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Pre-lecture brain teaser

We know that SAT is NP-complete which means that it is in
NP-Hard. HALT is also in NP-Hard. Is SAT reducible to HALT?
How?
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Reductions



Reduction

Meta definition: Problem X reduces to problem Y, if given a
solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done this by X =⇒ Y.

Definition
oracle ORAC for language L is a function that receives as a
word w, returns TRUE ⇐⇒ w ∈ L.

Lemma
A language X reduces to a language Y, if one can construct a
TM decider for X using a given oracle ORACY for Y.

We will denote this fact by X =⇒ Y.
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Reduction proof technique

• Y: Problem/language for which we want to prove
undecidable.

• Proof via reduction. Result in a proof by contradiction.
• L: language of Y.
• Assume L is decided by TM M.
• Create a decider for known undecidable problem X using
M.

• Result in decider for X (i.e., ATM).
• Contradiction X is not decidable.
• Thus, L must be not decidable.
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Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X =⇒ Y. If Y
is decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X
reduces to Y , it follows that there is a procedure TX|Y (i.e.,
decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in TX|Y by calls to T. The
resulting program TX is a decider and its language is X. Thus X
is decidable (or more formally TM decidable).
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The countrapositive...

Lemma
Let X and Y be two languages, and assume that X =⇒ Y. If X
is undecidable then Y is undecidable.
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Halting



The halting problem

Language of all pairs 〈M,w〉 such that M halts on w:

AHalt =
{
〈M,w〉

∣∣∣M is a TM and M stops on w
}
.

Similar to language already known to be undecidable:

ATM =
{
〈M,w〉

∣∣∣M is a TM and M accepts w
}
.
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One way to proving that Halting is undecidable...

Lemma
The language ATM reduces to AHalt. Namely, given an oracle for
AHalt one can build a decider (that uses this oracle) for ATM.

accept

reject

accept

reject
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One way to proving that Halting is undecidable...

Proof.
Let ORACHalt be the given oracle for AHalt. We build the
following decider for ATM.
AnotherDecider-ATM

(
〈M,w〉

)
res← ORACHalt

(
〈M,w〉

)
// if M does not halt on w then reject.
if res = reject then

halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res2 ←Simulate M on w.
return res2.

This procedure always return and as such its a decider for
ATM.
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The Halting problem is not decidable

Theorem
The language AHalt is not decidable.

Proof.
Assume, for the sake of contradiction, that AHalt is decidable.
As such, there is a TM, denoted by TMHalt, that is a decider for
AHalt. We can use TMHalt as an implementation of an oracle for
AHalt, which would imply that one can build a decider for ATM.
However, ATM is undecidable. A contradiction. It must be that
AHalt is undecidable.
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The same proof by figure...

accept

reject

Simulate accept

reject

accept

reject

... if AHalt is decidable, then ATM is decidable, which is
impossible.
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Emptiness



The language of empty languages

• ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether
M accepts w.

• Restructure question to be about Turing machine having
an empty language.

• Somehow make the second input (w) disappear.
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The language of empty languages

• ETM =
{
〈M〉

∣∣∣M is a TM and L(M) = ∅
}
.

• TMETM: Assume we are given this decider for ETM.
• Need to use TMETM to build a decider for ATM.
• Decider for ATM is given M and w and must decide whether
M accepts w.

• Restructure question to be about Turing machine having
an empty language.

• Somehow make the second input (w) disappear.
• Idea: hard-code w into M, creating a TM Mw which runs M
on the fixed string w.

• TM Mw(x):
1. Input = x (which will be ignored)
2. Simulate M on w.
3. If the simulation accepts, accept. Else, reject.
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Embedding strings...

• Given program 〈M〉 and input w...
• ...can output a program 〈Mw〉.
• The program Mw simulates M on w. And accepts/rejects
accordingly.

• EmbedString(〈M,w〉) input two strings 〈M〉 and w, and
output a string encoding (TM) 〈Mw〉.

• What is L(Mw)?
• Since Mw ignores input x.. language Mw is either Σ∗ or ∅.
It is Σ∗ if M accepts w, and it is ∅ if M does not accept w.
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Emptiness is undecidable

Theorem
The language ETM is undecidable.

• Assume (for contradiction), that ETM is decidable.
• TMETM be its decider.
• Build decider AnotherDecider-ATM for ATM:

AnotherDecider-ATM(〈M,w〉)
〈Mw〉 ← EmbedString (〈M,w〉)
r ← TMETM(〈Mw〉).
if r = accept then

return reject
// TMETM(〈Mw〉) rejected its input
return accept
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Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-ATM on the
input 〈M,w〉.

• If TMETM accepts 〈Mw〉, then L(Mw) is empty. This implies
that M does not accept w. As such, AnotherDecider-ATM

rejects its input 〈M,w〉.
• If TMETM accepts 〈Mw〉, then L(Mw) is not empty. This
implies that M accepts w. So AnotherDecider-ATM accepts
〈M,w〉.

=⇒ AnotherDecider-ATM is decider for ATM.

But ATM is undecidable...

...must be assumption that ETM is decidable is false.
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Emptiness is undecidable via diagram

accept

reject

accept

reject
Embed
String

AnotherDecider-ATM never actually runs the code for Mw . It
hands the code to a function TMETM which analyzes what the
code would do if run it. So it does not matter that Mw might go
into an infinite loop.
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Equality



Equality is undecidable

EQTM =
{
〈M,N〉

∣∣∣M and N are TM’s and L(M) = L(N)
}
.

Lemma
The language EQTM is undecidable.

Let’s try something different. We know ETM is undecidable. Let’s
use that:

ETM =⇒ EQTM
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Equality diagram

accept

reject

accept

reject
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Proof

Proof.
Suppose that we had a decider DeciderEqual for EQTM. Then
we can build a decider for ETM as follows:

TM R:
1. Input = 〈M〉
2. Include the (constant) code for a TM T that rejects all its
input. We denote the string encoding T by 〈T〉.

3. Run DeciderEqual on 〈M, T〉.
4. If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.
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DFAs



DFAs are empty?

EDFA =
{
〈A〉

∣∣∣A is a DFA and L(A) = ∅} .

What does the above language describe?
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Lemma
The language EDFA is decidable:
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Scratch

21



Proof

Proof.
Unlike in the previous cases, we can directly build a decider
(DeciderEmptyDFA) for EDFA

TM R:
1. Input = 〈A〉
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

• Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state is marked, then accept.
5. Otherwise, then reject.
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Equal DFAs



DFAs are equal?

EQDFA =
{
〈A,b〉

∣∣∣A and B are DFAs and L(A) = L(B)
}
.

What does the above language describe?
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DFAs are equal?

EQDFA =
{
〈A,b〉

∣∣∣A and B are DFAs and L(A) = L(B)
}
.

Is the language above decidable?

Lemma
The language EDFA is decidable.

Can we show this using reductions?
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Equal DFA trick I

Need a way to determine if there any strings in one language
and not the other....

L(A) L(B)

This is known as the symmetric difference. Can create a new
DFA (C) which represents the symmetric difference of LA and LB.

L(C) =
(
L(A) ∩ L(B)

)
∪
(
L(A) ∩ L(B)

)
(1)
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Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ∅
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show
EQDFA is decidable using a reduction?

Want to show EQDFA =⇒ EDFA
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Equal DFA trick II

Notice with L(C):

• If L(A) = L(B) then L(C) = ∅
• If L(A) 6= L(B) then L(C) is not empty

Good time to use EDFA proof from before.....How do we show
EQDFA is decidable using a reduction?

Want to show EQDFA =⇒ EDFA
accept

reject

 
accept

reject
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Equal DFA decider

TM F:
1. Input = 〈A,B〉 where A and B are DFAs
2. Construct DFA C as described before
3. Run DeciderEmptyDFA from previous slide on C
4. If accepts, then accept.
5. If rejects, then reject.
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Regularity



Many undecidable languages

• Almost any property defining a TM language induces a
language which is undecidable.

• proofs all have the same basic pattern.
• Regularity language:

RegularTM =
{
〈M〉

∣∣∣M is a TM and L(M) is regular
}
.

• DeciderRegL: Assume TM decider for RegularTM.
• Reduction from halting requires to turn problem about
deciding whether a TM M accepts w (i.e., is w ∈ ATM) into a
problem about whether some TM accepts a regular set of
strings.
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Outline of IsRegular? reductionr

accept

reject

accept

reject

Embed
Regular
String
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Proof continued...

• Given M and w, consider the following TM M′
w :

TM M′
w :

(i) Input = x
(ii) If x has the form anbn, halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

• not executing M′
w!

• feed string 〈M′
w〉 into DeciderRegL

• EmbedRegularString: program with input 〈M〉 and w, and
outputs 〈M′

w〉, encoding the program M′
w .

• If M accepts w, then any x accepted by M′
w : L(M′

w) = Σ∗.
• If M does not accept w, then L(M′

w) =
{
anbn

∣∣ n ≥ 0}.
29



Proof continued...

• anbn is not regular...
• Use DeciderRegL on M′

w to distinguish these two cases.
• Note - cooked M′

w to the decider at hand.
• A decider for ATM as follows.

AnotherDecider-ATM(〈M,w〉)
〈M′

w〉 ← EmbedRegularString (〈M,w〉)
r ← DeciderRegL(〈M′

w〉).
return r

• If DeciderRegL accepts =⇒ L(M′
w) regular (its Σ∗)

=⇒ M
accepts w. So AnotherDecider-ATM should accept 〈M,w〉.

• If DeciderRegL rejects =⇒ L(M′
w) is not regular =⇒

L(M′
w) = anbn =⇒ M does not accept w =⇒

AnotherDecider-ATM should reject 〈M,w〉.
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Rice theorem

The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)
Suppose that L is a language of Turing machines; that is, each
word in L encodes a TM. Furthermore, assume that the
following two properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then 〈M〉 ∈ L⇔ 〈N〉 ∈ L.

(b) The set L is “non-trivial,” i.e. L 6= ∅ and L does not contain
all Turing machines.

Then L is a undecidable.

31


	Reductions
	Halting
	Emptiness
	Equality
	DFAs
	Equal DFAs
	Regularity

