
1

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also
in NP-Hard. Is SAT reducible to HALT? How?

1

ECE-374-B: Lecture 23 - Decidability II

Instructor: Nickvash Kani
November 20, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also
in NP-Hard. Is SAT reducible to HALT? How?

2

Yes
SAT HALT

Recti program
MC
h 9
forevery truthassignment

pyxe xpF 1 0 8 F

198 1
loop

Reductions

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3

Reduction

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
implies a solution for X. Namely, we can solve Y then we can solve X. We will done
this by X =) Y.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE
() w 2 L.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X
using a given oracle ORACY for Y.

We will denote this fact by X =) Y.

3

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

hand

V

Ef
Decided

easy

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.

• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.

• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.

• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.

• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).

• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.

• Thus, L must be not decidable.

4

Reduction proof technique

• Y: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using M.
• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.

4

Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =) Y. If Y is decidable then X
is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y , it follows
that there is a procedure TX|Y (i.e., decider) for X that uses an oracle for Y as a
subroutine. We replace the calls to this oracle in TX|Y by calls to T. The resulting
program TX is a decider and its language is X. Thus X is decidable (or more
formally TM decidable).

5

The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =) Y. If X is undecidable then
Y is undecidable.

6

Halting

The halting problem

Language of all pairs hM,wi such that M halts on w:

AHalt =
n
hM,wi

���M is a TM and M stops on w
o
.

Similar to language already known to be undecidable:

ATM =
n
hM,wi

���M is a TM and M accepts w
o
.

7

One way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for AHalt one can
build a decider (that uses this oracle) for ATM.

8

Arm AHAT

One way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for AHalt one can
build a decider (that uses this oracle) for ATM.

accept

reject

accept

reject

8

Mujitsin Macent

ÉEects

M rejects
µ M Decatur in loopson

ORACHALT M _w M loops on w

reject
a

none

One way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the following decider for ATM.

AnotherDecider-ATM

⇣
hM,wi

⌘

res ORACHalt
⇣
hM,wi

⌘

// if M does not halt on w then reject.
if res = reject then

halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res2 Simulate M on w.
return res2.

This procedure always return and as such its a decider for ATM.

9

The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable. As such, there is a
TM, denoted by TMHalt, that is a decider for AHalt. We can use TMHalt as an
implementation of an oracle for AHalt, which would imply that one can build a
decider for ATM. However, ATM is undecidable. A contradiction. It must be that
AHalt is undecidable.

10

The same proof by figure...

accept

reject

Simulate accept

reject

accept

reject

... if AHalt is decidable, then ATM is decidable, which is impossible.

11

Emptiness

The language of empty languages

• ETM =
n
hMi

���M is a TM and L(M) = ;
o
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether M accepts w.
• Restructure question to be about Turing machine having an empty language.
• Somehow make the second input (w) disappear.

12

Atm Etm

The language of empty languages

• ETM =
n
hMi

���M is a TM and L(M) = ;
o
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether M accepts w.
• Restructure question to be about Turing machine having an empty language.
• Somehow make the second input (w) disappear.

accept

reject

accept

reject

12

What language does

mi represent

T.gl

tE

news
accff

iEEa Dean

The language of empty languages

• ETM =
n
hMi

���M is a TM and L(M) = ;
o
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether M accepts w.
• Restructure question to be about Turing machine having an empty language.
• Somehow make the second input (w) disappear.
• Idea: hard-code w into M, creating a TM Mw which runs M on the fixed string
w.

• TM Mw(x):
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. Else, reject.

12

Embedding strings...

• Given program hMi and input w...
• ...can output a program hMwi.
• The program Mw simulates M on w. And accepts/rejects accordingly.
• EmbedString(hM,wi) input two strings hMi and w, and output a string
encoding (TM) hMwi.

• What is L(Mw)?
• Since Mw ignores input x.. language Mw is either ⌃⇤ or ;.
It is ⌃⇤ if M accepts w, and it is ; if M does not accept w.

13

Embedding strings...

• Given program hMi and input w...
• ...can output a program hMwi.
• The program Mw simulates M on w. And accepts/rejects accordingly.
• EmbedString(hM,wi) input two strings hMi and w, and output a string
encoding (TM) hMwi.

• What is L(Mw)?

• Since Mw ignores input x.. language Mw is either ⌃⇤ or ;.
It is ⌃⇤ if M accepts w, and it is ; if M does not accept w.

13

Embedding strings...

• Given program hMi and input w...
• ...can output a program hMwi.
• The program Mw simulates M on w. And accepts/rejects accordingly.
• EmbedString(hM,wi) input two strings hMi and w, and output a string
encoding (TM) hMwi.

• What is L(Mw)?
• Since Mw ignores input x.. language Mw is either ⌃⇤ or ;.
It is ⌃⇤ if M accepts w, and it is ; if M does not accept w.

13

Emptiness is undecidable

Theorem
The language ETM is undecidable.

• Assume (for contradiction), that ETM is decidable.
• TMETM be its decider.
• Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(hM,wi)
hMwi EmbedString (hM,wi)
r TMETM(hMwi).
if r = accept then

return reject
// TMETM(hMwi) rejected its input
return accept

14

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is empty. This implies that M does not
accept w. As such, AnotherDecider-ATM rejects its input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is not empty. This implies that M accepts w.
So AnotherDecider-ATM accepts hM,wi.

=) AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.

15

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is empty. This implies that M does not
accept w. As such, AnotherDecider-ATM rejects its input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is not empty. This implies that M accepts w.
So AnotherDecider-ATM accepts hM,wi.

=) AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.

15

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is empty. This implies that M does not
accept w. As such, AnotherDecider-ATM rejects its input hM,wi.

• If TMETM accepts hMwi, then L(Mw) is not empty. This implies that M accepts w.
So AnotherDecider-ATM accepts hM,wi.

=) AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.

15

Emptiness is undecidable via diagram

accept

reject

accept

reject
Embed
String

AnotherDecider-ATM never actually runs the code for Mw . It hands the code to a
function TMETM which analyzes what the code would do if run it. So it does not
matter that Mw might go into an infinite loop.

16

Equality

Equality is undecidable

EQTM =
n
hM,Ni

���M and N are TM’s and L(M) = L(N)
o
.

Lemma
The language EQTM is undecidable.

Let’s try something different. We know ETM is undecidable. Let’s use that:

ETM =) EQTM

17

Equality is undecidable

EQTM =
n
hM,Ni

���M and N are TM’s and L(M) = L(N)
o
.

Lemma
The language EQTM is undecidable.

Let’s try something different. We know ETM is undecidable. Let’s use that:

ETM =) EQTM

17

Erm EQTM

Equality is undecidable

EQTM =
n
hM,Ni

���M and N are TM’s and L(M) = L(N)
o
.

Lemma
The language EQTM is undecidable.

Let’s try something different. We know ETM is undecidable. Let’s use that:

ETM =) EQTM

17

Equality diagram

accept

reject

accept

reject

18

METM
m

Te Its Efm

E EQ
L N

MEM
N

Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then we can build a
decider for ETM as follows:

TM R:
1. Input = hMi
2. Include the (constant) code for a TM T that rejects all its input. We denote the
string encoding T by hTi.

3. Run DeciderEqual on hM, Ti.
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.

19

DFAs

DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

What does the above language describe?

20

AUDFAsthatrepresentlanywgethat
are emplet

All DFAs which accept nothing

What does Etm describe in words

DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

Is the language above decidable?

20

Yes

Guns
BFS
OFS
Brute force

listing all
simple paths

DFAs are empty?

EDFA =
n
hAi

���A is a DFA and L(A) = ;
o
.

Is the language above decidable?

Lemma
The language EDFA is decidable:

20

Atms Eora

INT ooFA j
new

Scratch

21

Proof

Proof.
Unlike in the previous cases, we can directly build a decider (DeciderEmptyDFA)
for EDFA

TM R:
1. Input = hAi
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

• Mark any state that has a transition coming into it from any state that is already
marked.

4. If no accept state is marked, then accept.
5. Otherwise, then reject.

22

Equal DFAs

DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

What does the above language describe?

23

All pairs of
OFA encodings that represent

the same language

DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

Is the language above decidable?

23

DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

Is the language above decidable?

Lemma
The language EDFA is decidable.

23

DFAs are equal?

EQDFA =
n
hA,bi

���A and B are DFAs and L(A) = L(B)
o
.

Is the language above decidable?

Lemma
The language EDFA is decidable.

Can we show this using reductions?

23

Equal DFA trick I

Need a way to determine if there any strings in one language and not the other....

L(A) L(B)

This is known as the symmetric difference. Can create a new DFA (C) which
represents the symmetric difference of LA and LB.

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘
(1)

24

LAFLCO

Equal DFA trick I

Need a way to determine if there any strings in one language and not the other....

L(A) L(B)

This is known as the symmetric difference. Can create a new DFA (C) which
represents the symmetric difference of LA and LB.

L(C) =
⇣
L(A) \ L(B)

⌘
[
⇣
L(A) \ L(B)

⌘
(1)

24

ZELENA

Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
using a reduction?

Want to show EQDFA =) EDFA

25

Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
using a reduction?

Want to show EQDFA =) EDFA

25

i.EE
t

Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
using a reduction?

Want to show EQDFA =) EDFA

accept

reject

accept

reject

25

Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ;
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show EQDFA is decidable
using a reduction?

Want to show EQDFA =) EDFA

accept

reject

accept

reject
Create

25

Equal DFA decider

TM F:
1. Input = hA,Bi where A and B are DFAs
2. Construct DFA C as described before
3. Run DeciderEmptyDFA from previous slide on C
4. If accepts, then accept.
5. If rejects, then reject.

26

Regularity

Many undecidable languages

• Almost any property defining a TM language induces a language which is
undecidable.

• proofs all have the same basic pattern.
• Regularity language: RegularTM =

n
hMi

���M is a TM and L(M) is regular
o
.

• DeciderRegL: Assume TM decider for RegularTM.
• Reduction from halting requires to turn problem about deciding whether a
TM M accepts w (i.e., is w 2 ATM) into a problem about whether some TM
accepts a regular set of strings.

27

Outline of IsRegular? reductionr

accept

reject

accept

reject

Embed
Regular
String

28

Atm Resin

Proof continued...

• Given M and w, consider the following TM M0
w :

TM M0
w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

• not executing M0
w!

• feed string hM0
wi into DeciderRegL

• EmbedRegularString: program with input hMi and w, and outputs hM0
wi,

encoding the program M0
w .

• If M accepts w, then any x accepted by M0
w : L(M0

w) = ⌃⇤.
• If M does not accept w, then L(M0

w) =
�
anbn

�� n � 0

.

29

Proof continued...

• anbn is not regular...
• Use DeciderRegL on M0

w to distinguish these two cases.
• Note - cooked M0

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(hM,wi)
hM0

wi EmbedRegularString (hM,wi)
r DeciderRegL(hM0

wi).
return r

• If DeciderRegL accepts =) L(M0
w) regular (its ⌃⇤)

=) M accepts w. So
AnotherDecider-ATM should accept hM,wi.

• If DeciderRegL rejects =) L(M0
w) is not regular =) L(M0

w) = anbn =) M
does not accept w =) AnotherDecider-ATM should reject hM,wi.

30

Proof continued...

• anbn is not regular...
• Use DeciderRegL on M0

w to distinguish these two cases.
• Note - cooked M0

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(hM,wi)
hM0

wi EmbedRegularString (hM,wi)
r DeciderRegL(hM0

wi).
return r

• If DeciderRegL accepts =) L(M0
w) regular (its ⌃⇤) =) M accepts w. So

AnotherDecider-ATM should accept hM,wi.

• If DeciderRegL rejects =) L(M0
w) is not regular =) L(M0

w) = anbn =) M
does not accept w =) AnotherDecider-ATM should reject hM,wi.

30

Proof continued...

• anbn is not regular...
• Use DeciderRegL on M0

w to distinguish these two cases.
• Note - cooked M0

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(hM,wi)
hM0

wi EmbedRegularString (hM,wi)
r DeciderRegL(hM0

wi).
return r

• If DeciderRegL accepts =) L(M0
w) regular (its ⌃⇤) =) M accepts w. So

AnotherDecider-ATM should accept hM,wi.
• If DeciderRegL rejects =) L(M0

w) is not regular =) L(M0
w) = anbn

=) M
does not accept w =) AnotherDecider-ATM should reject hM,wi.

30

Proof continued...

• anbn is not regular...
• Use DeciderRegL on M0

w to distinguish these two cases.
• Note - cooked M0

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(hM,wi)
hM0

wi EmbedRegularString (hM,wi)
r DeciderRegL(hM0

wi).
return r

• If DeciderRegL accepts =) L(M0
w) regular (its ⌃⇤) =) M accepts w. So

AnotherDecider-ATM should accept hM,wi.
• If DeciderRegL rejects =) L(M0

w) is not regular =) L(M0
w) = anbn =) M

does not accept w =) AnotherDecider-ATM should reject hM,wi.
30

Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each word in L encodes
a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if
L(M) = L(N) then hMi 2 L, hNi 2 L.

(b) The set L is “non-trivial,” i.e. L 6= ; and L does not contain all Turing machines.

Then L is a undecidable.

31

