Pre-lecture brain teaser

Is NP is closed under the kleene-star operation?

ECE-374-B: Lecture 25 - Final Review

Instructor: Nickvash Kani
Dec 05, 2023
University of Illinois at Urbana-Champaign

Final Topics

Topics for the final exam include:

- Everything on Midterm 1:
- Regular expressions
- DFAs, NFAs,
- Fooling Sets and Closure properties
- CFGs and PDAs
- CSGs and LBAs
- Turing Machines

- Everything on Midterm 2
- Asymptotic Bounds
- Recursion, Backtracking
- Dynamic Programming
- DFS/BFS
- DAGs and TopSort
- Shortest path algorithms
- Everything on Midterm 3
- Reductions
- P, NP, NP-hardness
- Decidability

Final Topics

In today's lecture let's focus on a few that you guys had trouble on in the midterms (and the most recent stuff whih you'll be tested on).

- Everything on Midterm 2
- Asymptotic Bounds
- Recursion, Backtracking
- Dynamic Programming
- DFS/BFS
- DAGs and TopSort
- Shortest path algorithms
- Everything on Midterm 3
- Reductions
- P, NP, NP-hardness
- Decidability

Pre-lecture brain teaser
Is NP is closed under the kleene-star operation?

yes

Practice: Asymptotic bounds

Find the regular expression for the language:

regalarity - con be expressed by $D F A, N F A, R_{C g} E_{x}$ -any langaige that can be constructed by the base languages wing a finite t

Practice: Fooling Sets

Is the following language regular?

$$
\sum\{0,1\}
$$

$L=\{W \mid W$ does not contain the substring 00 nor 11$\}$

Is the following language regular?
$L=\{W \mid W$ has an equal number of 0's and 1's $\}$
$F=\left\{O^{n} \mid\right\}$
$\partial^{i} 1^{-1-1}$
$0^{4} 1^{-}-\quad \omega \in L$
$\xrightarrow{\circ}$

Any OFA that represents this kngnege
$\therefore|Q| \rightarrow \infty$ Contradiction

Practice: NFAs and DFAs

Let M be the following NFA:

Which of the following statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -

Which of the following statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$

Which of the following statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$

Which of the following statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$
4. M rejects the string 11100111000 -

Which of the following statements about M are true?

Practice: NFAs and DFAs

Let M be the following NFA:

1. M accepts the empty string ε -
2. $\delta(s, 010)=\{s, a, c\}-$
3. $\varepsilon-\operatorname{reach}(a)=\{s, a, c\}-$
4. M rejects the string 11100111000 -
5. $L(M)=(00)^{*}+(111)^{*}-$

Which of the following statements about M are true?

Practice: Closure

Which of the following is true for every language $L \subseteq\{0,1\}^{*}$

1. L^{*} is non-empty -
2. L^{*} is regular -
3. If L is NP-Hard, then L is not regular -
4. If L is not regular, then L is undecidable -

Context-Free Languages

Given $\Sigma=0,1$, the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is represented by which grammar?
(a)
(c)

$$
\begin{align*}
& S \rightarrow 0 T 1 \mid 1 \\
& T \rightarrow T 0 \mid \varepsilon \tag{d}
\end{align*}
$$

(b)

$$
\begin{aligned}
S & \rightarrow A B 1 \\
A & \rightarrow 0 \\
B & \rightarrow S \mid \varepsilon
\end{aligned}
$$

$$
S \rightarrow 0 S 1|0 S| S 1 \mid \varepsilon
$$

$$
S \rightarrow 0 S 1
$$

(e) None of the above

Push-down Auto-mata

What is the context-free grammar of the following push-down automata:

Turing machines

You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma=\{0,1\}$. Please describe the language.

Linear Time Selection

Recall the linear time selection logarithm that uses the medians of medians. I use the same algorithm, but instead of lists of size 5, I break the array into lists of size 7 and do the median-of-medians as normal. The running time for my new algorithm is:
(a) $O(\log (n))$
(b) $O(n)$
(c) $O(n \log (n))$
(d) $O\left(n^{2}\right)$
(e) None of the above

Linear Time Selection

Recall the linear time selection logarithm that uses the medians of medians. I use the same algorithm, but instead of lists of size 5, I break the array into lists of size 7 and do the median-of-medians as normal. The running time for my new algorithm is:
(a) $O(\log (n))$
(b) $O(n)$
(c) $O(n \log (n))$
(d) $O\left(n^{2}\right)$
(e) None of the above

Why did we choose lists of size 5? Will lists of size 3 work?
(Hint) Write a recurrence to analyze the algorithm's running time if we choose a list of size k.

Graph Exploration

We looked at the BasicSearch algorithm:

```
Explore(G,u):
    Visited[1 . . n] \leftarrow FALSE
    // ToExplore, S: Lists
    Add u to ToExplore and to S
    Visited[u]}\leftarrow TRU
    while (ToExplore is non-empty) do
        Remove node x from ToExplore
        for each edge xy in }\operatorname{Adj}(x)\mathrm{ do
            if (Visited[y] = FALSE)
            Visited[y] \leftarrowTRUE
            Add y to ToExplore
            Add y to S
    Output S
```

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

Minimum Spanning Trees

Let $G=(V, E)$ be a connected, undirected graph with edge weights w, such that the weights are distinct, i.e., no two edges have the same weight. Which of the following is necessarily true about a minimum spanning tree of G ?
(a) If T_{1} and T_{2} are MSTs of G then $T_{1}=T_{2}$, i.e., the MST is unique.
(b) There are MSTs T_{1} and T_{2} such that $T_{1} \neq T_{2}$ i.e, MST is not unique.
(c) There is an edge e that is unsafe that belongs to a MST.
(d) There is a safe edge that does not belong to a MST of G.

Reduction: 3SAT to Clique

Consider the two problems:

Problem: 3SAT

Instance: Given a CNF formula φ with n variables, and k clauses Question: Is there a truth assignment to the variables such that φ evaluates to true

Problem: Clique

Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

Reduce 3SAT to CLIQUE

Reduction: 3SAT to Clique

Given a graph G, a set of vertices V^{\prime} is: clique: every pair of vertices in V^{\prime} is connected by an edge of G.

Reduction: 3SAT to Clique

Bust out the reduction diagram:
if φ issac

$$
x=S A T
$$

$$
Y=\text { Clique }
$$

$$
\begin{aligned}
& I_{x}=\varphi \\
& I_{y}=\sigma, k
\end{aligned}
$$

 the G has a dique of size $<k$

Reduction: 3SAT to Clique

Some thoughts:

- Clique is a fully connected graph and very similar to the independent set problem
- We want to have a clique with all the satisfying literals
- Can't have literal and its negation in same clique
- Only need one satisfying literal per clique

$$
\left(x_{1}, v_{x_{2}} V_{x_{3}}\right) \lambda\left(x_{4} V_{x_{5}} V_{x_{0}}\right)
$$

k

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

Nodes in G are organized in k)
groups of nodes Each triple
corresponds lo one clause.

- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\begin{aligned}
\varphi= & \left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \\
& \wedge\left(x, \vee \overline{x_{2}}\right)
\end{aligned}
$$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\varphi=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)
$$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee\right.
$$

$$
\left.x_{2} \vee x_{3}\right)
$$

Reduction: 3SAT to Clique

Hence the reduction creates a undirected graph G :

- Nodes in G are organized in k groups of nodes. Each triple corresponds to one clause.
- The edges of G connect all but:
- nodes in the same triple
- nodes with contradictory labels (x_{1} and $\overline{x_{1}}$)

$$
\varphi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee\right.
$$

$$
\left.x_{2} \vee x_{3}\right)
$$

3SAT to Independent Set Reduction

Very similar to 3SAT to independent set reduction:

Figure 1: Graph for $\varphi=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

Sample Reduction

Problem (SP1): Determine the shortest simple path in a graph. The graph is acyclic but has negative edge weights.

Does this graph belong to: P NP
 NP-complete

Sample Reduction

Problem (SP1): Determine the shortest simple path in a graph. The graph is acyclic but has negative edge weights.
$D A G$
NP-complete
We can show the reduction from LongeghPath:
MGESTPATH \leq_{p} SPP
Reduction: Make all edges negative
Does this graph belong toP NP-hard

Longest Path 2 : Find the longest path
Homiest in G
Input: $\langle\theta\rangle$
output: wexptet of the longest path

NP-hand

Multi-section questions

Practice: Bringing it all together

Does there exist some language $L \subseteq\{0,1\}^{*}$ where:
$L^{*}=\left(L^{*}\right)^{*}$

Practice: Bringing it all together

Does there exist some language $L \subseteq\{0,1\}^{*}$ where:
L is decidable but L^{*} is undecidable

Practice: Bringing it all together

Does there exist some language $L \subseteq\{0,1\}^{*}$ where:
L is neither regular nor NP-hard

Practice: Bringing it all together

Does there exist some language $L \subseteq\{0,1\}^{*}$ where:
L is in P, but L has a infinite fooling set

Savitch's Theorem

One last thought before you go....(my favorite theorem)

Proved by Walter Savitch in
Lemma
Savitch's Theroem: $\operatorname{NSPACE}(f(n)) \approx \operatorname{DSPACE}\left(f(n)^{2} 1970\right.$

One last thought before you go....(my favorite theorem)

Proved by Walter Savitch in
Lemma
Savitch's Theroem: $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f(n)^{2}\right)$
Idea behind the proof:

- STCON: finds whether there is a path between two vertices in $O\left((\log (n))^{2}\right)$ space
-. Convert a nondeterministic Turing machine that takes $f(n)$ space into a configuration graph G_{x}^{M}
- We know the tape can decide x in $f(n)$ space. Therefore there are $2^{0(f(n))}$ configurations
- Therefore G_{x}^{M} has $2^{0(f(n))}$ vertices
- A deterministic Turing machine can run STCON on that graph resulting in $O\left(\left(\log \left(2^{O(f(n))}\right)\right)^{2}\right) \equiv O\left(f(n)^{2}\right)$ space
sailh

Farewell

"Would you tell me, please, which way I ought to go from here?" "That depends a good deal on where you want to get to," said the Cat.
"I don't much care where-" said Alice.
"Then it doesn't matter which way you go," said the Cat.
"-so long as I get somewhere," Alice added as an explanation.
"Oh, you're sure to do that," said the Cat, "if you only walk long enough."
Lewis Carroll, Alice's Adventures in Wonderland

Farewell

> | "When you're going |
| :--- |
| through hell, |
| keep going." |
| -Winston Churchill |

asilk

"Would you tell me, please, which way I ought to go from here?" "That depends a good deal on where you want to get to," said the Cat.
"I don't much care where-" said Alice.
"Then it doesn't matter which way you go," said the Cat.
"-so long as I get somewhere," Alice added as an explanation.
"Oh, you're sure to do that," said the Cat, "if you only walk long enough."
Lewis Carroll, Alice's Adventures in Wonderland

