We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?

# ECE-374-B: Lecture 24 - Decidability II

Instructor: Nickvash Kani April 20, 2023

University of Illinois at Urbana-Champaign

We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?

Reductions

Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by  $X \implies Y$ .

Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by  $X \implies Y$ .

**Definition** <u>oracle</u> ORAC for language *L* is a function that receives as a word *w*, returns TRUE  $\iff w \in L$ . Meta definition: Problem X <u>reduces</u> to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by  $X \implies Y$ .

**Definition** <u>oracle</u> ORAC for language *L* is a function that receives as a word *w*, returns TRUE  $\iff w \in L$ .

#### Lemma

A language X <u>reduces</u> to a language Y, if one can construct a TM decider for X using a given oracle ORAC<sub>Y</sub> for Y.

We will denote this fact by  $X \implies Y$ .

• Y: Problem/language for which we want to prove undecidable.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume *L* is decided by TM *M*.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem **X** using *M*.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for **X** (i.e., A<sub>TM</sub>).

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for X (i.e.,  $A_{TM}$ ).
- Contradiction **X** is not decidable.

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of **Y**.
- Assume *L* is decided by TM *M*.
- Create a decider for known undecidable problem **X** using *M*.
- Result in decider for X (i.e.,  $A_{TM}$ ).
- Contradiction **X** is not decidable.
- Thus, *L* must be not decidable.

#### Lemma

Let X and Y be two languages, and assume that  $X \implies Y$ . If Y is decidable then X is decidable.

#### Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure  $T_{X|Y}$  (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in  $T_{X|Y}$  by calls to T. The resulting program  $T_X$  is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

#### Lemma

Let X and Y be two languages, and assume that  $X \implies Y$ . If X is undecidable then Y is undecidable.

# Halting

### The halting problem

Language of all pairs  $\langle M, w \rangle$  such that M <u>halts</u> on w:

$$A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \mathsf{TM} \text{ and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{\mathsf{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \mathsf{TM} \text{ and } M \text{ accepts } w \right\}.$$

#### Lemma

The language  $A_{TM}$  reduces to  $A_{Halt}$ . Namely, given an oracle for  $A_{Halt}$  one can build a decider (that uses this oracle) for  $A_{TM}$ .

## One way to proving that Halting is undecidable...

#### Lemma

The language  $A_{TM}$  reduces to  $A_{Halt}$ . Namely, given an oracle for  $A_{Halt}$  one can build a decider (that uses this oracle) for  $A_{TM}$ .



#### Proof.

Let  $ORAC_{Halt}$  be the given oracle for  $A_{Halt}$ . We build the following decider for  $A_{TM}$ .

 $\begin{array}{l} \text{AnotherDecider-} A_{TM} \Bigl( \langle M, w \rangle \Bigr) \\ res \leftarrow \mathsf{ORAC}_{Halt} \Bigl( \langle M, w \rangle \Bigr) \\ // \text{ if } M \text{ does not halt on } w \text{ then reject.} \\ \text{ if } res = \text{ reject then} \\ & \text{ halt and reject.} \\ // M \text{ halts on } w \text{ since } res = \text{accept.} \\ // \text{ Simulating } M \text{ on } w \text{ terminates in finite time.} \\ res_2 \leftarrow \text{Simulate } M \text{ on } w. \\ \text{ return } res_2. \end{array}$ 

This procedure always return and as such its a decider for  $\mathbf{A}_{\text{TM}}.$ 

#### Theorem

The language  $A_{\rm Halt}$  is not decidable.

#### Proof.

Assume, for the sake of contradiction, that  $A_{\text{Halt}}$  is decidable. As such, there is a TM, denoted by  $TM_{\text{Halt}}$ , that is a decider for  $A_{\text{Halt}}$ . We can use  $TM_{\text{Halt}}$  as an implementation of an oracle for  $A_{\text{Halt}}$ , which would imply that one can build a decider for  $A_{\text{TM}}$ . However,  $A_{\text{TM}}$  is undecidable. A contradiction. It must be that  $A_{\text{Halt}}$  is undecidable.

#### The same proof by figure...



... if  $A_{\rm Halt}$  is decidable, then  $A_{\text{TM}}$  is decidable, which is impossible.

Emptiness

#### The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- $TM_{ETM}$ : Assume we are given this decider for  $E_{TM}$ .
- Need to use  $TM_{ETM}$  to build a decider for  $A_{TM}$ .
- Decider for  $\mathbf{A}_{\text{TM}}$  is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.

#### The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- $TM_{ETM}$ : Assume we are given this decider for  $E_{TM}$ .
- Need to use  $TM_{ETM}$  to build a decider for  $A_{TM}$ .
- Decider for  $\mathbf{A}_{\text{TM}}$  is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.



## The language of empty languages

- $E_{\mathsf{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- $TM_{ETM}$ : Assume we are given this decider for  $E_{TM}$ .
- Need to use  $\textit{TM}_{\textit{ETM}}$  to build a decider for  $A_{\textit{TM}}.$
- Decider for  $A_{\text{TM}}$  is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (w) disappear.
- Idea: hard-code *w* into *M*, creating a TM *M<sub>w</sub>* which runs *M* on the fixed string *w*.
- TM  $M_w(x)$ :
  - 1. Input = x (which will be ignored)
  - 2. Simulate *M* on *w*.
  - 3. If the simulation accepts, accept. Else, reject.

# Embedding strings...

- Given program  $\langle M \rangle$  and input w...
- ...can output a program  $\langle M_W \rangle$ .
- The program *M<sub>w</sub>* simulates *M* on *w*. And accepts/rejects accordingly.
- EmbedString((M, w)) input two strings (M) and w, and output a string encoding (TM) (M<sub>w</sub>).

# Embedding strings...

- Given program  $\langle M \rangle$  and input w...
- ...can output a program  $\langle M_W \rangle$ .
- The program *M<sub>w</sub>* simulates *M* on *w*. And accepts/rejects accordingly.
- EmbedString((M, w)) input two strings (M) and w, and output a string encoding (TM) (M<sub>w</sub>).
- What is  $L(M_w)$ ?

# Embedding strings...

- Given program  $\langle M \rangle$  and input w...
- ...can output a program  $\langle M_W \rangle$ .
- The program *M<sub>w</sub>* simulates *M* on *w*. And accepts/rejects accordingly.
- EmbedString((M, w)) input two strings (M) and w, and output a string encoding (TM) (M<sub>w</sub>).
- What is  $L(M_w)$ ?
- Since M<sub>w</sub> ignores input x.. language M<sub>w</sub> is either Σ\* or Ø.
   It is Σ\* if M accepts w, and it is Ø if M does not accept w.

### Emptiness is undecidable

**Theorem** The language E<sub>TM</sub> is undecidable.

- Assume (for contradiction), that  $E_{TM}$  is decidable.
- *TM<sub>ETM</sub>* be its decider.
- Build decider AnotherDecider- $A_{TM}$  for  $A_{TM}$ :

```
AnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M_w \rangle \leftarrow EmbedString(\langle M, w \rangle)

r \leftarrow TM_{ETM}(\langle M_w \rangle).

if r = accept then

return reject

// TM_{ETM}(\langle M_w \rangle) rejected its input

return accept
```

Consider the possible behavior of **AnotherDecider**- $A_{TM}$  on the input  $\langle M, w \rangle$ .

- If *TM<sub>ETM</sub>* accepts (*M<sub>w</sub>*), then *L*(*M<sub>w</sub>*) is empty. This implies that *M* does not accept *w*. As such, **AnotherDecider**-A<sub>TM</sub> rejects its input (*M*, *w*).
- If *TM<sub>ETM</sub>* accepts ⟨*M<sub>w</sub>*⟩, then *L*(*M<sub>w</sub>*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A<sub>TM</sub> accepts ⟨*M*, *w*⟩.

Consider the possible behavior of **AnotherDecider**- $A_{TM}$  on the input  $\langle M, w \rangle$ .

- If *TM<sub>ETM</sub>* accepts (*M<sub>w</sub>*), then *L*(*M<sub>w</sub>*) is empty. This implies that *M* does not accept *w*. As such, **AnotherDecider**-A<sub>TM</sub> rejects its input (*M*, *w*).
- If *TM<sub>ETM</sub>* accepts ⟨*M<sub>w</sub>*⟩, then *L*(*M<sub>w</sub>*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A<sub>TM</sub> accepts ⟨*M*, *w*⟩.
- $\implies$  AnotherDecider-A\_{TM} is decider for  $\mathrm{A}_{TM}.$

But  $A_{\ensuremath{\text{TM}}}$  is undecidable...

Consider the possible behavior of **AnotherDecider**- $A_{TM}$  on the input  $\langle M, w \rangle$ .

- If *TM<sub>ETM</sub>* accepts (*M<sub>w</sub>*), then *L*(*M<sub>w</sub>*) is empty. This implies that *M* does not accept *w*. As such, **AnotherDecider**-A<sub>TM</sub> rejects its input (*M*, *w*).
- If *TM<sub>ETM</sub>* accepts ⟨*M<sub>w</sub>*⟩, then *L*(*M<sub>w</sub>*) is not empty. This implies that *M* accepts *w*. So AnotherDecider-A<sub>TM</sub> accepts ⟨*M*, *w*⟩.
- $\implies$  AnotherDecider- $\mathrm{A}_{\mathsf{TM}}$  is decider for  $\mathrm{A}_{\mathsf{TM}}.$

But  $A_{\ensuremath{\text{TM}}}$  is undecidable...

...must be assumption that  $E_{TM}$  is decidable is false.

### Emptiness is undecidable via diagram



**AnotherDecider**- $A_{TM}$  never actually runs the code for  $M_w$ . It hands the code to a function  $TM_{ETM}$  which analyzes what the code would do if run it. So it does not matter that  $M_w$  might go into an infinite loop.

# Equality

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}.$$

**Lemma** The language EQ<sub>TM</sub> is undecidable.

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}.$$

#### **Lemma** The language EQ<sub>TM</sub> is undecidable.

Let's try something different. We know *E*<sub>TM</sub> is undecidable. Let's use that:

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}.$$

#### **Lemma** The language EQ<sub>TM</sub> is undecidable.

Let's try something different. We know *E*<sub>TM</sub> is undecidable. Let's use that:

$$E_{TM} \implies EQ_{TM}$$

### Equality diagram



#### Proof.

Suppose that we had a decider **DeciderEqual** for  $EQ_{TM}$ . Then we can build a decider for  $E_{TM}$  as follows:

TM R:

- 1. Input =  $\langle M \rangle$
- Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by (T).
- 3. Run **DeciderEqual** on  $\langle M, T \rangle$ .
- 4. If DeciderEqual accepts, then accept.
- 5. If **DeciderEqual** rejects, then reject.

# DFAs

$$E_{DFA} = \left\{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \right\}.$$

What does the above language describe?

$$E_{DFA} = \left\{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \right\}.$$

$$E_{DFA} = \left\{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \right\}.$$

**Lemma** The language E<sub>DFA</sub> is decidable:

#### Scratch

#### Proof.

Unlike in the previous cases, we can directly build a decider (**DeciderEmptyDFA**) for *E*<sub>*DFA*</sub>

TM R:

- 1. Input =  $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:
  - Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, then accept.
- 5. Otherwise, then reject.

Equal DFAs

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

What does the above language describe?

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

**Lemma** The language E<sub>DFA</sub> is decidable.

$$EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

#### **Lemma** The language E<sub>DFA</sub> is decidable.

Can we show this using reductions?

Need a way to determine if there any strings in one language and not the other....



Need a way to determine if there any strings in one language and not the other....



This is known as the symmetric difference. Can create a new DFA (C) which represents the symmetric difference of  $L_A$  and  $L_B$ .

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$
(1) <sup>24</sup>

- If L(A) = L(B) then  $L(C) = \emptyset$
- If  $L(A) \neq L(B)$  then L(C) is not empty

Good time to use  $E_{DFA}$  proof from before.....How do we show  $EQ_{DFA}$  is decidable using a reduction?

- If L(A) = L(B) then  $L(C) = \emptyset$
- If  $L(A) \neq L(B)$  then L(C) is not empty

Good time to use  $E_{DFA}$  proof from before.....How do we show  $EQ_{DFA}$  is decidable using a reduction?

Want to show  $EQ_{DFA} \implies E_{DFA}$ 

- If L(A) = L(B) then  $L(C) = \emptyset$
- If  $L(A) \neq L(B)$  then L(C) is not empty

Good time to use  $E_{DFA}$  proof from before.....How do we show  $EQ_{DFA}$  is decidable using a reduction?



- If L(A) = L(B) then  $L(C) = \emptyset$
- If  $L(A) \neq L(B)$  then L(C) is not empty

Good time to use  $E_{DFA}$  proof from before.....How do we show  $EQ_{DFA}$  is decidable using a reduction?



### Equal DFA decider

#### **TM** *F*:

- 1. Input =  $\langle A, B \rangle$  where A and B are DFAs
- 2. Construct DFA C as described before
- 3. Run **DeciderEmptyDFA** from previous slide on C
- 4. If accepts, then accept.
- 5. If rejects, then reject.

# Regularity

#### Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.
- Regularity language: Regular<sub>TM</sub> =  $\left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular} \right\}$ .
- DeciderRegL: Assume TM decider for Regular<sub>TM</sub>.
- Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is w ∈ A<sub>TM</sub>) into a problem about whether some TM accepts a regular set of strings.

#### Outline of IsRegular? reductionr



- Given M and w, consider the following TM M'<sub>w</sub>:
   TM M'<sub>w</sub>:
  - (i) Input = x
  - (ii) If x has the form  $a^n b^n$ , halt and accept.
  - (iii) Otherwise, simulate M on w.
  - (iv) If the simulation accepts, then accept.
  - (v) If the simulation rejects, then reject.
- <u>**not**</u> executing  $M'_w!$
- + feed string  $\langle M_w' \rangle$  into <code>DeciderRegL</code>
- **EmbedRegularString**: program with input  $\langle M \rangle$  and w, and outputs  $\langle M'_w \rangle$ , encoding the program  $M'_w$ .
- If M accepts w, then any x accepted by  $M'_{W}$ :  $L(M'_{W}) = \Sigma^*$ .
- If *M* does not accept *w*, then  $L(M'_w) = \{a^n b^n \mid n \ge 0\}.$

- **a**<sup>n</sup>**b**<sup>n</sup> is not regular...
- Use **DeciderRegL** on  $M'_w$  to distinguish these two cases.
- Note cooked  $M'_w$  to the decider at hand.
- A decider for  $A_{TM}$  as follows.

AnotherDecider- $A_{TM}(\langle M, w \rangle)$  $\langle M'_w \rangle \leftarrow EmbedRegularString(\langle M, w \rangle)$  $r \leftarrow DeciderRegL(\langle M'_w \rangle).$ return r

• If **DeciderRegL** accepts  $\implies L(M'_w)$  regular (its  $\Sigma^*$ )

- **a**<sup>n</sup>**b**<sup>n</sup> is not regular...
- Use **DeciderRegL** on  $M'_{w}$  to distinguish these two cases.
- Note cooked  $M'_w$  to the decider at hand.
- A decider for  $A_{TM}$  as follows.

AnotherDecider- $A_{TM}(\langle M, w \rangle)$  $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$  $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).$ return r

• If **DeciderRegL** accepts  $\implies L(M'_w)$  regular (its  $\Sigma^*$ )  $\implies M$  accepts w. So **AnotherDecider**-A<sub>TM</sub> should accept  $\langle M, w \rangle$ .

- **a**<sup>n</sup>**b**<sup>n</sup> is not regular...
- Use **DeciderRegL** on  $M'_{w}$  to distinguish these two cases.
- Note cooked  $M'_w$  to the decider at hand.
- A decider for  $A_{TM}$  as follows.

AnotherDecider- $A_{TM}(\langle M, w \rangle)$  $\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$  $r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).$ return r

- If **DeciderRegL** accepts  $\implies L(M'_w)$  regular (its  $\Sigma^*$ )  $\implies M$  accepts w. So **AnotherDecider**-A<sub>TM</sub> should accept  $\langle M, w \rangle$ .
- If **DeciderRegL** rejects  $\implies L(M'_w)$  is not regular  $\implies$  $L(M'_w) = a^n b^n$

- **a**<sup>n</sup>**b**<sup>n</sup> is not regular...
- Use **DeciderRegL** on  $M'_{w}$  to distinguish these two cases.
- Note cooked  $M'_w$  to the decider at hand.
- A decider for  $A_{TM}$  as follows.

AnotherDecider- $A_{TM}(\langle M, w \rangle)$  $\langle M'_W \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)$  $r \leftarrow \text{DeciderRegL}(\langle M'_W \rangle).$ return r

- If **DeciderRegL** accepts  $\implies L(M'_w)$  regular (its  $\Sigma^*$ )  $\implies M$  accepts w. So **AnotherDecider**-A<sub>TM</sub> should accept  $\langle M, w \rangle$ .
- If **DeciderRegL** rejects  $\implies L(M'_w)$  is not regular  $\implies$  $L(M'_w) = a^n b^n \implies M$  does not accept  $w \implies$ **AnotherDecider-A**<sub>TM</sub> should reject  $\langle M, w \rangle$ .

The above proofs were somewhat repetitious...

...they imply a more general result.

**Theorem (Rice's Theorem.)** Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then  $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$ .
- (b) The set L is "non-trivial," i.e. L ≠ Ø and L does not contain all Turing machines.

Then L is a undecidable.