Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?

ECE-374-B: Lecture 23 - Decidability II

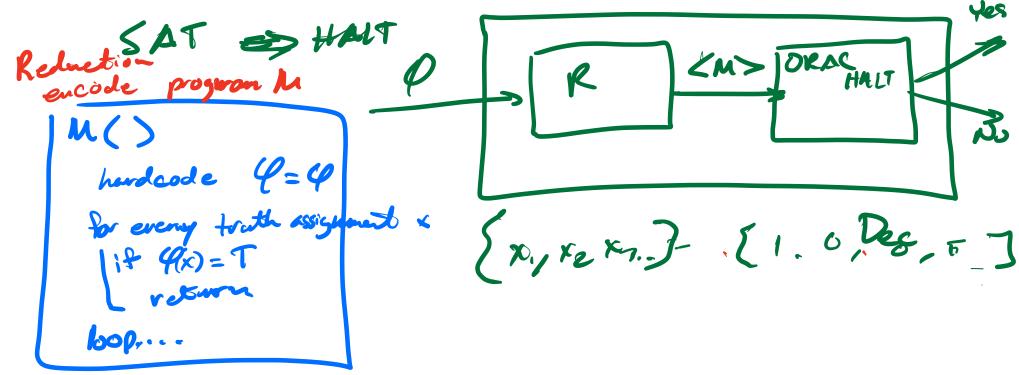
Instructor: Nickvash Kani

November 20, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?



Reductions

Reduction

Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Reduction

Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Definition

<u>oracle</u> ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Reduction

Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Definition

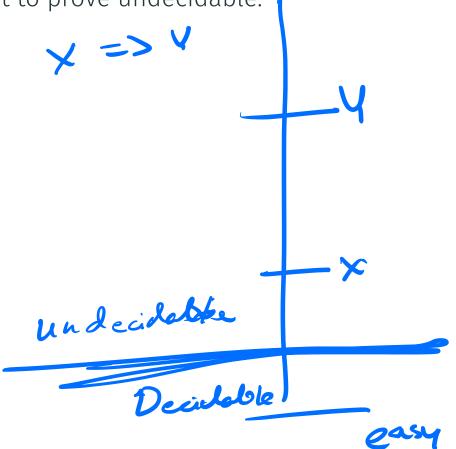
oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Lemma

A language X <u>reduces</u> to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y.

We will denote this fact by $X \implies Y$.

• Y: Problem/language for which we want to prove undecidable.



- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem **X** using *M*.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for X (i.e., A_{TM}).

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for X (i.e., A_{TM}).
- · Contradiction X is not decidable.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by TM M.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for X (i.e., A_{TM}).
- · Contradiction X is not decidable.
- Thus, L must be not decidable.

Reduction implies decidability

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The countrapositive...

Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\text{Halt}} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ stops on } w \}.$$

Similar to language already known to be undecidable:

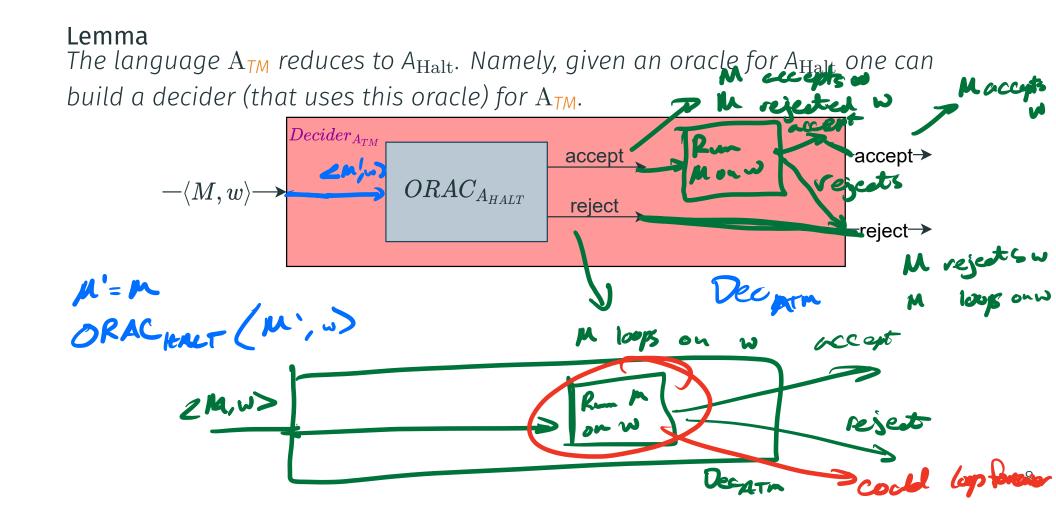
$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

One way to proving that Halting is undecidable...

Lemma

The language A_{TM} reduces to A_{Halt} . Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM} .

One way to proving that Halting is undecidable...



One way to proving that Halting is undecidable...

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

res \leftarrow ORAC_{Halt}(\langle M, w \rangle)

// if M does not halt on w then reject.

if res = reject then

halt and reject.

// M halts on w since res = accept.

// Simulating M on w terminates in finite time.

res_2 \leftarrow Simulate M on w.

return res_2.
```

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

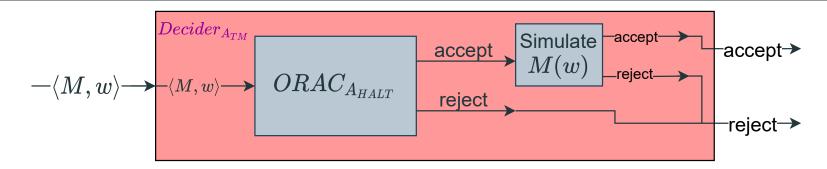
Theorem

The language $A_{\rm Halt}$ is not decidable.

Proof.

Assume, for the sake of contradiction, that $A_{\rm Halt}$ is decidable. As such, there is a TM, denoted by $TM_{\rm Halt}$, that is a decider for $A_{\rm Halt}$. We can use $TM_{\rm Halt}$ as an implementation of an oracle for $A_{\rm Halt}$, which would imply that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that $A_{\rm Halt}$ is undecidable.

The same proof by figure...



... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.

Emptiness

The language of empty languages

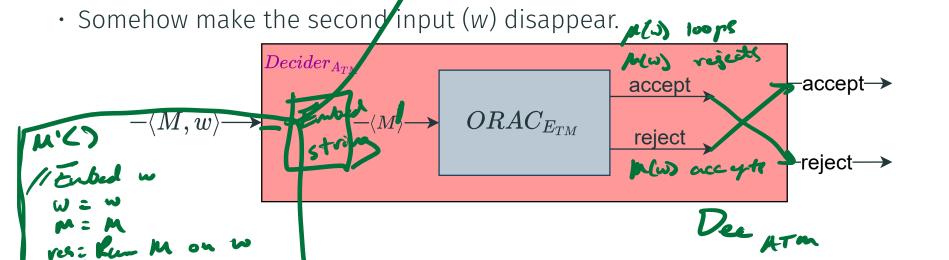
• $E_{\mathsf{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$

- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- · Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.

The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle \mathsf{M} \rangle \mid \mathsf{M} \text{ is a TM and } L(\mathsf{M}) = \emptyset \right\}.$
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and W and must decide whether M accepts w.
- · Restructure question to be about Turing machine having an empty language.

MG



The language of empty languages

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$
- TM_{ETM} : Assume we are given this decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.
- Idea: hard-code w into M, creating a TM M_w which runs M on the fixed string w.
- TM $M_W(x)$:
 - 1. Input = x (which will be ignored)
 - 2. Simulate M on w.
 - 3. If the simulation accepts, accept. Else, reject.

Embedding strings...

- Given program (M) and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.

Embedding strings...

- Given program (M) and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?

Embedding strings...

- Given program (M) and input w...
- ...can output a program $\langle M_w \rangle$.
- The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
- What is $L(M_w)$?
- Since M_w ignores input x.. language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Emptiness is undecidable

Theorem

The language E_{TM} is undecidable.

- Assume (for contradiction), that E_{TM} is decidable.
- TM_{FTM} be its decider.
- Build decider **AnotherDecider**-A_{TM} for A_{TM}:

```
AnotherDecider-A_{TM}(\langle M, w \rangle)
\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle)
r \leftarrow TM_{ETM}(\langle M_w \rangle).
if r = \text{accept then}
return \ reject
// TM_{ETM}(\langle M_w \rangle) \ rejected \ its \ input
return \ accept
```

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-** A_{TM} accepts $\langle M, w \rangle$.

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

Emptiness is undecidable...

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

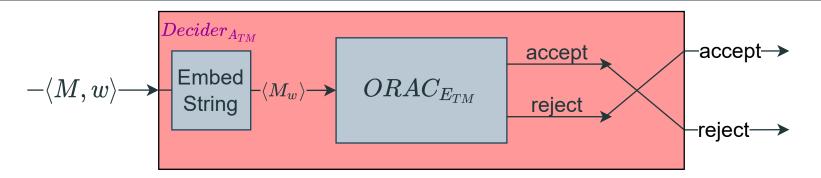
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, **AnotherDecider**- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

...must be assumption that E_{TM} is decidable is false.

Emptiness is undecidable via diagram



AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Equality

Equality is undecidable

$$EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM's \text{ and } L(M) = L(N) \}.$$

Lemma

The language EQ_{TM} is undecidable.

Equality is undecidable

$$EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM's \text{ and } L(M) = L(N) \}.$$

Lemma

The language EQ_{TM} is undecidable.

Let's try something different. We know E_{TM} is undecidable. Let's use that:

Equality is undecidable

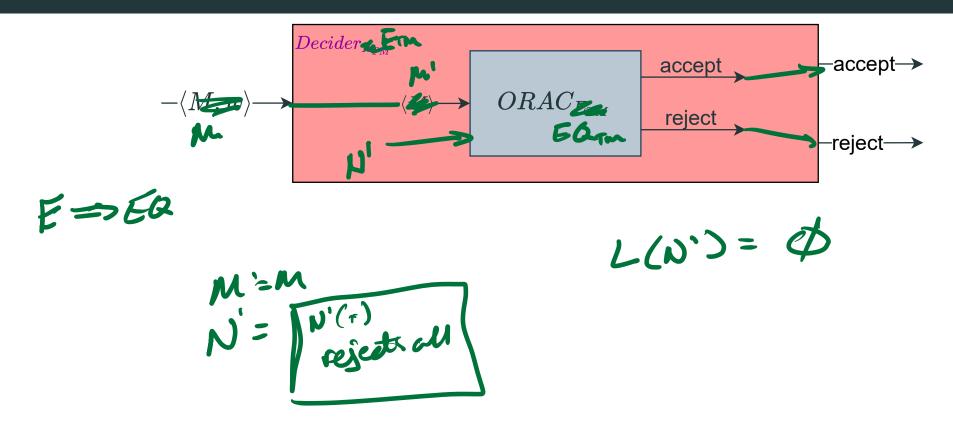
$$EQ_{TM} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM's \text{ and } L(M) = L(N) \}.$$

Lemma

The language EQ_{TM} is undecidable.

Let's try something different. We know E_{TM} is undecidable. Let's use that:

Equality diagram



Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for E_{TM} as follows:

TM R:

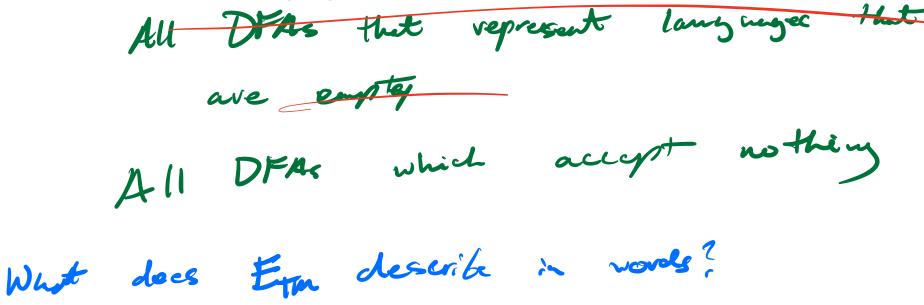
- 1. Input = $\langle M \rangle$
- 2. Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
- 3. Run **DeciderEqual** on $\langle M, T \rangle$.
- 4. If **DeciderEqual** accepts, then accept.
- 5. If **DeciderEqual** rejects, then reject.

DFAs

DFAs are empty?

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

What does the above language describe?



DFAs are empty?

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

Is the language above decidable? Ves

DFS
Brute force (listing all

comple peths)

DFAs are empty?

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}.$$

Is the language above decidable?

Lemma

The language E_{DFA} is decidable:

Scratch

Proof

Proof.

Unlike in the previous cases, we can directly build a decider (**DeciderEmptyDFA**) for E_{DFA}

TM R:

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, then accept.
- 5. Otherwise, then reject.

Equal DFAs

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

What does the above language describe?

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Is the language above decidable?

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

Is the language above decidable?

Lemma

The language E_{DFA} is decidable.

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

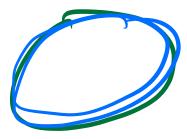
Is the language above decidable?

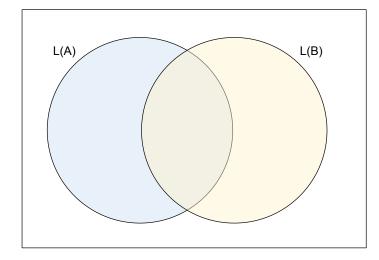
Lemma

The language E_{DFA} is decidable.

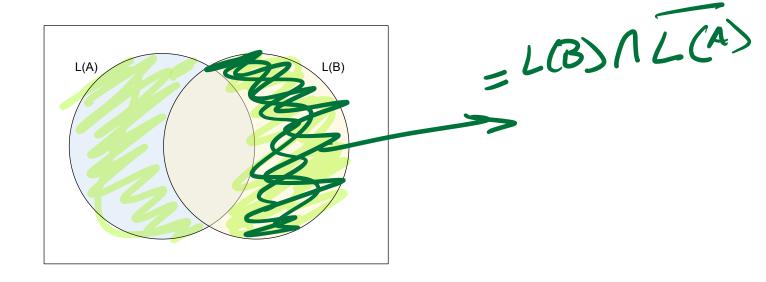
Can we show this using reductions?

Need a way to determine if there any strings in one language and not the other....





Need a way to determine if there any strings in one language and not the other....



This is known as the symmetric difference. Can create a new DFA (C) which represents the symmetric difference of L_A and L_B

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

undecidable decidable

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

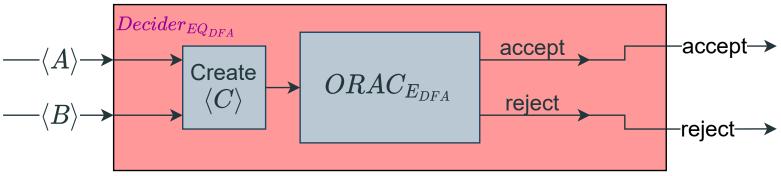
Want to show $EQ_{DFA} \implies E_{DFA}$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$



Equal DFA decider

TM F:

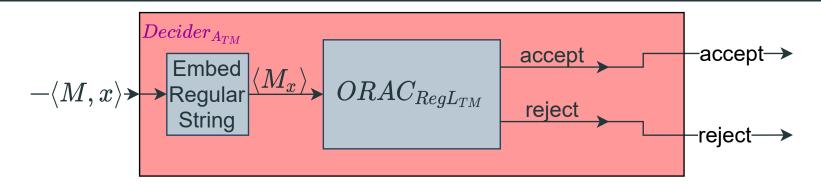
- 1. Input = $\langle A, B \rangle$ where A and B are DFAs
- 2. Construct DFA C as described before
- 3. Run **DeciderEmptyDFA** from previous slide on *C*
- 4. If accepts, then accept.
- 5. If rejects, then reject.

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.
- Regularity language: Regular_{TM} = $\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \}$.
- **DeciderRegL**: Assume TM decider for Regular_{TM}.
- Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is $w \in A_{TM}$) into a problem about whether some TM accepts a regular set of strings.

Outline of IsRegular? reductionr



Aym & Regim

- Given M and w, consider the following $TM M'_w$:
 - $\mathsf{TM}\ \mathsf{M}'_{\mathsf{W}}$:
 - (i) Input = x
 - (ii) If x has the form $a^n b^n$, halt and accept.
 - (iii) Otherwise, simulate M on w.
 - (iv) If the simulation accepts, then accept.
 - (v) If the simulation rejects, then reject.
- not executing $M'_w!$
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- **EmbedRegularString**: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- If M accepts w, then any x accepted by M'_w : $L(M'_w) = \Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \ge 0\}$.

- aⁿbⁿ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_{W} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_{W} \rangle).

return r
```

• If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*)

- $a^n b^n$ is not regular...
- Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_{W} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_{W} \rangle).

return r
```

• If DeciderRegL accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) \Longrightarrow M accepts w. So AnotherDecider- A_{TM} should accept $\langle M, w \rangle$.

- $a^n b^n$ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_{W} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_{W} \rangle).

return r
```

- If DeciderRegL accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) \Longrightarrow M accepts w. So AnotherDecider- A_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$

- $a^n b^n$ is not regular...
- Use **DeciderRegL** on M'_w to distinguish these two cases.
- Note cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_{W} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_{W} \rangle).

return r
```

- If DeciderRegL accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) \Longrightarrow M accepts w. So AnotherDecider- A_{TM} should accept $\langle M, w \rangle$.
- If **DeciderRegL** rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow AnotherDecider-A_{TM}$ should reject $\langle M, w \rangle$.

Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.