In the following languages, three are decidable and three are undecidable. Which are which?

- $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a } CFG \text{ that accepts string } w \}$.
- $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset \}$.
- $ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \}$.
- $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a } LBA \text{ that generates string } w \}$.
- $E_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \emptyset \}$.
- $ALL_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \Sigma^* \}$.

Pre-lecture brain teaser
In the following languages, three are decidable and three are undecidable. Which are which?

- \(A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a } CFG \text{ that accepts string } w \} \).
- \(E_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \emptyset \} \).
- \(ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a } CFG \text{ and } L(G) = \Sigma^* \} \).
- \(A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a } LBA \text{ that generates string } w \} \).
- \(E_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \emptyset \} \).
- \(ALL_{LBA} = \{ \langle M \rangle \mid M \text{ is a } LBA \text{ where } L(M) = \Sigma^* \} \).
A_{CFG} decidable?
A_{CFG} decidable?

YES!
A_{CFG} decidable?

YES!

- \(V = \{S\} \)
- \(T = \{0, 1\} \)
- \(P = \{S \rightarrow \epsilon \mid 0S0 \mid 1S1\} \)
 (abbrev. for \(S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1 \))
YES!

Lemma

A CFG in Chomsky normal form can derive a string w in at most $2n - 1$ steps! *(Shown in Sipser textbook)*

Knowing this, we can just simulate all the possible rule combinations for 2^n steps and see if any of the resulting strings matches w.
E_{CFG} decidable?

In this case, we just need to know if we can get from the start variable to a string with only terminal symbols.

1. Mark all terminal symbols in G
2. Repeat until no new variables get marked:
 2.1 Mark any variable A where G has the rule $A \rightarrow U_1 U_2 \ldots U_k$ where U_i is a marked terminal/variable
3. If start variable is not marked, accept. Otherwise reject.

$V = \{S\}$
$T = \{0, 1\}$
$P = \{S \rightarrow \epsilon | 0S0 | 1S1\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
YES!

In this case, we just need to know if we can get from the start variable to a string with only terminal symbols.

1. Mark all terminal symbols in G
2. Repeat until no new variables get marked:
 2. 1. Mark any variable A where G has the rule $A \rightarrow U_1 U_2 \ldots U_k$ where U_i is a marked terminal/variable
3. If start variable is not marked, accept. Otherwise reject.

$V = \{S\}$
$T = \{0, 1\}$
$P = \{S \rightarrow \epsilon | 0S0 | 1S1\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
YES!

In this case, we just need to know if we can get from the start variable to a string with only terminal symbols.

1. Mark all terminal symbols in G

2. Repeat until no new variables get marked:
 2.1 Mark any variable A where G has the rule $A \rightarrow U_1U_2 \ldots U_k$ where U_i is a marked terminal/variable

3. If start variable is not marked, accept. Otherwise reject.

- $V = \{S\}$
- $T = \{0, 1\}$
- $P = \{S \rightarrow \epsilon \mid 0S0 \mid 1S1\}$ (abbrev. for $S \rightarrow \epsilon, S \rightarrow 0S0, S \rightarrow 1S1$)
ALL$_{CFG}$ decidable?

Nope

Proof requires computation histories which are outside the scope of this course.
ALL_{CFG} decidable?

Nope
Nope

Proof requires computation histories which are outside the scope of this course.
A_{LBA} decidable?

Remember a LBA has a finite tapes. Therefore we know:

1. A tape of length n where each cell can contain g symbols, you have g^n possible configurations.

2. The tape head can be in one of n positions and has q states yielding a tape that can be in q^n configurations.

3. Therefore the machine can be in $q^n g^n$ configurations.

Lemma

If an LBA does not accept or reject in $q^n g^n$ then it is stuck in a loop forever.
A_{LBA} decidable?

YES!
YES!

Remember a LBA has a finite tapes. Therefore we know:

1. A tape of length n where each cell can contain g symbols, you have g^n possible configurations.
2. The tape head can be in one of n positions and has q states yielding a tape that can be in qn configurations.
3. Therefore the machine can be in qng^n configurations.
Remember a LBA has a finite tapes. Therefore we know:

1. A tape of length n where each cell can contain g symbols, you have g^n possible configurations.
2. The tape head can be in one of n positions and has q states yielding a tape that can be in qn configurations.
3. Therefore the machine can be in qng^n configurations.

Lemma

If an LBA does not accept or reject in qng^n then it is stuck in a loop forever.
A_{LBA} decidable?

Decider for A_{LBA} will:

1. Simulate ⟨M⟩ on w for qng^n steps.
 1.1 if accepts, then accept
 1.2 if rejects, then reject

2. If neither accepts or rejects, means it’s in a loop in which case, reject.
E_{LBA} decidable?

Nope. Proof requires computational history trick, a story for another time......
E_{LBA} decidable?

Nope
Nope

Proof requires computational history trick, a story for another time......
ALL_{LBA} decidable?
ALL\textsubscript{LBA} decidable?

Nope
Nope

No standard proof for this, but let’s look at a pattern:
Nope

No standard proof for this, but let’s look at a pattern:

So we sort’ve figure that ALL_{LBA} isn’t decidable because we know (assuming you believe me) ALL_{CFG} wasn’t (though intuition is never sufficient evidence).
Decidability across grammar complexities

<table>
<thead>
<tr>
<th></th>
<th>DFA</th>
<th>CFG</th>
<th>PDA</th>
<th>LBA</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>ALL</td>
<td>D</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

Eventually problems get too tough....
The above proofs were somewhat repetitious...

...they imply a more general result.

Theorem (Rice’s Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine’s language, i.e. if $L(M) = L(N)$ then $⟨M⟩ ∈ L ≜ ⟨N⟩ ∈ L$.

(b) The set L is “non-trivial,” i.e. $L ≠ ∅$ and L does not contain all Turing machines.

Then L is undecidable. (Note: In an exam, you can’t just say undecidable because of Rice’s theorem.)
Un-/decidability practice problems
Available Undecidable languages

• \(L_{\text{Accept}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and accepts } w \right\} \).

• \(L_{\text{HALT}} = \left\{ \langle M \rangle \mid M \text{ is a TM and halts on } \varepsilon \right\} \).
Practice 1: Halt on Input

Is the language:

\[L_{\text{HaltOnInput}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \text{TM} \text{ and halts on } w \right\} . \]
Practice 2: L has fooling set

Is the language:

\[L_{\text{HasFooling}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ has a fooling set} \} \].
NP-Complete practice problems
A centipede is an undirected graph formed by a path of length k with two edges (legs) attached to each node on the path as shown in the below figure. Hence, the centipede graph has $3k$ vertices. The **CENTIPED**E problem is the following: given an undirected graph $G = (V, E)$ and an integer k, does G contain a centipede of $3k$ vertices as a subgraph? Prove that **CENTIPED**E is NP-Complete.
What do we need to do to prove Centipede is NP-Complete?
Prove Centipede is in NP:
Prove Centipede is in **NP-hard**:
Practice: NP-Complete Reduction

Prove Centipede is in **NP-hard**:

Hamiltonian Path: Given a graph G (either directed or undirected), is there a path that visits every vertex exactly once?

$HC \leq_p Centipede$
A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.
A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is in NP
A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth values to the variables such that at most one clause in Φ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is NP-hard
Prove quasiSAT is NP-hard
Prove quasiSAT is NP-hard

3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment.
Good luck on the exam