


Pre-lecture brain teaser

What do each of the reductions prove?

1. All-pairs-shortest <p u-v shortest path
2. SAT <p Longest-path '

3. Shortest-path <p SAT ?

'Given a graph G(V, E) and integer k, is there a simple path that uses atleast k vertices
‘http://www.aloul.net/Papers/faloul_iceee06.pdf
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Cantor’s diagonalization argument



Diagonalization Intro

Published in 1891 by George Cantor, is the proof that sought to answer a single
question:

Are all infinite sets (N, Q, Z, R, C) the same size?



Diagonalization Intro

Published in 1891 by George Cantor, is the proof that sought to answer a single
question:

Are all infinite sets (N, Q, Z, R, C) the same size?
X

Let’s say a set is the same size If there Is a 1-1
mapping between the two sets:

\__—.—1/

First we need an anchor point (N). Let's say the set of natural numbers has a
particular size Ng



Countable Sets |

We say the set N is countable because you can list out all it's elements
systematically:

1,2,3,4,5.6, ... (1)



Countable Sets |

We say the set N is countable because you can list out all it's elements
systematically:

1,2,3,4,5,6, ... (1)

Set of integers Is also countable



Countable Sets Il

Set of rational numbers is also countable:

1 2 3 4 5 6

: ]
1 4
N7/ /2
3 3 3 3
3|\ 7 Y/ 3
4 L4
4 75 %
5 5 5
2 i 5 %
6 6 6 6 6 6
6 S 7 5 8

Focus on ordering numbers based on the diagonals.



Countable Sets Il

Is the set of complex integers countable?

(| 2 S ~
E_M —— - —




Countable Sets IV

Is R countable?

[01 \3
1(0. 9 8 2 1 2
2/0. 4 8 6 8 5
3101 7 3 7 9
4100 6 7 2 7
510 3 2 3 4 8
6[0. 0 3 2 7 0

How do we draw a 1-1 mapping between N and R



Countable Sets IV

). Adcvme o Lbave o sy /’wl

Is R countable?
Lo D 4o E
110. 9 8 2 1 2
210. 4 8 6 8 5
310. 1 7 3 7 9
410. 0 6 7 2 7
510. 3 2 3 4 8
610. 0 3 2 7 0
019.5 735}

How do we draw a 1-1 mapping between N and R 3



You can not count the real numbers Il

[=(0,1),N={1,2,3,...}.

Claim (Cantor)
IN| # |I], where | = (0, 1).

Proof. . o . .
Write every number in (0, 1) in its decimal expansion. E.g,

1/3 = 0.33333333333333333333.... ..

Assume that |[N| = |/|. Then there exists a one-to-one mapping f : N — [. Let ; be
the i digit of f(i) € (0,1).

di = any numberin {0,1,2,3,4,5,6,7,8,9} \ {d;_4, 5;}
D= O.C/1d2d3 ... € (0,1).
D is a well defined unique number in (0, 1),

But there is no j such that f(j) = D. A contradiction. ]



“Most General” computer?

TM

- #*s gre simple model of computation.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L|LC{0,1}* }ISW/ uncountablymﬁmte ,w‘b/v— )1-,3

- Set of all programs: ; O | 00 0 « g
{P | Pis a finite length computer program}:

E—

iscountablyinﬁnite/m Lol © o© S o = e«

L'o(olal,

10




“Most General” computer?

- DFAs are simple model of computation.
- Accept only the regular languages.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L]LC{0,1}*"} ism/ uncountably infinite

- Set of all programs:
{P | Pis a finite length computer program}:

is countably infinite /W

- Conclusion: There are languages for which there are no programs.

10



Program Diagonalization

How do we know that there are languages that cannot be represented by
programs? Use Cantor!

1



Program Diagonalization

How do we know that there are languages that cannot be represented by
programs? Use Cantor! Recall a program can be represented by a string where:

- M is the Turing machine (program)

+ (M) is the string representation of the TM M

1
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Define f(i,j) = 11f M; accepts (M;), else 0

(M2)  (M3)  (My) (Ms) (Ms)

(M)
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Program Diagonalization

Let's define a new program:

D = {(M)IM does not accept (M)}

13
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Let's define a new program:

D = {(M)IM does not accept (M)}

(Mp)

(Ms)> (Ms)  (Ms)

(M) (Ms)

(M1)

13
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Recap of decidability




Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages

Aoriun, vELOYuiD
L = {L(M) | M songe“Turing mﬂ&%ﬁaﬂiﬁm@}
o vich

14



Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.
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Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.

- Fundamental questions:
- What languages are RE?
- Which are recursive?
- What is the difference?
- What makes a language decidable?
14



Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable) could be:

- Decidable - equivalent of recursive (TM always accepts or rejects).

- Undecidable - Problem is not recursive (doesn’t always halt on negative)

There are undecidable problem that are not semi-decidable (recursively
enumerable).

15



Problem(Language) Space

Turing-unrecognizable

(everything outside of the complexity classes below)

Semi-Decidable
(recursively-enumerable, recognizable,

Turing-acceptable/recognizable, partially-decidable)

Decidable
(Recursive)

Context-Sensitive

Context-Free

vV —=TW

Regular

16




Un-/Decidable anchor

Like in the case of NP-complete-ness, we need an anchor point to compare
languages to to determine whether they are decidable (or not)!

17



Introduction to the halting theorem




The halting problem

Halting problem: Given a program Q, if we run it would it stop?

18



The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program P, that always stops, and solves the halting problem.

Theorem (“Halting theorem”) |
There is no program that always stops and solves the halting problem.

18



Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

19



Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

19
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- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird.
The programs stops if it found such number.
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Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird.
The programs stops if it found such number.

If can solve halting problem = can resolve this open problem. "



If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.

20



If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.
(B) (p) + pop top of queue.

20



If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.

(B) (p) + pop top of queue.

(C) Feed (p) and (C), into a proof verifier (“easy”).

20



If you can halt, you can prove or disprove anything...

- Consider any math claim C.
- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.
(p) < pop top of queue.
Feed (p) and (C), into a proof verifier (“easy”).
If (p) valid proof of (C), then stop and accept.
Go to (B).

(B
(C
(D
(E

N’ S SN N

* Pc halts < C s true and has a proof.

- If halting is decidable, then can decide if any claim in math is true.

20



Turing machines...

TM = Turing machine = program.

21



Reminder: Undecidability

Definition ‘ | | . _
Language L C ¥* is undecidable if no program P, given w € ¥* as input, can

always stop and output whetherw e Lorw ¢ L.

(Usually defined using TM not programs. But equivalent.

22



Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

23



Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

Definition
A decider for a language L, is a program (or a TM) that always stops, and outputs

for any input string w € ¥* whether or not w € L.

A language that has a decider is decidable.
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Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

Definition
A decider for a language L, is a program (or a TM) that always stops, and outputs

for any input string w € ¥* whether or not w € L.

A language that has a decider is decidable.

Turing proved the following:

Theorem

Ay 1s undecidable.
23



The halting problem




Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

24



Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

Proof: Assume Ay Is TM decidable...

24



Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

Proof: Assume Ay Is TM decidable...

Halt: TM deciding Ay. Halt always halts, and works as follows:

accept M accepts w
Halt(<M,W>) —
reject M does not accept w.

24



Halting theorem proof continued 1

We build the following new function:
Flipper((M))
res < Halt((M, M))
if res is accept then
reject

else

accept

25



Halting theorem proof continued 1

We build the following new function:
Flipper((M))
res < Halt((M, M))
if res is accept then
reject

else

accept

Flipper always stops:

ject M ts (M
Flipper((M)) _ {rejec accepts (M)

accept M does not accept (M) .

25



Halting theorem proof continued 2

, reject M accepts (M)
Fllpper(</\/l>> =
accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

26



Halting theorem proof continued 2

, reject M accepts (M)
Fllpper(</\/l>> =
accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

This is can’t be correct

26



Halting theorem proof continued 2

{reject M accepts (M)

Flipper( (M) ) =
(< >> accept M does not accept (M).

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

This is can’t be correct

Assumption that Halt exists is false. =— A7y Is not TM decidable. ]

26



Unrecognizable




TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

27



TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on some inputs, such

that L(M) = L.

27



TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

Definition | . . |
Language L is TM recognizable if there exists M that stops on some inputs, such
that L(M) = L.

Theorem (Halting)
Ay = {(/\/l, W) ‘/\/l Isa M and M accepts vv} . IS TM recognizable, but not

decidable.

—_ . p | Aa el W{_
— §< M ) w>) M -§ G TM M’

A sceppt w3

27



TM recognizable

Lemma
If Land L = X*\ L are both TM recognizable, then L and L are decidable.

28



TM recognizable

Lemma
If Land L = X*\ L are both TM recognizable, then L and L are decidable.

Proof. N
M: TM recognizing L.

Mc: TM recognizing L.

Given input x, using UTM simulating running M and M. on x in parallel. One of
them must stop and accept. Return result.

— L Is decidable. ]

28



Complement language for Ay

Ay = Z*\{(M,W} |/\/l isa TM and M accepts vv}.

29



Complement language for Ay

Ay =3\ {(M,W} |/\/l isa TM and M accepts vv} .
But don't really care about invalid inputs. So, really:

Ay = {(/\/I,vv> ‘/\/I isa TM and M does not accept vv} .

29



Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.
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Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.

Proof. .
Ay is TM-recognizable.

If A7y is TM-recognizable

30



Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.

Proof. .
Ay is TM-recognizable.

If A7y is TM-recognizable
— (by Lemma)

Ay 1s decidable. A contradiction.

30



Reductions




Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

31



Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.
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Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.

Lemma
A language X reduces to a language Y, If one can construct a TM decider for X

using a given oracle ORACy forY.

We will denote this fact by X — Y.

31



Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
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Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.

- Proof via reduction. Result in a proof by contradiction.
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- L: language of Y.
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Reduction proof technique
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- Proof via reduction. Result in a proof by contradiction.
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- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.
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Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).
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Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.
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Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

- Thus, L must be not decidable.

32



Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. If Y is decidable then X

IS decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows

that there is a procedure Tyy (i.e,, decider) for X that uses an oracle for Y as a
subroutine. We replace the calls to this oracle in Ty by calls to T. The resulting
program Ty is a decider and its language is X. Thus X is decidable (or more
formally TM decidable). ]

33



The countrapositive...

Lemma
Let X and Y be two languages, and assume that X — Y. If X is undecidable then

Y Is undecidable.

34



Halting




The halting problem

Language of all pairs (M, w) such that M halts on w:

AHalt = {</\/|,W> ‘/\/I Isa M and M stops on vv} :

Similar to language already known to be undecidable:

Ay = {(/\/I,W> ‘/\/I Isa TM and M accepts W}.

35



On way to proving that Halting is undecidable...

Lemma
The language Ay reduces to Agaie. Namely, given an oracle for Agac 0ne can

build a decider (that uses this oracle) for Ay.

A = WAIT

2;» :)>‘ P—} ToﬂACM Do

CD@__ATM 36
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On way to proving that Halting is undecidable...

Proof.
Let ORACH: be the given oracle for Aga;. We build the following decider for Ay.

AnotherDecider—ATM(U\/I, vv>)

res « ORACHa,t(U\/I, w))

// if M does not halt on w then reject.
if res= reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <-Simulate M on w.
return res;.

This procedure always return and as such its a decider for Ay. ]

37



The Halting problem is not decidable

Theorem . .
The language Anat IS not decidable.

Proof.
Assume, for the sake of contradiction, that Agai 1S decidable. As such, there is a

TM, denoted by TMy.:, that is a decider for Agaie. We can use TMpggye as an
Implementation of an oracle for Ay, which would imply that one can build a

decider for A7,. However, A7y 1s undecidable. A contradiction. It must be that
Amare 1S undecidable.

38



The same proof by figure...

Turing machine for Aty

accept | accept
accept Simulate M >
T ™ on w >

(M, w) (M, w) reject | reject

> TMHalt

. . >

reject reject

.. I Apaie 1S decidable, then Ay Is decidable, which is impossible.

39



More reductions next time




