Pre-lecture brain teaser

In the following languages, three are decidable and three are undecidable. Which are which?

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a } CFG \text{ that generates string } w \}.$
- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset \}.$
- $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \}.$
- $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a } LBA \text{ that generates string } w \}.$
- $E_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \emptyset \}.$
- $ALL_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \Sigma^* \}.$

ECE-374-B: Lecture 24 - Midterm 3 Review

Instructor: Nickvash Kani

December 02, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

In the following languages, three are decidable and three are undecidable. Which are which?

$$\cdot A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a } CFG \text{ that generates string } w \}.$$

•
$$E_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset \}.$$

•
$$ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \}.$$

•
$$A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a } LBA \text{ that generates string } w \}.$$

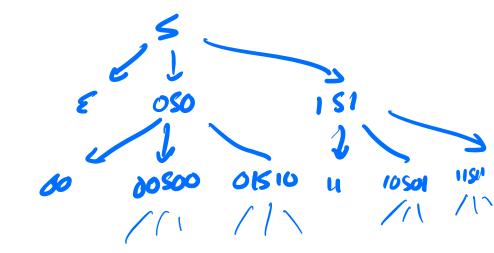
•
$$E_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \emptyset \}.$$

•
$$ALL_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \Sigma^* \}.$$

YES!

YES!

- $V = \{S\}$
- $T = \{0, 1\}$
- $P = \{S \rightarrow \epsilon \mid 0S0 \mid 1S1\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1$)



YES!

Lemma

A CFG in Chomsky normal form can derive a string w in at most 2ⁿ steps!

Knowing this, we can just simulate all the possible rule combinations for 2^n steps and see if any of the resulting strings matches w.

YES!

YES!

In this case, we just need to know if we can get from the start variable to a string with only terminal symbols.

- 1. Mark all terminal symbols in G
- 2. Repeat until no new variables get marked:
 - 2.1 Mark any variable A where G has the rule $A \rightarrow U_1U_2...U_k$ where U_i is a marked terminal/variable
- 3. If start variable is marked, accept. Otherwise reject.

• $P = \{ s \rightarrow \epsilon \mid 0S0 \mid 1S1 \}$ (abbrev. for

$$S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1)$$

Nope

Nope

Proof requires computation histories which are outside the scope of this course.

$$A_{LBA} = \{ -\langle m, w \rangle | m \approx LBA, m = express = 3 \}$$

$$Hape = n$$

YES!

YES!

Remember a LBA has a finite tapes. Therefore we know:

- 1. A tape of length n where each cell can contain g symbols, you have g^n possible configurations.
- 2. The tape head can be in one of *n* positions and has *q* states yielding a tape that can be in *qn* configurations.
- 3. Therefore the machine can be in qng^n configurations.

YES! A374TM = { < M, w} Mix a +M

M accept w in

boroforo we know:

774 dept 3

Remember a LBA has a finite tapes. Therefore we know:

- 1. A tape of length n where each cell can contain g symbols, you have g^n possible configurations.
- 2. The tape head can be in one of *n* positions and has *q* states yielding a tape that can be in *qn* configurations.
- 3. Therefore the machine can be in *qngⁿ* configurations

Lemma

If an LBA does not accept or reject in angⁿ then it is stuck in a loop forever.

Decider for A_{LBA} will:

- 1. Simulate $\langle M \rangle$ on w for qng^n steps.
 - 1.1 if accepts, then accept
 - 1.2 if rejects, then reject
- 2. If neither accepts or rejects, means it's in a loop in whihe case, reject.

Nope

Nope

Proof requires computational history trick, a story for another time.....

Nope

Nope

No standard proof for this, but let's look at a pattern:

Decidability across grammar complexities

	DFA	CFG	PDA	LBA	TM
А	D	D	D	D	U
Е	D	D	D	U	U
ALL	D	U	U	U	U

Eventually problems get too tough....

Nope

No standard proof for this, but let's look at a pattern:

So we sort've know that ALL_{LBA} isn't decidable because we knew ALL_{CFG} wasn't (though intuition is never sufficient evidence).

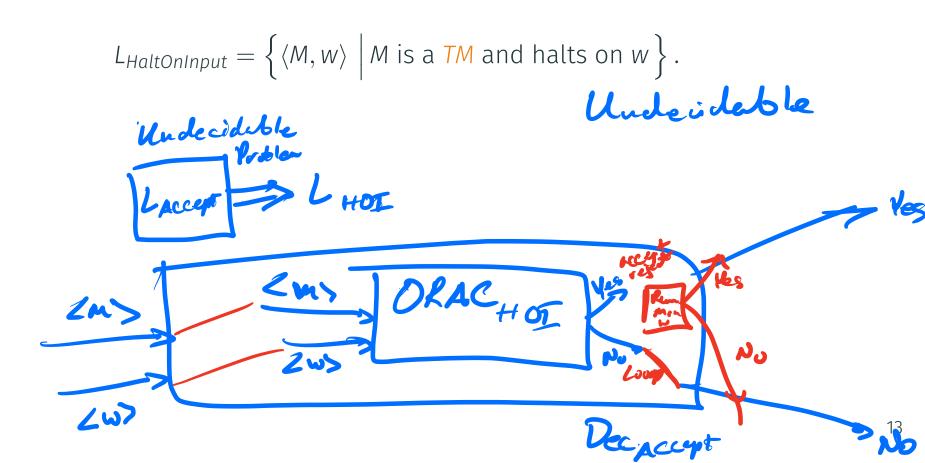
Un-/decidability practice problems

Available Undecidable languages

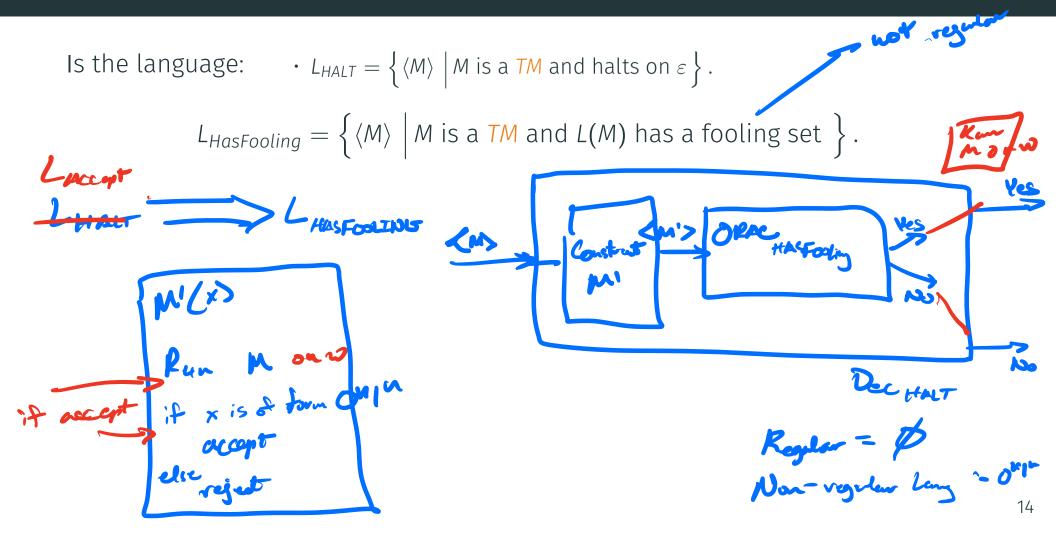
- $L_{Accept} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and accepts } w \}.$
- $L_{HALT} = \{ \langle M \rangle \mid M \text{ is a } TM \text{ and halts on } \varepsilon \}.$

Practice 1: Halt on Input

Is the language:

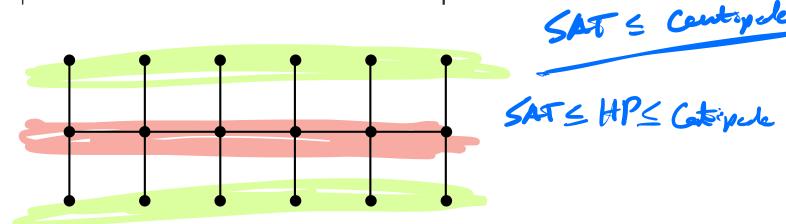


Practice 2: L has fooling set

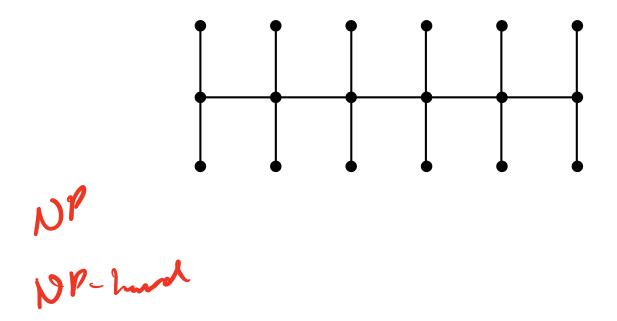


NP-Complete practice problems

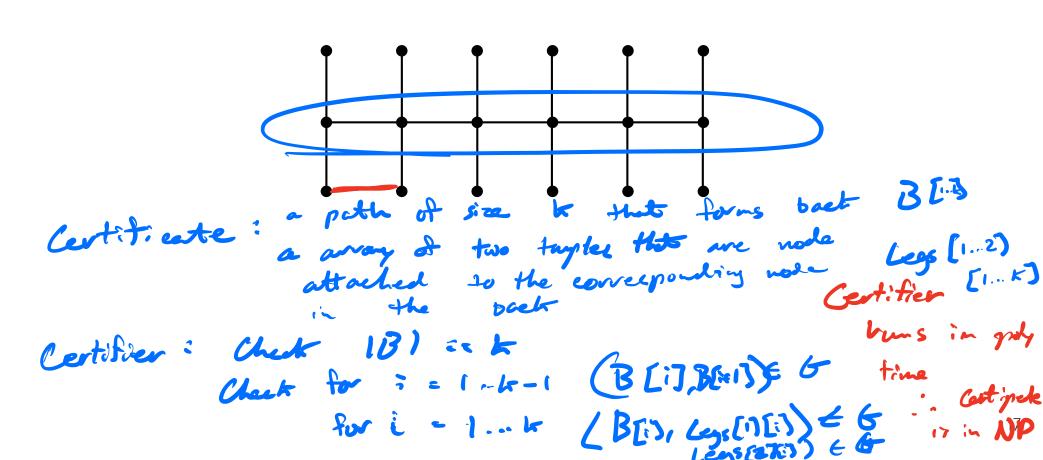
A <u>centipede</u> is an undirected graph formed by a path of length k with two edges (legs) attached to each node on the path as shown in the below figure. Hence, the centipede graph has 3k vertices. The **CENTIPEDE** problem is the following: given an undirected graph G = (V, E) and an integer k, does G contain a <u>centipede</u> of G vertices as a subgraph? Prove that **CENTIPEDE** is **NP-Complete**.



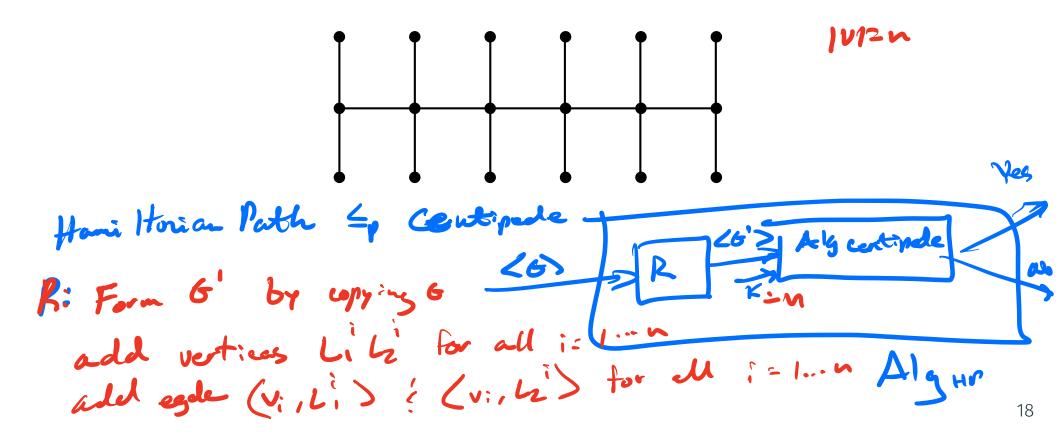
What do we need to do to prove Centipede is NP-Complete?



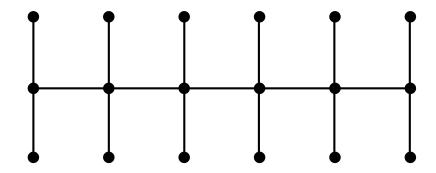
Prove Centipede is in **NP**:



Prove Centipede is in **NP-hard**:



Prove Centipede is in NP-hard:



Hamiltonian Path: Given a graph G (either directed or undirected), is there a path that visits every vertex exactly once

 $HC \leq_P Centipede$

A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is in NP

A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is NP-hard

Prove quasiSAT is NP-hard

Prove quasiSAT is NP-hard

3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment.

Good luck on the exam