

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also
In NP-Hard. Is SAT reducible to HALT? How?

ECE-374-B: Lecture 23 - Decidability Il

Instructor: Nickvash Kani
November 20, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also
In NP-Hard. Is SAT reducible to HALT? How?

K e‘,c,aeib Eozm ‘4

SAT @W‘r

es

w(>

g Wx):—.(r

v”em

| bop, - - -

havdlood e [f:(/
b eveny frth asiggeh

~

-

%\ Z EM> Du%lw

fﬂ/fw-} L. o Re, v

Reductions

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.

Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it
Implies a solution for X. Namely, we can solve Y then we can solve X. We will done
thisbhy X — Y.

Definition _ _ _
oracle ORAC for language L is a function that receives as a word w, returns TRUE

<< W € L.

Lemma
A language X reduces to a language Y, If one can construct a TM decider for X

using a given oracle ORACy forY.

We will denote this fact by X — Y.

Reduction proof technique

UM%

- Y: Problem/language for which we want to prove undecidable.'T/‘

¥:>V

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.

- Proof via reduction. Result in a proof by contradiction.

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- L: language of Y.

- Assume L is decided by TM M.

- Create a decider for known undecidable problem X using M.

- Result in decider for X (i.e., Am).

- Contradiction X is not decidable.

- Thus, L must be not decidable.

Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. If Y is decidable then X

IS decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows

that there is a procedure Tyy (i.e,, decider) for X that uses an oracle for Y as a
subroutine. We replace the calls to this oracle in Ty by calls to T. The resulting
program Ty is a decider and its language is X. Thus X is decidable (or more
formally TM decidable).]

The countrapositive...

Lemma
Let X and Y be two languages, and assume that X — Y. If X is undecidable then

Y Is undecidable.

Halting

The halting problem

Language of all pairs (M, w) such that M halts on w:

AHalt = {</\/|,W> ‘/\/I Isa M and M stops on vv} :

Similar to language already known to be undecidable:

Ay = {(/\/I,W> ‘/\/I Isa TM and M accepts W}.

One way to proving that Halting is undecidable...

Lemma
The language Ay reduces to Agaie. Namely, given an oracle for Agac 0ne can

build a decider (that uses this oracle) for Ay.

Aoy — At—mﬁ"

One way to proving that Halting is undecidable...

Lemma

The language Ay reduces to Axai. Namely, given an oracﬁfo&é\' one can

build a decider (that uses this oracle) for Aqy. M rereks ,‘0 M ocogds
; /) L / v

Decider 4,,,
4M’u
—(M, W) ORAC'y,,,,,
M=
ORAC—‘&A”— ZM Y, D

Zmh V> f

One way to proving that Halting is undecidable...

Proof.
Let ORACH: be the given oracle for Aga;. We build the following decider for Ay.

AnotherDecider—ATM(U\/I, vv>)

res « ORACHa,t(U\/I, w))

// if M does not halt on w then reject.
if res= reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <-Simulate M on w.
return res;.

This procedure always return and as such its a decider for Ay.]

The Halting problem is not decidable

Theorem . .
The language Anat IS not decidable.

Proof.
Assume, for the sake of contradiction, that Agai 1S decidable. As such, there is a

TM, denoted by TMy.:, that is a decider for Agaie. We can use TMpggye as an
Implementation of an oracle for Ay, which would imply that one can build a

decider for A7,. However, A7y 1s undecidable. A contradiction. It must be that
Amare 1S undecidable.

10

The same proof by figure...

Decider 4 . |
i Simulate [~accept—>] |

accept [V (w)

reject
reject > | \

.. I Amare 1S decidable, then Ay is decidable, which is impossible.

—accept>

—(M , w)—>(M, w)—> ORACAHALT

reject—>

1

Emptiness

The language of empty languages

—
-ETM:{<M>|MisaTMandL(M):®}. A = T
- TMerm: Assume we are given this decider for Eqp.

- Need to use TMey to build a decider for A .

- Decider for Ay 1s given M and w and must decide whether M accepts w.

- Restructure question to be about Turing machine having an empty language.

- Somehow make the second input (w) disappear.

12

The language of empty languages

- En = { (M) |/v| isa Thand L(M) =0
- TMerm: Assume we are given this deci

r for Ery.

- Need to use TMgry to build a deciglr for Ay.

ioaps
and must decide Whe?:%a ce@s w.

ut Turing machine having an empty language.

input (w) disappear.’@\ loo €

- Decider for Ay iIs given M and
- Restructure question to be a

- Somehow make the secon

, N
accept accept—>
_<M4—) ORACE,, re';ect > <-
WD oceptt TTEJECT—>
Dee

AT 12

The language of empty languages

- E = { (M) |/v| isa Thand L(M) =0

- TMerm: Assume we are given this decider for Eqp.

- Need to use TMgry to build a decider for Ay.

- Decider for Ay is given M and w and must decide whether M accepts w.

- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.

- |dea: hard-code w into M, creating a TM M,, which runs M on the fixed string

W.
« TM My (x):
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. Else, reject.

12

Embedding strings...

+ Given program (M) and input w...
+ ...can output a program (M,).
- The program M,, simulates M on w. And accepts/rejects accordingly.

- EmbedString((M, w)) input two strings (M) and w, and output a string
encoding (TM) (My,).

13

Embedding strings...

+ Given program (M) and input w...
+ ...can output a program (M,).
- The program M,, simulates M on w. And accepts/rejects accordingly.

- EmbedString((M, w)) input two strings (M) and w, and output a string
encoding (TM) (My,).

- What is L(M)?

13

Embedding strings...

+ Given program (M) and input w...
+ ...can output a program (M,).
- The program M,, simulates M on w. And accepts/rejects accordingly.

- EmbedString((M, w)) input two strings (M) and w, and output a string
encoding (TM) (My,).

- What is L(M)?

- Since My, ignores input x.. language M,, is either ¥* or (.
Itis =* If M accepts w, and it is @ if M does not accept w.

13

Emptiness is undecidable

Theorem . _
The language Eyy is undecidable.

- Assume (for contradiction), that E7y is decidable.
- TMery be its decider.

- Build decider AnotherDecider-A7y for Aqy:
AnotherDecider-Ay ({M, w))

(My) < EmbedString (M, w))
[<— TMET/\/I(<MW>)-
if r = accept then
return reject
// TMem({My)) rejected its input
return accept

14

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-Ayy on the input (M, w).

+ If TMgrm accepts (My), then L(My,) Is empty. This implies that M does not
accept w. As such, AnotherDecider-Ayy rejects its input (M, w).

+ If TMgry accepts (My,), then L(My,) Is not empty. This implies that M accepts w.
So AnotherDecider-Ayy accepts (M, w).

15

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-Ayy on the input (M, w).

+ If TMgrm accepts (My), then L(My,) Is empty. This implies that M does not
accept w. As such, AnotherDecider-Ayy rejects its input (M, w).

+ If TMgry accepts (My,), then L(My,) Is not empty. This implies that M accepts w.
So AnotherDecider-Ayy accepts (M, w).

— AnotherDecider-A7y is decider for Ay.

But A7y Is undecidable...

15

Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-Ayy on the input (M, w).

+ If TMgrm accepts (My), then L(My,) Is empty. This implies that M does not
accept w. As such, AnotherDecider-Ayy rejects its input (M, w).

+ If TMgry accepts (My,), then L(My,) Is not empty. This implies that M accepts w.
So AnotherDecider-Ayy accepts (M, w).

— AnotherDecider-A7y is decider for Ay.

But A7y Is undecidable...

..must be assumption that E7y is decidable is false.

15

Emptiness is undecidable via diagram

Decidery,,,
accept —accept—>
Embed
— —> —(M, \—> A
<M’ 'w> String (M) ORACE,, re';ect > i
—reject—>

AnotherDecider-Ayy never actually runs the code for M,. It hands the code to a
function TMgry which analyzes what the code would do if run it. So it does not
matter that M,, might go into an infinite loop.

16

Equality

Equality is undecidable

EQr = { (M,) ‘/\/I and N are Th's and L(M) = L(N) }

Lemma . .
The language EQry 1S undecidable.

17

Equality is undecidable

EQr = { (M,) ‘/\/I and N are Th's and L(M) = L(N) }

Lemma .
The language EQry Is undecidable.

Let's try something different. We know Eyy Is undecidable. Let's use that:

L. =2 En

17

Equality is undecidable

EQr = { (M,) ‘/\/I and N are Th's and L(M) = L(N) }

Lemma .
The language EQry Is undecidable.

Let's try something different. We know Eyy Is undecidable. Let's use that:

X ¥
Ery = EQmu

17

Equality diagram

Deciderggﬂ\
”|
—(1) ———{
M- |
N

|_accept | ___w=-accept—>

reject
& Ouon gl_)\s—reject—>

LN D= 4»

18

Proof.

Suppose that we had a decider DeciderEqual for EQy. Then we can build a
decider for E7y as follows:

TMR:

1.
2.

Input = (M)

Include the (constant) code for a TM T that rejects all its input. We denote the
string encoding T by (T). -

Run DeciderEqual on (M, T).

If DeciderEqual accepts, then accept.

If DeciderEqual rejects, then reject.

19

DFAs

DFAs are empty?

Fors = {(A) (A is a DFA and L(A) = (Z)}.

What does the above language describe?
oave _emylliy
bsed- MLW Mm)

20

DFAs are empty?

Fors = {(A) (A is a DFA and L(A) = (Z)}.

Is the language above decidable? V@;

W@
(%

F> ple e
C;vdw foew (I B TP k

20

DFAs are empty?

Fors = {(A) (A is a DFA and L(A) = (Z)}.

Is the language above decidable? -’l ”_’% ED'”’/"

Lemma _ _
The language Epry Is decidable:

20

21

Proof.
Unlike in the previous cases, we can directly build a decider (DeciderEmptyDFA)

for Epea

TMR:
1. Input = (A)
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

- Mark any state that has a transition coming into it from any state that is already
marked.

4. If no accept state is marked, then accept.
5. Otherwise, then reject.

22

Equal DFAs

DFAs are equal?

EQpra = {(A, b) ‘A and B are DFAs and L(A) = L(B) }

What does the above language describe?

. ceset”
%COFA’ caeod ¢ il 4

23

DFAs are equal?

EQpra = {(A, b) ‘A and B are DFAs and L(A) = L(B) }

Is the language above decidable?

23

DFAs are equal?

EQpra = {(A, b) ‘A and B are DFAs and L(A) = L(B) }

Is the language above decidable?

Lemma _ _
The language Epr, Is decidable.

23

DFAs are equal?

EQpra = {(A, b) ‘A and B are DFAs and L(A) = L(B) }

Is the language above decidable?

Lemma _ _
The language Epr, Is decidable.

Can we show this using reductions?

23

Equal DFA trick |

Need a way to determine if there any strings in one language and not the other....

L()= LCPD

L(A) L(B)

24

Equal DFA trick |

Need a way to determine if there any strings in one language and not the other....

/>
A
_LuedNLL
-
b
This is known as the symmetric difference. Can create a new DFA (C) which 24

ronracantce tho evvmmaetric Aiffarcnce nf 1 . anAd | -

Equal DFA trick Il

Notice with L(C):

- If L(A) = L(B) then L(C) =)
- If L(A) # L(B) then L(C) is not empty

Good time to use Epgs proof from before....How do we show EQprs 1S decidable
using a reduction?

25

Equal DFA trick Il

Notice with L(C): Umolecidsble
- If L(A) = L(B) then L(C) =0 Z(QCM’-V

- If L(A) # L(B) then L(C) is not empty

N

Good time to use Epgs proof from before....How do we show EQprs 1S decidable
using a reduction?

Want to show EQprn = Epra

—

25

Equal DFA trick Il

Notice with L(C):

- If L(A) = L(B) then L(C) =0

- If L(A) # L(B) then L(C) Is not empty

Good time to use Epgs proof from before....How do we show EQprs 1S decidable
using a reduction?
Want to show EQ — E
Decidergg,,,
_< A>—> accept —accept—>
ORACE,,, o
__) rejec >

—reject—>

25

Equal DFA trick Il

Notice with L(C):

- If L(A) = L(B) then L(C) =0

- If L(A) # L(B) then L(C) Is not empty

Good time to use Epgs proof from before....How do we show EQprs 1S decidable
using a reduction?
Want to show EQ — E
Decidergg,,,
N > accept ——accept—>
(A)— Create ORAC >
(C) Epra reject
—(B)—>—> e, L

—reject—>

25

Equal DFA decider

™ F:

Input = (A, B) where A and B are DFAs

Construct DFA C as described before

Run DeciderEmptyDFA from previous slide on C
If accepts, then accept.

If rejects, then reject.

oW -

26

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is
undecidable.

- proofs all have the same basic pattern.
- Regularity language: Regular;,, = {(/\/l) |/\/l Isa TM and L(M) Is regular}.
- DeciderRegL: Assume TM decider for Regulary,.

- Reduction from halting requires to turn problem about deciding whether a
TM M accepts w (i.e., isw € A7) into a problem about whether some T™M
accepts a regular set of strings.

27

Outline of IsRegular? reductionr

Decider 4,,,

accept ~ ——r—accept—>

Embed
—(M, x)>> RegularM ORACRegr;y

String reject

> .
L reject—>

Mﬁ Pesrm

28

Proof continued...

- Given M and w, consider the following TM MY,
™ MY
(i) Input = x
(i) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
() If the simulation rejects, then reject.

not executing M/, !
. feed string (M/,) into DeciderReglL
- EmbedRegularString: program with input (M) and w, and outputs (M),
encoding the program M/,.
- If M accepts w, then any x accepted by M{,: L(M},) = L*.
+ If M does not accept w, then L(M},) = {a"b" | n > 0}.
29

Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M/, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-Azy ({M, w))

(M7} < EmbedRegularString ((M, w))
r < DeciderRegL({M],)).

return r

- If DeciderReglL accepts = L(M/,) regular (its £*)

30

Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M/, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-Azy ({M, w))

(M7} < EmbedRegularString ((M, w))
r < DeciderRegL({M],)).

return r

- If DeciderRegL accepts = L(M!,)) regular (its ¥*) = M accepts w. So
AnotherDecider-Ayy should accept (M, w).

30

Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M/, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.
- A decider for A7y as follows.
AnotherDecider-Azy ({M, w))
(M7} < EmbedRegularString ((M, w))
r < DeciderRegL({M],)).
return r
- If DeciderRegL accepts = L(M!,)) regular (its ¥*) = M accepts w. So
AnotherDecider-Ayy should accept (M, w).
- If DeciderReglL rejects = L(M/,) is not regular = L(M!,) = a"b"

30

Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M/, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-Azy ({M, w))

(M7} < EmbedRegularString ((M, w))

r < DeciderRegL({M],)).

return r

- If DeciderRegL accepts = L(M!,)) regular (its ¥*) = M accepts w. So
AnotherDecider-Ayy should accept (M, w).

- If DeciderReglL rejects = L(M/,) is not regular = L(M!,)) =a"b" =— M

does not accept w = AnotherDecider-Ayy should reject (M, w).

30

The above proofs were somewhat repetitious...

.they imply a more general result.

Theorem (Rice’s Theorem.) | . | |

Suppose that L is a language uring machines; tyat is, each word in L encodes
a TM. Furthermore, assume tha ' 0 properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if

L(M) = L(N) then (M) € L < (N) € L.

(b) The set L is “non-trivial,” i.e. L # 0 and L does not contain all Turing machines.

Then L is a undecidable.

31

