We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?
We know that SAT is NP-complete which means that it is in NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT? How?
Reductions
Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \iff Y$.
Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \Longrightarrow Y$.

Definition

Oracle ORAC for language L is a function that receives as a word w, returns $\text{TRUE} \iff w \in L$.
Meta definition: Problem X reduces to problem Y, if given a solution to Y, then it implies a solution for X. Namely, we can solve Y then we can solve X. We will done this by $X \implies Y$.

Definition
oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Lemma
A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle ORAC$_Y$ for Y.

We will denote this fact by $X \implies Y$.

• **Y**: Problem/language for which we want to prove undecidable.
• \textbf{Y}: Problem/language for which we want to prove undecidable.

• Proof via reduction. Result in a proof by contradiction.
• **Y**: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• **L**: language of **Y**.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by **TM M**.
• **Y**: Problem/language for which we want to prove undecidable.
• Proof via reduction. Result in a proof by contradiction.
• **L**: language of **Y**.
• Assume **L** is decided by **TM M**.
• Create a decider for known undecidable problem **X** using **M**.
Reduction proof technique

- Y: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- L: language of Y.
- Assume L is decided by $TM\ M$.
- Create a decider for known undecidable problem X using M.
- Result in decider for X (i.e., A_{TM}).
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by **TM M**.
- Create a decider for known undecidable problem **X** using **M**.
- Result in decider for **X** (i.e., **A_{TM}**).
- Contradiction **X** is not decidable.
Reduction proof technique

- **Y**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **L**: language of **Y**.
- Assume **L** is decided by **TM M**.
- Create a decider for known undecidable problem **X** using **M**.
- Result in decider for **X** (i.e., **A_{TM}**).
- Contradiction **X** is not decidable.
- Thus, **L** must be not decidable.
Lemma

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).
Lemma
Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.
Halting
The halting problem

Language of all pairs \(\langle M, w \rangle \) such that \(M \) halts on \(w \):

\[
A_{\text{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \text{TM} \text{ and } M \text{ stops on } w \right\}.
\]

Similar to language already known to be undecidable:

\[
A_{\text{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \text{TM} \text{ and } M \text{ accepts } w \right\}.
\]
One way to proving that Halting is undecidable...

Lemma

The language A_{TM} reduces to A_{Halt}. Namely, given an oracle for A_{Halt} one can build a decider (that uses this oracle) for A_{TM}.
One way to proving that Halting is undecidable...

Lemma
The language \(A_{TM} \) reduces to \(A_{Halt} \). Namely, given an oracle for \(A_{Halt} \) one can build a decider (that uses this oracle) for \(A_{TM} \).
Proof.
Let \(\text{ORAC}_{\text{Halt}} \) be the given oracle for \(A_{\text{Halt}} \). We build the following decider for \(A_{\text{TM}} \).

\[
\text{AnotherDecider}_{A_{\text{TM}}} (\langle M, w \rangle) \\
res \leftarrow \text{ORAC}_{\text{Halt}} (\langle M, w \rangle) \\
// \text{ if } M \text{ does not halt on } w \text{ then reject.} \\
\text{if } res = \text{ reject then} \\
\quad \text{halt and reject.} \\
// M \text{ halts on } w \text{ since } res = \text{accept.} \\
// \text{ Simulating } M \text{ on } w \text{ terminates in finite time.} \\
res_2 \leftarrow \text{Simulate } M \text{ on } w. \\
\text{return } res_2.
\]

This procedure always return and as such its a decider for \(A_{\text{TM}} \).
Theorem

The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt}, that is a decider for A_{Halt}. We can use TM_{Halt} as an implementation of an oracle for A_{Halt}, which would imply that one can build a decider for A_{TM}. However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable. □
The same proof by figure...

... if A_{Halt} is decidable, then A_{TM} is decidable, which is impossible.
Emptiness
The language of empty languages

- \(E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\} \).

- \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).

- Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).

- Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).

- Restructure question to be about Turing machine having an empty language.

- Somehow make the second input (\(w \)) disappear.
The language of empty languages

- \(E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).
- \(TM_{ETM} \): Assume we are given this decider for \(E_{TM} \).
- Need to use \(TM_{ETM} \) to build a decider for \(A_{TM} \).
- Decider for \(A_{TM} \) is given \(M \) and \(w \) and must decide whether \(M \) accepts \(w \).
- Restructure question to be about Turing machine having an empty language.
- Somehow make the second input (\(w \)) disappear.
The language of empty languages

\[E_{TM} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\} \]

\[TM_{ETM} \]: Assume we are given this decider for \(E_{TM} \).

\[\text{Need to use } TM_{ETM} \text{ to build a decider for } A_{TM}. \]

\[\text{Decider for } A_{TM} \text{ is given } M \text{ and } w \text{ and must decide whether } M \text{ accepts } w. \]

\[\text{Restructure question to be about Turing machine having an empty language.} \]

\[\text{Somehow make the second input (} w \text{) disappear.} \]

\[\text{Idea: hard-code } w \text{ into } M, \text{ creating a } TM \ M_w \text{ which runs } M \text{ on the fixed string } w. \]

\[TM \ M_w(x): \]
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. Else, reject.
• Given program $\langle M \rangle$ and input w...
• ...can output a program $\langle M_w \rangle$.
• The program M_w simulates M on w. And accepts/rejects accordingly.
• $\text{EmbedString}(\langle M, w \rangle)$ input two strings $\langle M \rangle$ and w, and output a string encoding $(\text{TM}) \langle M_w \rangle$.
• Given program $\langle M \rangle$ and input w...
• ...can output a program $\langle M_w \rangle$.
• The program M_w simulates M on w. And accepts/rejects accordingly.
• EmbedString($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding $(TM) \langle M_w \rangle$.
• What is $L(M_w)$?
• Given program $\langle M \rangle$ and input w...
• ...can output a program $\langle M_w \rangle$.
• The program M_w simulates M on w. And accepts/rejects accordingly.
• **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding (TM) $\langle M_w \rangle$.
• What is $L(M_w)$?
• Since M_w ignores input x, language M_w is either Σ^* or \emptyset. It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.
Theorem
The language E_{TM} is undecidable.

• Assume (for contradiction), that E_{TM} is decidable.
• TM_{ETM} be its decider.
• Build decider $AnotherDecider-A_{TM}$ for A_{TM}:

$$\text{AnotherDecider-}A_{TM}(\langle M, w \rangle)$$

$$\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle)$$

$$r \leftarrow TM_{ETM}(\langle M_w \rangle).$$

if $r = \text{accept}$ then
 return reject

// $TM_{ETM}(\langle M_w \rangle)$ rejected its input
return accept
Consider the possible behavior of AnotherDecider-A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So AnotherDecider-A_{TM} accepts $\langle M, w \rangle$.

Emptiness is undecidable...
Consider the possible behavior of AnotherDecider-A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, AnotherDecider-A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So AnotherDecider-A_{TM} accepts $\langle M, w \rangle$.

\implies AnotherDecider-A_{TM} is decider for A_{TM}.

But A_{TM} is undecidable...
Consider the possible behavior of \textit{AnotherDecider-} \(A_{TM} \) on the input \(\langle M, w \rangle \).

\begin{itemize}
 \item If \(TM_{ETM} \) accepts \(\langle M_w \rangle \), then \(L(M_w) \) is empty. This implies that \(M \) does not accept \(w \). As such, \textit{AnotherDecider-} \(A_{TM} \) rejects its input \(\langle M, w \rangle \).
 \item If \(TM_{ETM} \) accepts \(\langle M_w \rangle \), then \(L(M_w) \) is not empty. This implies that \(M \) accepts \(w \). So \textit{AnotherDecider-} \(A_{TM} \) accepts \(\langle M, w \rangle \).
\end{itemize}

\(\implies \) \textit{AnotherDecider-} \(A_{TM} \) is decider for \(A_{TM} \).

But \(A_{TM} \) is undecidable...

...must be assumption that \(E_{TM} \) is decidable is false.
AnotherDecider-A_{TM} never actually runs the code for M_w. It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.
Equality
Equality is undecidable

\[EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM\text{'s and } L(M) = L(N) \right\}. \]

Lemma
The language \(EQ_{TM} \) is undecidable.
Equality is undecidable

\[EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are } TM\text{'s and } L(M) = L(N) \right\} . \]

Lemma

The language \(EQ_{TM} \) is undecidable.

Let’s try something different. We know \(E_{TM} \) is undecidable. Let’s use that:
Equality is undecidable

\[EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}. \]

Lemma

The language \(EQ_{TM} \) is undecidable.

Let's try something different. We know \(E_{TM} \) is undecidable. Let's use that:

\[E_{TM} \implies EQ_{TM} \quad \]
Proof.
Suppose that we had a decider \texttt{DeciderEqual} for \textit{EQ}_{TM}. Then we can build a decider for \textit{E}_{TM} as follows:

\textbf{TM \textit{R}:}

1. Input = $\langle M \rangle$
2. Include the (constant) code for a \textit{TM} \textit{T} that rejects all its input. We denote the string encoding \textit{T} by $\langle T \rangle$.
3. Run \texttt{DeciderEqual} on $\langle M, T \rangle$.
4. If \texttt{DeciderEqual} accepts, then accept.
5. If \texttt{DeciderEqual} rejects, then reject.
DFAs
DFAs are empty?

\[E_{\text{DFA}} = \left\{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \right\}. \]

What does the above language describe?
$E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$.

Is the language above decidable?
DFAs are empty?

$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$.

Is the language above decidable?

Lemma

The language E_{DFA} is decidable:
Proof.
Unlike in the previous cases, we can directly build a decider (\text{DeciderEmptyDFA}) for \(E_{DFA} \)

\textbf{TM \(R \):}
1. Input = \(\langle A \rangle \)
2. Mark start state of \(A \) as visited.
3. Repeat until no new states get marked:
 • Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, then accept.
5. Otherwise, then reject.
Equal DFAs
DFAs are equal?

\[EQ_{DFA} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} . \]

What does the above language describe?
DFAs are equal?

\[EQ_{\text{DFA}} = \{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \].

Is the language above decidable?
DFAs are equal?

\[EQ_{\text{DFA}} = \left\{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \right\} . \]

Is the language above decidable?

Lemma

The language \(E_{\text{DFA}} \) is decidable.
DFAs are equal?

\[EQ_{DFA} = \left\{ \langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \right\} . \]

Is the language above decidable?

Lemma

The language \(E_{DFA} \) is decidable.

Can we show this using reductions?
Equal DFA trick I

Need a way to determine if there any strings in one language and not the other....
Need a way to determine if there any strings in one language and not the other....

This is known as the symmetric difference. Can create a new DFA \((C) \) which represents the symmetric difference of \(L_A \) and \(L_B \).

\[
L(C) = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right)
\]
Notice with $L(C)$:

- If $L(A) = L(B)$ then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then $L(C)$ is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?
Equal DFA trick II

Notice with $L(C)$:

- If $L(A) = L(B)$ then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then $L(C)$ is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$
Notice with $L(C)$:

- If $L(A) = L(B)$ then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then $L(C)$ is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$
Notice with $L(C)$:

- If $L(A) = L(B)$ then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then $L(C)$ is not empty

Good time to use E_{DFA} proof from before.....How do we show EQ_{DFA} is decidable using a reduction?

Want to show $EQ_{DFA} \implies E_{DFA}$
Equal DFA decider

TM \(F \):

1. Input = \(\langle A, B \rangle \) where \(A \) and \(B \) are DFAs
2. Construct DFA \(C \) as described before
3. Run \texttt{DeciderEmptyDFA} from previous slide on \(C \)
4. If accepts, then accept.
5. If rejects, then reject.
Regularity
Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- Proofs all have the same basic pattern.
- Regularity language:
 \[
 \text{Regular}_{TM} = \left\{ \langle M \rangle \middle| M \text{ is a TM and } L(M) \text{ is regular} \right\}.
 \]
- **DeciderRegL**: Assume TM decider for Regular\(_{TM}\).
- Reduction from halting requires to turn problem about deciding whether a TM \(M\) accepts \(w\) (i.e., is \(w \in A_{TM}\)) into a problem about whether some TM accepts a regular set of strings.
Outline of IsRegular? reduction

Diagram:

- $\langle M, x \rangle$
 - $\text{Embed Regular String}$
 - $\langle M_x \rangle$
 - Decider_{ATM}

- ORAC_{RegLTM}
 - accept
 - reject

- accept
- reject
• Given M and w, consider the following TM M'_w:

$\text{TM } M'_w$:
(i) Input = x
(ii) If x has the form $a^n b^n$, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

- not executing M'_w!
- feed string $\langle M'_w \rangle$ into DeciderRegL
- $\textbf{EmbedRegularString}$: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w.
- If M accepts w, then any x accepted by M'_w: $L(M'_w) = \Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^n b^n \mid n \geq 0\}$.
• $a^n b^n$ is not regular...
• Use DeciderRegL on M'_w to distinguish these two cases.
• Note - cooked M'_w to the decider at hand.
• A decider for A_{TM} as follows.

```
AnotherDecider-\text{A}_{\text{TM}}(\langle M, w \rangle)
\begin{align*}
\langle M'_w \rangle & \leftarrow \text{EmbedRegularString}(\langle M, w \rangle) \\
               & \quad r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).
\end{align*}
```

return r

• If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*)
Proof continued...

- \(a^n b^n\) is not regular...
- Use \textbf{DeciderRegL} on \(M'_w\) to distinguish these two cases.
- Note - cooked \(M'_w\) to the decider at hand.
- A decider for \(A_{TM}\) as follows.

\[
\text{AnotherDecider-}A_{TM}(\langle M, w \rangle) \\
\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle) \\
r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle). \\
\text{return } r
\]

- If \textbf{DeciderRegL} accepts \(\implies L(M'_w)\) regular (its \(\Sigma^*\)) \(\implies M\) accepts \(w\). So \textbf{AnotherDecider-}A_{TM} should accept \(\langle M, w \rangle\).
Proof continued...

- $a^n b^n$ is not regular...
- Use DeciderRegL on M'_{w} to distinguish these two cases.
- Note - cooked M'_{w} to the decider at hand.
- A decider for A_{TM} as follows.

```plaintext
AnotherDecider-A_{TM}(\langle M, w \rangle)
\langle M'_{w} \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)
r \leftarrow \text{DeciderRegL}(\langle M'_{w} \rangle).
return r
```

- If DeciderRegL accepts $\implies L(M'_{w})$ regular (its Σ^*) $\implies M$ accepts w. So $\text{AnotherDecider-A}_{TM}$ should accept $\langle M, w \rangle$.
- If DeciderRegL rejects $\implies L(M'_{w})$ is not regular $\implies L(M'_{w}) = a^n b^n$
Proof continued...

- $a^n b^n$ is not regular...
- Use DeciderRegL on M'_w to distinguish these two cases.
- Note - cooked M'_w to the decider at hand.
- A decider for A_{TM} as follows.

```
AnotherDecider-ATM(⟨M, w⟩)
⟨M'⟩ ← EmbedRegularString(⟨M, w⟩)
r ← DeciderRegL(⟨M'_w⟩).
return r
```

- If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*) $\implies M$ accepts w. So AnotherDecider-ATM should accept $⟨M, w⟩$.
- If DeciderRegL rejects $\implies L(M'_w)$ is not regular $\implies L(M'_w) = a^n b^n$ $\implies M$ does not accept w \implies AnotherDecider-ATM should reject $⟨M, w⟩$.
The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $\langle M \rangle \in L \iff \langle N \rangle \in L$.

(b) The set L is “non-trivial,” i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is undecidable.