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Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also
in NP-Hard. Is SAT reducible to HALT? How?
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Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3



Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3



Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3



Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.
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Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =) Y. If Y is decidable then X
is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y , it follows
that there is a procedure TX|Y (i.e., decider) for X that uses an oracle for Y as a
subroutine. We replace the calls to this oracle in TX|Y by calls to T. The resulting
program TX is a decider and its language is X. Thus X is decidable (or more
formally TM decidable).
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The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =) Y. If X is undecidable then
Y is undecidable.
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Halting



The halting problem

Language of all pairs hM,wi such that M halts on w:

AHalt =
n
hM,wi

���M is a TM and M stops on w
o
.

Similar to language already known to be undecidable:

ATM =
n
hM,wi

���M is a TM and M accepts w
o
.
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One way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for AHalt one can
build a decider (that uses this oracle) for ATM.
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One way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for AHalt one can
build a decider (that uses this oracle) for ATM.
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One way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following decider for ATM.

AnotherDecider-ATM

⇣
hM,wi

⌘

res ORACHalt
⇣
hM,wi

⌘

// if M does not halt on w then reject.
if res = reject then

halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res2  Simulate M on w.
return res2.

This procedure always return and as such its a decider for ATM.

9



The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As such, there is a
TM, denoted by TMHalt, that is a decider for AHalt. We can use TMHalt as an
implementation of an oracle for AHalt, which would imply that one can build a
decider for ATM. However, ATM is undecidable. A contradiction. It must be that
AHalt is undecidable.
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The same proof by figure...

accept

reject

Simulate accept

reject

accept

reject

... if AHalt is decidable, then ATM is decidable, which is impossible.
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Emptiness



The language of empty languages

• ETM =
n
hMi

���M is a TM and L(M) = ;
o
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether M accepts w.
• Restructure question to be about Turing machine having an empty language.
• Somehow make the second input (w) disappear.
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The language of empty languages

• ETM =
n
hMi

���M is a TM and L(M) = ;
o
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether M accepts w.
• Restructure question to be about Turing machine having an empty language.
• Somehow make the second input (w) disappear.
• Idea: hard-code w into M, creating a TM Mw which runs M on the fixed string
w.

• TM Mw(x):
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. Else, reject.
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Embedding strings...

• Given program hMi and input w...
• ...can output a program hMwi.
• The program Mw simulates M on w. And accepts/rejects accordingly.
• EmbedString(hM,wi) input two strings hMi and w, and output a string
encoding (TM) hMwi.

• What is L(Mw)?
• Since Mw ignores input x.. language Mw is either ⌃⇤ or ;.
It is ⌃⇤ if M accepts w, and it is ; if M does not accept w.
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Emptiness is undecidable

Theorem
The language ETM is undecidable.

• Assume (for contradiction), that ETM is decidable.
• TMETM be its decider.
• Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(hM,wi)
hMwi  EmbedString (hM,wi)
r  TMETM(hMwi).
if r = accept then

return reject
// TMETM(hMwi) rejected its input
return accept
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Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is empty. This implies that M does not
accept w. As such, AnotherDecider-ATM rejects its input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is not empty. This implies that M accepts w.
So AnotherDecider-ATM accepts hM,wi.

=) AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.
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Emptiness is undecidable via diagram

accept

reject

accept

reject
Embed
String

AnotherDecider-ATM never actually runs the code for Mw . It hands the code to a
function TMETM which analyzes what the code would do if run it. So it does not
matter that Mw might go into an infinite loop.
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Equality



Equality is undecidable

EQTM =
n
hM,Ni

���M and N are TM’s and L(M) = L(N)
o
.

Lemma
The language EQTM is undecidable.

Let’s try something different. We know ETM is undecidable. Let’s use that:

ETM =) EQTM
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Equality diagram

accept

reject

accept

reject
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Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then we can build a
decider for ETM as follows:

TM R:
1. Input = hMi
2. Include the (constant) code for a TM T that rejects all its input. We denote the
string encoding T by hTi.

3. Run DeciderEqual on hM, Ti.
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.
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DFAs



DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

What does the above language describe?
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DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

Is the language above decidable?
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DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

Is the language above decidable?

Lemma
The language EDFA is decidable:
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Scratch
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Proof

Proof.
Unlike in the previous cases, we can directly build a decider (DeciderEmptyDFA)
for EDFA

TM R:
1. Input = hAi
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

• Mark any state that has a transition coming into it from any state that is already
marked.

4. If no accept state is marked, then accept.
5. Otherwise, then reject.
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Equal DFAs



DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

What does the above language describe?
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DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

Is the language above decidable?

Lemma
The language EDFA is decidable.

Can we show this using reductions?
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Equal DFA trick I

Need a way to determine if there any strings in one language and not the other....

L(A) L(B)

This is known as the symmetric difference. Can create a new DFA (C) which
represents the symmetric difference of LA and LB.

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘
(1)

24
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Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
using a reduction?

Want to show EQDFA =) EDFA
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Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
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accept

reject
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reject
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Equal DFA decider

TM F:
1. Input = hA,Bi where A and B are DFAs
2. Construct DFA C as described before
3. Run DeciderEmptyDFA from previous slide on C
4. If accepts, then accept.
5. If rejects, then reject.
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Regularity



Many undecidable languages

• Almost any property defining a TM language induces a language which is
undecidable.

• proofs all have the same basic pattern.
• Regularity language: RegularTM =

n
hMi

���M is a TM and L(M) is regular
o
.

• DeciderRegL: Assume TM decider for RegularTM.
• Reduction from halting requires to turn problem about deciding whether a
TM M accepts w (i.e., is w 2 ATM) into a problem about whether some TM
accepts a regular set of strings.
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Outline of IsRegular? reductionr

accept

reject

accept

reject

Embed
Regular
String
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Proof continued...

• Given M and w, consider the following TM M0
w :

TM M0
w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

• not executing M0
w!

• feed string hM0
wi into DeciderRegL

• EmbedRegularString: program with input hMi and w, and outputs hM0
wi,

encoding the program M0
w .

• If M accepts w, then any x accepted by M0
w : L(M0

w) = ⌃⇤.
• If M does not accept w, then L(M0

w) =
�
anbn

�� n � 0
 
.
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Proof continued...

• anbn is not regular...
• Use DeciderRegL on M0

w to distinguish these two cases.
• Note - cooked M0

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(hM,wi)
hM0

wi  EmbedRegularString (hM,wi)
r  DeciderRegL(hM0

wi).
return r

• If DeciderRegL accepts =) L(M0
w) regular (its ⌃⇤)

=) M accepts w. So
AnotherDecider-ATM should accept hM,wi.

• If DeciderRegL rejects =) L(M0
w) is not regular =) L(M0

w) = anbn =) M
does not accept w =) AnotherDecider-ATM should reject hM,wi.
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Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each word in L encodes
a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if
L(M) = L(N) then hMi 2 L, hNi 2 L.

(b) The set L is “non-trivial,” i.e. L 6= ; and L does not contain all Turing machines.

Then L is a undecidable.
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