

Pre-lecture brain teaser

What do each of the reductions prove?

1. All-pairs-shortest <p u-v shortest path
2. SAT <p Longest-path '

3. Shortest-path <p SAT ?

'Given a graph G(V, E) and integer k, is there a simple path that uses atleast k vertices
‘http://www.aloul.net/Papers/faloul_iceee06.pdf

http://www.aloul.net/Papers/faloul_iceee06.pdf

ECE-374-B: Lecture 22 - Decidability |

Instructor: Nickvash Kani
November 18, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

What do eac ofﬁhg.raductions rove? . V/}‘
w0 I"W'l'ﬁ5 ?Lx‘) Ui‘%miflw
V'/ 7 1. All-pairs-shortest <p u-v shortest path P -
w-vsp s Llest o Luwk s A A ?
AP) €$ WA e Lewl Hoe wv-<y Vw—\) ‘
2. SAT <p Longest-path ?

S — ."';" f
3. Shortest-path <p 2&3‘5 26 ’\\\
) A 4= \ '
B s wf !P g > Suvcp ‘I >" 6
Wl 150\09' (G, uvd v |

3GivenW§VE agWndger k, is there a simple path that Q atleast k vertices
“*http://www.aloul.net/Papers/faloul _iceee06.pdf

ys~ v SP 2

http://www.aloul.net/Papers/faloul_iceee06.pdf

Pre-lecture brain teaser

o ¥ He = &
What do each of the reductions prove? % I f“ o’ 3\”’,)’
1. All-pairs-shortest <p u-v shortest path M‘I c LP 2 10 vk

) T < rgestph® L & PPt V“%Jﬁ«

apcnter b
3. Shortest-path <p SAT * LW”‘— P~ 4

5‘0/"«") Viza ELl= = —

Given a graph G(V, E) and integer k, is there a simple path that uses atlea¥ v¥Tices

4http://www.alou1.ne;éEjpers/faloul_iceee .pdf ‘ w
’V“v~3:,"'4%“7 ‘15’ 'Miﬁﬁi ot ‘““z’ggi%;*_ = uuﬂ*“ﬁy ?E <:\T>l2
ver ' nwl) ux @ L=)

http://www.aloul.net/Papers/faloul_iceee06.pdf

Pre-lecture brain teaser

What do each of the reductions prove? ¢
1. All-pairs-shortest <p u-v shortest path w
<
2. SAT gp@ 3 -
2&3 20 Ko _

3. Shortest-path <p SAT
P ¢ l)" A’
AT S <P S5t

—

Given a graph G(V, E) and integer k, is there a simple path that uses atlea¥ v¥Tices

4http://www.alou1.ne;éEjpers/faloul_iceee .pdf ‘ w
A“y..&\) - PMY ““’ p“ﬂ\s oF w v ‘:*07-" =) V,_/'h’.q é (‘) ',2
avor T el uE @ .

http://www.aloul.net/Papers/faloul_iceee06.pdf

Cantor’s diagonalization argument

Diagonalization Intro

Published in 1891 by George Cantor, is the proof that sought to answer a single
question:

Are all infinite sets (N, Q, Z, R, C) the same size?

Diagonalization Intro

Published in 1891 by George Cantor, is the proof that sought to answer a single
question:

Are all infinite sets (N, Q, Z, R, C) the same size?
X

Let’s say a set is the same size If there Is a 1-1
mapping between the two sets:

__—.—1/

First we need an anchor point (N). Let's say the set of natural numbers has a
particular size Ng

Countable Sets |

We say the set N is countable because you can list out all it's elements
systematically:

1,2,3,4,5.6, ... (1)

Countable Sets |

We say the set N is countable because you can list out all it's elements
systematically:

1,2,3,4,5,6, ... (1)

Set of integers Is also countable

Countable Sets Il

Set of rational numbers is also countable:

1 2 3 4 5 6

:]
1 4
N7/ /2
3 3 3 3
3|\ 7 Y/ 3
4 L4
4 75 %
5 5 5
2 i 5 %
6 6 6 6 6 6
6 S 7 5 8

Focus on ordering numbers based on the diagonals.

Countable Sets Il

Is the set of complex integers countable?

(| 2 S ~
E_M —— - —

Countable Sets IV

Is R countable?

[01 \3
1(0. 9 8 2 1 2
2/0. 4 8 6 8 5
3101 7 3 7 9
4100 6 7 2 7
510 3 2 3 4 8
6[0. 0 3 2 7 0

How do we draw a 1-1 mapping between N and R

Countable Sets IV

). Adcvme o Lbave o sy /’wl

Is R countable?
Lo D 4o E
110. 9 8 2 1 2
210. 4 8 6 8 5
310. 1 7 3 7 9
410. 0 6 7 2 7
510. 3 2 3 4 8
610. 0 3 2 7 0
019.5 735}

How do we draw a 1-1 mapping between N and R 3

You can not count the real numbers Il

[=(0,1),N={1,2,3,...}.

Claim (Cantor)
IN| # |I], where | = (0, 1).

Proof. . o . .
Write every number in (0, 1) in its decimal expansion. E.g,

1/3 = 0.33333333333333333333.... ..

Assume that |[N| = |/|. Then there exists a one-to-one mapping f : N — [. Let ; be
the i digit of f(i) € (0,1).

di = any numberin {0,1,2,3,4,5,6,7,8,9} \ {d;_4, 5;}
D= O.C/1d2d3 ... € (0,1).
D is a well defined unique number in (0, 1),

But there is no j such that f(j) = D. A contradiction.]

“Most General” computer?

TM

- #*s gre simple model of computation.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L|LC{0,1}* }ISW/ uncountablymﬁmte ,w‘b/v—)1-,3

- Set of all programs: ; O | 00 0 « g
{P | Pis a finite length computer program}:

E—

iscountablyinﬁnite/m Lol © o© S o = e«

L'o(olal,

10

“Most General” computer?

- DFAs are simple model of computation.
- Accept only the regular languages.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L]LC{0,1}*"} ism/ uncountably infinite

- Set of all programs:
{P | Pis a finite length computer program}:

is countably infinite /W

- Conclusion: There are languages for which there are no programs.

10

Program Diagonalization

How do we know that there are languages that cannot be represented by
programs? Use Cantor!

1

Program Diagonalization

How do we know that there are languages that cannot be represented by
programs? Use Cantor! Recall a program can be represented by a string where:

- M is the Turing machine (program)

+ (M) is the string representation of the TM M

1

-
o
)
©
N
©
-
o
o
.©
&
=
©
-
on
o
| -
o

Define f(i,j) = 11f M; accepts (M;), else 0

(M2) (M3) (My) (Ms) (Ms)

(M)

12

Program Diagonalization

Let's define a new program:

D = {(M)IM does not accept (M)}

13

-
o
)
©
N
©
-
o
o
.©
&
=
©
-
on
o
| -
o

Let's define a new program:

D = {(M)IM does not accept (M)}

(Mp)

(Ms)> (Ms) (Ms)

(M) (Ms)

(M1)

13

¢

Recap of decidability

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages

Aoriun, vELOYuiD
L = {L(M) | M songe“Turing mﬂ&%ﬁaﬂiﬁm@}
o vich

14

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.

14

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.

- Fundamental questions:
- What languages are RE?
- Which are recursive?
- What is the difference?
- What makes a language decidable?
14

Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable) could be:

- Decidable - equivalent of recursive (TM always accepts or rejects).

- Undecidable - Problem is not recursive (doesn’t always halt on negative)

There are undecidable problem that are not semi-decidable (recursively
enumerable).

15

Problem(Language) Space

Turing-unrecognizable

(everything outside of the complexity classes below)

Semi-Decidable
(recursively-enumerable, recognizable,

Turing-acceptable/recognizable, partially-decidable)

Decidable
(Recursive)

Context-Sensitive

Context-Free

vV —=TW

Regular

16

Un-/Decidable anchor

Like in the case of NP-complete-ness, we need an anchor point to compare
languages to to determine whether they are decidable (or not)!

17

Introduction to the halting theorem

The halting problem

Halting problem: Given a program Q, if we run it would it stop?

18

The halting problem

Halting problem: Given a program Q, if we run it would it stop?

Q: Can one build a program P, that always stops, and solves the halting problem.

Theorem (“Halting theorem”) |
There is no program that always stops and solves the halting problem.

18

Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

19

Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

19

Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird.
The programs stops if it found such number.

19

Intuition, why solving the Halting problem is really hard

Definition . . .
An integer number n is a weird number If

- the sum of the proper divisors (including 1 but not itself) of n the number is
> N,

- no subset of those divisors sums to the number itself.

70 1s weird. Its divisors are 1,2,5,7,10,14,35. 1T+ 2 +5+7 4+ 10 + 14 + 35 = 74. No
subset of them adds up to 70.

Open question: Are there are any odd weird numbers?

Write a program P that tries all odd numbers in order, and check if they are weird.
The programs stops if it found such number.

If can solve halting problem = can resolve this open problem. "

If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.

20

If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.
(B) (p) + pop top of queue.

20

If you can halt, you can prove or disprove anything...

- Consider any math claim C.

- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.

(B) (p) + pop top of queue.

(C) Feed (p) and (C), into a proof verifier (“easy”).

20

If you can halt, you can prove or disprove anything...

- Consider any math claim C.
- Prover algorithm P¢:

(A) Generate sequence of all possible proofs (sequence of strings) into a
pipe/queue.
(p) < pop top of queue.
Feed (p) and (C), into a proof verifier (“easy”).
If (p) valid proof of (C), then stop and accept.
Go to (B).

(B
(C
(D
(E

N’ S SN N

* Pc halts < C s true and has a proof.

- If halting is decidable, then can decide if any claim in math is true.

20

Turing machines...

TM = Turing machine = program.

21

Reminder: Undecidability

Definition ‘ | | . _
Language L C ¥* is undecidable if no program P, given w € ¥* as input, can

always stop and output whetherw e Lorw ¢ L.

(Usually defined using TM not programs. But equivalent.

22

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

23

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

Definition
A decider for a language L, is a program (or a TM) that always stops, and outputs

for any input string w € ¥* whether or not w € L.

A language that has a decider is decidable.

23

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the
corresponding language Is

Ay = {(/\/l,vv> ‘/\/I Isa TM and M accepts vv}.

Definition
A decider for a language L, is a program (or a TM) that always stops, and outputs

for any input string w € ¥* whether or not w € L.

A language that has a decider is decidable.

Turing proved the following:

Theorem

Ay 1s undecidable.
23

The halting problem

Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

24

Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

Proof: Assume Ay Is TM decidable...

24

Aty I1s not TM decidable!

Ay = {(M,W) ‘/\/l Isa TM and M accepts vv} :

Theorem (The halting theorem.)
A7y is not Turing decidable.

Proof: Assume Ay Is TM decidable...

Halt: TM deciding Ay. Halt always halts, and works as follows:

accept M accepts w
Halt(<M,W>) —
reject M does not accept w.

24

Halting theorem proof continued 1

We build the following new function:
Flipper((M))
res < Halt((M, M))
if res is accept then
reject

else

accept

25

Halting theorem proof continued 1

We build the following new function:
Flipper((M))
res < Halt((M, M))
if res is accept then
reject

else

accept

Flipper always stops:

ject M ts (M
Flipper((M)) _ {rejec accepts (M)

accept M does not accept (M) .

25

Halting theorem proof continued 2

, reject M accepts (M)
Fllpper(</\/l>> =
accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

26

Halting theorem proof continued 2

, reject M accepts (M)
Fllpper(</\/l>> =
accept M does not accept (M) .

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

This is can’t be correct

26

Halting theorem proof continued 2

{reject M accepts (M)

Flipper((M)) =
(< >> accept M does not accept (M).

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Run Flipper on
itself:

t Fl ts (Fli
Flipper((Flipper)) _ {rejec ipper accepts (Flipper)

accept Flipper does not accept (Flipper).

This is can’t be correct

Assumption that Halt exists is false. =— A7y Is not TM decidable.]

26

Unrecognizable

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

27

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

Definition
Language L is TM recognizable if there exists M that stops on some inputs, such

that L(M) = L.

27

TM recognizable

Definition
Language L is TM decidable if there exists M that always stops, such that L(M) = L.

Definition | . . |
Language L is TM recognizable if there exists M that stops on some inputs, such
that L(M) = L.

Theorem (Halting)
Ay = {(/\/l, W) ‘/\/l Isa M and M accepts vv} . IS TM recognizable, but not

decidable.

—_ . p | Aa el W{_
— §< M) w>) M -§ G TM M’

A sceppt w3

27

TM recognizable

Lemma
If Land L = X*\ L are both TM recognizable, then L and L are decidable.

28

TM recognizable

Lemma
If Land L = X*\ L are both TM recognizable, then L and L are decidable.

Proof. N
M: TM recognizing L.

Mc: TM recognizing L.

Given input x, using UTM simulating running M and M. on x in parallel. One of
them must stop and accept. Return result.

— L Is decidable.]

28

Complement language for Ay

Ay = Z*\{(M,W} |/\/l isa TM and M accepts vv}.

29

Complement language for Ay

Ay =3\ {(M,W} |/\/l isa TM and M accepts vv} .
But don't really care about invalid inputs. So, really:

Ay = {(/\/I,vv> ‘/\/I isa TM and M does not accept vv} .

29

Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.

30

Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.

Proof. .
Ay is TM-recognizable.

If A7y is TM-recognizable

30

Complement language for Aty is not TM-recognizable

Theorem
The language

Ay = {(/\/I, w) |/\/l is a TM and M does not accept W}.

is not TM recognizable.

Proof. .
Ay is TM-recognizable.

If A7y is TM-recognizable
— (by Lemma)

Ay 1s decidable. A contradiction.

30

Reductions

Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

31

Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.

31

Meta definition: Problem X reduces to problem B, if given a solution to B, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.

Lemma
A language X reduces to a language Y, If one can construct a TM decider for X

using a given oracle ORACy forY.

We will denote this fact by X — Y.

31

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.

- Proof via reduction. Result in a proof by contradiction.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

32

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

- Thus, L must be not decidable.

32

Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. If Y is decidable then X

IS decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows

that there is a procedure Tyy (i.e,, decider) for X that uses an oracle for Y as a
subroutine. We replace the calls to this oracle in Ty by calls to T. The resulting
program Ty is a decider and its language is X. Thus X is decidable (or more
formally TM decidable).]

33

The countrapositive...

Lemma
Let X and Y be two languages, and assume that X — Y. If X is undecidable then

Y Is undecidable.

34

Halting

The halting problem

Language of all pairs (M, w) such that M halts on w:

AHalt = {</\/|,W> ‘/\/I Isa M and M stops on vv} :

Similar to language already known to be undecidable:

Ay = {(/\/I,W> ‘/\/I Isa TM and M accepts W}.

35

On way to proving that Halting is undecidable...

Lemma
The language Ay reduces to Agaie. Namely, given an oracle for Agac 0ne can

build a decider (that uses this oracle) for Ay.

A = WAIT

2;» :)>‘ P—} ToﬂACM Do

CD@__ATM 36

E———

On way to proving that Halting is undecidable...

Proof.
Let ORACH: be the given oracle for Aga;. We build the following decider for Ay.

AnotherDecider—ATM(U\/I, vv>)

res « ORACHa,t(U\/I, w))

// if M does not halt on w then reject.
if res= reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <-Simulate M on w.
return res;.

This procedure always return and as such its a decider for Ay.]

37

The Halting problem is not decidable

Theorem . .
The language Anat IS not decidable.

Proof.
Assume, for the sake of contradiction, that Agai 1S decidable. As such, there is a

TM, denoted by TMy.:, that is a decider for Agaie. We can use TMpggye as an
Implementation of an oracle for Ay, which would imply that one can build a

decider for A7,. However, A7y 1s undecidable. A contradiction. It must be that
Amare 1S undecidable.

38

The same proof by figure...

Turing machine for Aty

accept | accept
accept Simulate M >
T ™ on w >

(M, w) (M, w) reject | reject

> TMHalt

. . >

reject reject

.. I Apaie 1S decidable, then Ay Is decidable, which is impossible.

39

More reductions next time

