


Pre-lecture brain teaser

We know that SAT is NP-complete which means that it 1s in
NP-Hard. HALT Is also in NP-Hard. Is SAT reducible to HALT?

How?
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Pre-lecture brain teaser

We know that SAT is NP-complete which means that it 1s in
NP-Hard. HALT Is also in NP-Hard. Is SAT reducible to HALT?
How?



Reductions



Meta definition: Problem X reduces to problemY, if given a
solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done thisby X — Y.
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Meta definition: Problem X reduces to problemY, if given a
solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done thisby X — Y.

Definition | | |
oracle ORAC for language L I1s a function that receives as a

word w, returns TRUE < w € L.




Meta definition: Problem X reduces to problemY, if given a
solution to Y, then it implies a solution for X. Namely, we can
solve Y then we can solve X. We will done thisby X — Y.

Definition | | |
oracle ORAC for language L I1s a function that receives as a

word w, returns TRUE < w € L.

Lemma .
A language X reduces to a language Y, If one can construct a

M decider for X using a given oracle ORACy for'Y.

We will denote this fact by X — Y. -
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Reduction proof technique

- 'Y: Problem/language for which we want to prove
undecidable.
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Reduction proof technique

- 'Y: Problem/language for which we want to prove
undecidable.

- Proof via reduction. Result in a proof by contradiction.
+ L: language of Y.
- Assume L Is decided by TM M.

- Create a decider for known undecidable problem X using
M.

- Result in decider for X (i.e., Amu).
- Contradiction X I1s not decidable.

- Thus, L must be not decidable.



Reduction implies decidability

Lemma
Let X and Y be two languages, and assume that X — Y. IfY

IS decidable then X is decidable.

Proof.
Let T be a decider for Y (i.e., a program or a TM). Since X

reduces to Y, it follows that there Is a procedure Tyy (i.e,
decider) for X that uses an oracle for Y as a subroutine. We
replace the calls to this oracle in Tyy by calls to T. The
resulting program Ty Is a decider and its language 1s X. Thus X
is decidable (or more formally TM decidable). ]



The countrapositive...

Lemma
Let X and Y be two languages, and assume that X — Y. If X

IS undecidable then Y is undecidable
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Halting




The halting problem

Language of all pairs (M,w) such that M halts on w:

AHalt = {(/\/l, W) ‘/\/l Isa TM and M stops on W} .

Similar to language already known to be undecidable:

Ay = {(M,W) ‘/\/l ISa M and M accepts vv}.



One way to proving that Halting is undecidable...

Lemma _
The language Ay reduces to Agaie. Namely, given an oracle for

A 0ne can build a decider (that uses this oracle) for Ay.
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Lemma _
The language Ay reduces to Agaie. Namely, given an oracle for

A 0ne can build a decider (that uses this oracle) for Ay.
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One way to proving that Halting is undecidable...

Proof. | |
Let ORACy,: be the given oracle for Aga. We build the

following decider for A.
AnotherDecider—ATM<</\/l, vv})

res <— ORACyqit ((/\/l, vv>)

// 1f M does not halt on w then reject.
If res= reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <Simulate M on w.
return res,.

This procedure always return and as such its a decider for
AT/\/,. []



The Halting problem is not decidable

Theorem . .
The language Ayt IS Not decidable.

Proof.
Assume, for the sake of contradiction, that A,y IS decidable.

As such, there is a TM, denoted by M.y, that 1s a decider for
Amare. We can use TMpyge @S an implementation of an oracle for
Amaie, Which would imply that one can build a decider for Ay.
However, A7y IS undecidable. A contradiction. It must be that
Auar 1S undecidable. ]
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The same proof by figure...

_<M7 w>_)

Decider 4,,,

_<M7 w>_)

ORAC Y, .,

reject

accept

Simulate
M(w)

—accept—)—l_

_reject—-)—‘
|

>

—accept>

reject—>

. 1T Apare IS decidable, then A

Impossible.

Ly >

Is decidable, which is
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Emptiness




The language of empty languages

/
-ETM:{<M>(MisaTMandL(M):@}. /Lfmégm
- TMeTm: Assume we are given this decider for Eqy.
- Need to use TMery to build a decider for Ap.

- Decider for Ay 1s given M and w and must decide whether
M accepts w.

- Restructure question to be about Turing machine having
an empty language.

- Somehow make the second input (w) disappear.

12



The language of empty languages

- E :{<M>‘/\/Iisa andL(/\/l):@}.
- TMeTm: Assume we are given this decider for E
- Need to use TMgery to build a decider for A

- Decider for Ay 1s given M and w and must decide whether
M accepts w.

- Restructure question to be about Turing machine having
an empty language.

- Somehow make the second input (w) disappear.

Decider 4,
WZ"] acce accept—> B
—(M, w)—>—[¢¢)\—m)—> ORACE,, :
reject \/ &6
reject—>
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The language of empty languages

2= {<M> (M isa TM and L(M) :@}.

- TMerym: Assume we are given this decider for Eqy.

- Need to use TMery to build a decider for Ap.

- Decider for Ay 1s given M and w and must decide whether
M accepts w.

- Restructure question to be about Turing machine having
an empty language.

- Somehow make the second input (w) disappear.

- |dea: hard-code w into M, creating a TM M,, which runs M

on the fixed string w.
« TM My (X):
1. Input = x (which will be ignored)
2. Simulate M on w.

3. If the simulation accepts, accept. Else, reject.
12



Embedding strings...

- Given program (M) and input w...
- ...can output a program (My,).

- The program M,, simulates M on w. And accepts/rejects
accordingly.

- EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (My,).
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Embedding strings...

- Given program (M) and input w...
- ...can output a program (My,).

- The program M,, simulates M on w. And accepts/rejects
accordingly.

- EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (My,).

- What i1s L(My)?

- Since M, ignores input x.. language M,, is either ~* or 0.
Itis X* if M accepts w, and it is @ if M does not accept w.
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Emptiness is undecidable

Theorem _ |
The language Et) 1s undecidable.

- Assume (for contradiction), that E7y is decidable.
- TMgm be 1ts decider.

- Build decider AnotherDecider-Ay for Ay:
AnotherDecider-A7y({M, w))
(My) < EmbedString ({M, w))
r < TMemm({Mw)).
if r = accept then
return reject
// TMegm({My)) rejected 1ts input

return accept

14



Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-Ayy on the
Input (M, w).

+ If TMgrm accepts (My), then L(My,) 1s empty. This implies
that M does not accept w. As such, AnotherDecider-Ay,
rejects its input (M, w).

+ If TMgrm accepts (My,), then L(My,) 1S not empty. This
implies that M accepts w. So AnotherDecider-Ary accepts
(M, w).

15
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Input (M, w).

+ If TMgrm accepts (My), then L(My,) 1s empty. This implies
that M does not accept w. As such, AnotherDecider-Ay,
rejects its input (M, w).

+ If TMgrm accepts (My,), then L(My,) 1S not empty. This
implies that M accepts w. So AnotherDecider-Ary accepts
(M, w).

— AnotherDecider-A7y is decider for Ay.

But A7y IS undecidable...
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Emptiness is undecidable...

Consider the possible behavior of AnotherDecider-Ayy on the
Input (M, w).

+ If TMgrm accepts (My), then L(My,) 1s empty. This implies
that M does not accept w. As such, AnotherDecider-Ay,
rejects its input (M, w).

+ If TMgrm accepts (My,), then L(My,) 1S not empty. This
implies that M accepts w. So AnotherDecider-Ary accepts
(M, w).

— AnotherDecider-A7y is decider for Ay.
But A7y 1S undecidable...

..must be assumption that E7y I1s decidable Is false.
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Emptiness is undecidable via diagram

Decider 4,
accept —accept—>
Embed
— — > (M, )—> RAC e
<M’ w> String (M) O Eru reject
—reject—>

AnotherDecider-Ay never actually runs the code for M,. It
hands the code to a function TMgrm which analyzes what the
code would do If run It. So It does not matter that M, might go
into an infinite loop.
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Equality




Equality is undecidable

EQrs = { (M, N) )M and N are Th's and L(M) = L(N) }

Lemma . _
The language EQ7y 1S undecidable.

17



Equality is undecidable

EQrs = { (M, N) )M and N are Th's and L(M) = L(N) }

Lemma . _
The language EQ7y 1S undecidable.

Let's try something different. We know E7y Is undecidable. Let's
use that:
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Equality is undecidable

EQrs = { (M, N) )M and N are Th's and L(M) = L(N) }

Lemma . _
The language EQ7y 1S undecidable.

Let's try something different. We know E7y Is undecidable. Let's
use that:

Ery = EQmu

17



Equality diagram

ﬂ@der
M0 = 4 t —actep
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_ = e e Q
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Proof.
Suppose that we had a decider DeciderEqual for EQyy. Then

we can build a decider for E;y as follows:

™ R:
1. Input = (M)
2. Include the (constant) code for a TM T that rejects all its
Input. We denote the string encoding T by (T).
3. Run DeciderEqual on (M, T).
4. |If DeciderEqual accepts, then accept.
5. If DeciderEqual rejects, then reject.

19



DFAS




DFAs are empty?

Fors = {<A> ‘A is a DFA and L(A) = (Z)}.
What does the above language describe?

Al L, DHA W«J,Vﬁg HUE Olesesbe
apmfty  lomguge
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DFAs are empty?

Fors = {<A> ‘A is a DFA and L(A) = (Z)}.

Is the language above decidable?

g—[‘w\. —- ﬁ"DF'A(

—

T~ ’\ DFA /OE A O >

Lz LA> Cora [

= —
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DFAs are empty?

Fors = {<A> ‘A is a DFA and L(A) = (Z)}.
Is the language above decidable? L; — ‘De,c,tobﬂe/
pFA

Lemma | | L3
The language Epra Is decidable:

BK W =

Dee .,

20
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Proof. . . . .
Unlike In the previous cases, we can directly build a decider

(DeciderEmptyDFA) for Epga

T™M R:
1. Input = (A)
2. Mark start state of A as visited.
3. Repeat until no new states get marked:

- Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state Is marked, then accept.
5. Otherwise, then reject.

22



Equal DFAs




DFAs are equal?

EQpra = {(A, b) ’A and B are DFAs and L(A) = L(B) } .

What does the above language describe?

Al 4. DYA e ncakiog Priz ohere Gt UFks

ﬂ,r)we,e/aqf Jdm & o ( G sy
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DFAs are equal?
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DFAs are equal?

EQpra = {(A, b) ’A and B are DFAs and L(A) = L(B) } .

Is the language above decidable?

Lemma | |
The language Epry Is decidable.
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DFAs are equal?

EQpra = {(A, b) ’A and B are DFAs and L(A) = L(B) } .

Is the language above decidable?

Lemma | |
The language Epry Is decidable.

Can we show this using reductions?

23



Equal DFA trick |

Need a way to determine If there any strings in one language
and not the other....

24



Equal DFA trick |

Need a way to determine If there any strings in one language
and not the other...

This i1s known as the symmetric difference. Can create a new
DFA (C) which represents the symmetric difference of L4 and Lg.

L(0) = (L(A) NL(B)) U (L&) N L(B)) (1) %



Equal DFA trick I

Notice with L(C):

- If L(A) = L(B) then L(C) =)
- If L(A) # L(B) then L(C) Is not empty

Good time to use Epgs proof from before....How do we show
EQprs 1S decidable using a reduction?

25



Equal DFA trick I

Notice with L(C):

- If L(A) = L(B) then L(C) =)
- If L(A) # L(B) then L(C) Is not empty

Good time to use Epgs proof from before....How do we show
EQprs 1S decidable using a reduction?

Want to show EQprrn = Epea
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Equal DFA trick I

Notice with L(

C):

- If L(A) = L(B) then L(C) =)
- If L(A) # L(B) then L(C) Is not empty

Good time to use E

proof from before
EQprs 1S decidable using a reduction?

..... How do we show

Want to show EQpryn = E
Decidergg,,,.,
_< A>—> accept —accept—>
ORACEy:, reject
_<B>_) > —reject—>

25



Equal DFA trick I

Notice with L(

C):

- If L(A) = L(B) then L(C) =)
- If L(A) # L(B) then L(C) Is not empty

Good time to use E
EQprs 1S decidable using a reduction?

proof from before

..... How do we show

Want to show EQ — E
Decidergg,,,.,
_< A>—>——> Create accept > ——accept—>
(C) ORACp,:, reject
—(B)—>—> > Lt reject—>

25



Equal DFA decider

™ F:

Input = (A, B) where A and B are DFAs

Construct DFA C as described before

Run DeciderEmptyDFA from previous slide on C
If accepts, then accept.

If rejects, then reject.

S

26



Regularity




Many undecidable languages

- Almost any property defining a TM language induces a
language which Is undecidable.

- proofs all have the same basic pattern.
- Regularity language:

Regular,, = {(M} ‘/\/l Isa TM and L(M) Is regular}.
- DeciderRegL: Assume TM decider for Regulary,.

- Reduction from halting requires to turn problem about
deciding whether a TM M accepts w (i.e., isw € A7y) into a
problem about whether some TM accepts a regular set of
strings.

27



Outline of IsRegular? reductionr

_<M7 $>—)

Decidery,,,

>

Embed
Regular
String

o),

ORACReg11

accept .

—

reject

>

L

—accept—>

—reject—>
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Proof continued...

+ Given M and w, consider the following TM M/, :
™ M :
(i) Input = x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

- not executing M/!

. feed string (M/ ) into DeciderRegL

- EmbedRegularString: program with input (M) and w, and
outputs (M/), encoding the program M.

- If M accepts w, then any x accepted by M{,: L(M],) = Z*.

- If M does not accept w, then L(M},) = {a"b" | n > 0}.

29



Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-A7y({M, w))

(M},) < EmbedRegularString ((M, w))
r < DeciderRegL((M})).

return r

- If DeciderRegL accepts = L(M!,)) regular (its *)

30
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- a"b" is not regular...
- Use DeciderRegL on M, to distinguish these two cases.
- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-A7y({M, w))

(M},) < EmbedRegularString ((M, w))
r < DeciderRegL((M})).

return r

- If DeciderRegL accepts = L(M!,)) regular (its ©*) = M
accepts w. So AnotherDecider-Ayy should accept (M, w).
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Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M, to distinguish these two cases.

- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-A7y({M, w))

(M},) < EmbedRegularString ((M, w))
r < DeciderRegL((M})).

return r
- If DeciderRegL accepts = L(M!,)) regular (its ©*) = M
accepts w. So AnotherDecider-Ayy should accept (M, w).

- |f DeciderReglL rejects — L(M],) is not regular —

L(M,)) = a"b"
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Proof continued...

- a"b" is not regular...
- Use DeciderRegL on M, to distinguish these two cases.

- Note - cooked M/, to the decider at hand.

- A decider for A7y as follows.
AnotherDecider-A7y({M, w))
(M},) < EmbedRegularString ((M, w))
r < DeciderRegL((M})).

return r
- If DeciderRegL accepts = L(M!,)) regular (its ©*) = M

accepts w. So AnotherDecider-Ayy should accept (M, w).
- |f DeciderReglL rejects — L(M],) is not regular —

L(M) = a"b" = M does not accept w —

AnotherDecider-Ay should reject (M, w).
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The above proofs were somewhat repetitious...
.they imply a more general result.

Theorem (Rice’s Theorem.) | | |
Suppose that L i1s a language of Turing machines; that is, each

word in L encodes a TM. Furthermore, assume that the
following two properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then (M) € L & (N) € L.

(b) The set L is “non-trivial,” i.e. L # @ and L does not contain
all Turing machines.

Then L is a undecidable.
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