops, and solves the

halting problem.

Theorem (“Halting theorem”)
There is no program that always stops and solves the halting

problem.
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Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19



Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19



Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem.

19



Intuition, why solving the Halting problem is really hard

Definition
An integer number n is a weird number if

• the sum of the proper divisors (including 1 but not itself) of n

the number is > n,

• no subset of those divisors sums to the number itself.

70 is weird. Its divisors are 1, 2, 5, 7, 10, 14, 35.

1 + 2 + 5 + 7 + 10 + 14 + 35 = 74. No subset of them adds up to

70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check

if they are weird. The programs stops if it found such number.

If can solve halting problem =⇒ can resolve this open problem. 19



If you can halt, you can prove or disprove anything...

• Consider any math claim C .

• Prover algorithm PC :

(A) Generate sequence of all possible proofs (sequence of strings)

into a pipe/queue.

(B) 〈p〉 ← pop top of queue.

(C) Feed 〈p〉 and 〈C 〉, into a proof verifier (“easy”).

(D) If 〈p〉 valid proof of 〈C 〉, then stop and accept.

(E) Go to (B).

• PC halts ⇐⇒ C is true and has a proof.

• If halting is decidable, then can decide if any claim in math is

true.
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Turing machines...

TM = Turing machine = program.

21



Reminder: Undecidability

Definition
Language L ⊆ Σ∗ is undecidable if no program P, given w ∈ Σ∗ as

input, can always stop and output whether w ∈ L or w /∈ L.

(Usually defined using TM not programs. But equivalent.)
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Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23



Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23



Reminder: The following language is undecidable.

Decide if given a program M, and an input w , does M accepts w .

Formally, the corresponding language is

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Definition
A decider for a language L, is a program (or a TM) that always

stops, and outputs for any input string w ∈ Σ∗ whether or not

w ∈ L.

A language that has a decider is decidable.

Turing proved the following.

Theorem
ATM is undecidable.

23



The halting problem



ATM is not TM decidable!

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

Theorem (The halting theorem.)
ATM is not Turing decidable.

Proof: Assume ATM is TM decidable.

Halt: TM deciding ATM . Halt always halts, and works as follows.

Halt
(
〈M,w〉

)
=

accept M accepts w

reject M does not accept w .
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Halting theorem proof continued 1

We build the following new function.

Flipper( 〈M〉)
res← Halt(〈M, 〈M〉〉)
if res is accept then

reject

else

accept

Flipper always stops.

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .
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Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26



Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26



Halting theorem proof continued 2

Flipper
(
〈M〉

)
=

reject M accepts 〈M〉
accept M does not accept 〈M〉 .

Flipper is a TM (duh!), and as such it has an encoding 〈Flipper〉.
Run Flipper on itself.

Flipper
(
〈Flipper〉

)
=

reject Flipper accepts 〈Flipper〉
accept Flipper does not accept 〈Flipper〉 .

This is can’t be correct.

Assumption that Halt exists is false. =⇒ ATM is not TM

decidable.

26



Unrecognizable



TM recognizable

Definition
Language L is TM decidable if there exists M that always stops,

such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on

some inputs, such that L(M) = L.

Theorem (Halting)

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
is TM

recognizable, but not decidable.
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TM recognizable

Lemma
If L and L = Σ∗ \ L are both TM recognizable, then L and L are

decidable.

Proof.
M: TM recognizing L.

Mc : TM recognizing L.

Given input x , using UTM simulating running M and Mc on x in

parallel. One of them must stop and accept. Return result.

=⇒ L is decidable.
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Complement language for ATM

ATM = Σ∗ \
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.

But don’t really care about invalid inputs. So, really:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

29
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Complement language for ATM is not TM-recognizable

Theorem
The language

ATM =
{
〈M,w〉

∣∣∣M is a TM and M does not accept w
}
.

is not TM recognizable.

Proof.
ATM is TM-recognizable.

If ATM is TM-recognizable

=⇒ (by Lemma)

ATM is decidable. A contradiction.
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Reductions



Reduction

Meta definition: Problem X reduces to problem B, if given a

solution to B, then it implies a solution for X. Namely, we can

solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a word

w , returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y , if one can construct a TM

decider for X using a given oracle ORACY for Y .

We will denote this fact by X =⇒ Y .
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Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.

• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.

• Thus, L must be not decidable.
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Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =⇒ Y . If Y

is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X

reduces to Y , it follows that there is a procedure TX |Y (i.e.,

decider) for X that uses an oracle for Y as a subroutine. We

replace the calls to this oracle in TX |Y by calls to T. The resulting

program TX is a decider and its language is X . Thus X is

decidable (or more formally TM decidable).
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The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =⇒ Y . If X

is undecidable then Y is undecidable.
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Halting



The halting problem

Language of all pairs 〈M,w〉 such that M halts on w :

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.
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On way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for

AHalt one can build a decider (that uses this oracle) for ATM .
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On way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following

decider for ATM .

AnotherDecider-ATM

(
〈M,w〉

)
res ← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.

if res = reject then
halt and reject.

// M halts on w since res =accept.

// Simulating M on w terminates in finite time.

res2 ←Simulate M on w.

return res2.

This procedure always return and as such its a decider for

ATM .
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The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As

such, there is a TM, denoted by TMHalt, that is a decider for

AHalt. We can use TMHalt as an implementation of an oracle for

AHalt, which would imply that one can build a decider for ATM .

However, ATM is undecidable. A contradiction. It must be that

AHalt is undecidable.
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The same proof by figure...

〈M,w〉 〈M,w〉
TMHalt

Simulate M
on w

accept

reject

reject

accept

reject

reject

Turing machine for ATM

accept

... if AHalt is decidable, then ATM is decidable, which is impossible.
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More reductions next time
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