## Pre-lecture brain teaser

In the following languages, three are decidable and three are undecidable. Which are which?

- $A_{C F G}=\{\langle G, w\rangle \mid G$ is a $C F G$ that accepts string $w\}$.
- $E_{C F G}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset\}$.
- $A L L_{C F G}=\left\{\langle G\rangle \mid G\right.$ is a $C F G$ and $\left.L(G)=\Sigma^{*}\right\}$.
- $A_{L B A}=\{\langle M, w\rangle \mid M$ is a $\angle B A$ that generates string $w\}$.
- $E_{L B A}=\{\langle M\rangle \mid M$ is a $L B A$ where $L(M)=\emptyset\}$.
- $A L L L B A=\left\{\langle M\rangle \mid M\right.$ is a $L B A$ where $\left.L(M)=\Sigma^{*}\right\}$.


## ECE-374-B: Lecture 25 - Midterm 3 Review

Instructor: Nickvash Kani

April 26, 2022
University of Illinois at Urbana-Champaign

## Pre-lecture brain teaser

In the following languages, three are decidable and three are undecidable. Which are which?

- $A_{C F G}=\{\langle G, w\rangle \mid G$ is a $C F G$ that accepts string $w\}$.
- $E_{C F G}=\{\langle G\rangle \mid G$ is a CFG and $L(G)=\emptyset\}$.
- $A L L_{C F G}=\left\{\langle G\rangle \mid G\right.$ is a $C F G$ and $\left.L(G)=\Sigma^{*}\right\}$.
- $A_{L B A}=\{\langle M, w\rangle \mid M$ is a $\angle B A$ that accepts string $w\}$.
- $E_{L B A}=\{\langle M\rangle \mid M$ is a $L B A$ where $L(M)=\emptyset\}$.
- $A L L L B A=\left\{\langle M\rangle \mid M\right.$ is a $L B A$ where $\left.L(M)=\Sigma^{*}\right\}$.
$A_{\text {CFG }}$ decidable?

$$
\begin{aligned}
& V=\{S\} \\
& T=\{0,1\} \\
& P=\left\{\begin{array}{c}
S \rightarrow \varepsilon \\
S \rightarrow 050 \\
S \rightarrow 1 S 1
\end{array}\right\}
\end{aligned}
$$

## $A_{\text {CFG }}$ decidable?

## YES!

## $A_{C F G}$ decidable?

## YES!

- $V=\{S\}$
- $T=\{0,1\}$

$$
|w|=n
$$

- $P=\{S \rightarrow \epsilon|0 S 0| 1 S 1\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow 0 S 0, S \rightarrow$ 1S1)


## $A_{C F G}$ decidable?

## YES!

## Lemma

A CFG in Chomsky normal form can derive a string w in at most $2 n-1$ steps! (Shown in Sipser textbook)

Knowing this, we can just simulate all the possible rule combinations for $2^{n}$ steps and see if any of the resulting strings matches w.

## YES!

## $E_{C F G}$ decidable?

## YES!

In this case, we just need to know if we can get from the start variable to a string with only terminal symbols.

1. Mark all terminal symbols in $G$
2. Repeat until no new variables get marked:
2.1 Mark any variable $A$ where $G$ has the rule $A \rightarrow U_{1} U_{2} \ldots U_{k}$ where $U_{i}$ is a marked terminal/variable
3. If start variable is not marked, accept. Otherwise reject.

- $V=\{S\}$
- $T=\{0,1\}$
- $P=\{S \rightarrow \epsilon|0 S O|$ 1S1\}
(abbrev. for $S \rightarrow$ $\epsilon, S \rightarrow$ USO, $S \rightarrow$ 1S1)

$S \rightarrow \varepsilon$


## ALLCFG decidable?

## ALL ${ }_{C F G}$ decidable?

Nope

## ALL ${ }_{C F G}$ decidable?

Nope

Proof requires computation histories which are outside the scope of this course.

## $A_{L B A}$ decidable?

## $A_{\angle B A}$ decidable?

## YES!

## $A_{L B A}$ decidable?

## YES!

Remember a LBA has a finite tapes. Therefore we know:

1. A tape of length $n$ where each cell can contain $g$ symbols, you have $g^{n}$ possible configurations.
2. The tape head can be in one of $n$ positions and has $q$ states yielding a tape that can be in qn configurations.
3. Therefore the machine can be in qngn configurations.

## $A_{L B A}$ decidable?

## YES!

Remember a LBA has a finite tapes. Therefore we know:

1. A tape of length $n$ where each cell can contain $g$ symbols, you have $g^{n}$ possible configurations.
2. The tape head can be in one of $n$ positions and has $q$ states yielding a tape that can be in qn configurations.
3. Therefore the machine can be in qngn configurations.

## Lemma

If an LBA does not accept or reject in qng $^{n}$ then it is stuck in a loop forever.

## $A_{L B A}$ decidable?

Decider for $A_{L B A}$ will:

1. Simulate $\langle M\rangle$ on $w$ for $q^{n}{ }^{n}$ steps.
1.1 if accepts, then accept
1.2 if rejects, then reject
2. If neither accepts or rejects, means it's in a loop in which case, reject.

Nope

## $E_{\angle B A}$ decidable?

## Nope

Proof requires computational history trick, a story for another time......

## ALL $L_{L B A}$ decidable?

## ALL $L_{L B A}$ decidable?

Nope

## ALL $L_{L B A}$ decidable?

## Nope

No standard proof for this, but let's look at a pattern:

ALL ${ }_{L B A}$ decidable?

Nope

No standard proof for this, but let's look at a pattern:
So we sort've figure that $A L L_{L B A}$ isn't decidable because we know (assuming you believe me) ALL mFG wasn't (though intuition is never sufficient evidence).


## Decidability across grammar complexities



Eventually problems get too tough....

## Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.
Theorem (Rice's Theorem.)
Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.
(a) Membership in $L$ depends only on the Turing machine's language, i.e. if $L(M)=L(N)$ then $\langle M\rangle \in L \Leftrightarrow\langle N\rangle \in L$.
(b) The set $L$ is "non-trivial," i.e. $L \neq \emptyset$ and $L$ does not contain all Turing machines.

Then L is a undecidable. (Note: In an exam, you can't just say undecidable because of Rice's theorem.)

## Un-/decidability practice problems

## Available Undecidable languages

- $L_{\text {Accept }}=\{\langle M, w\rangle \mid M$ is a $T M$ and accepts $w\}$.
- $L_{\text {haLt }}=\{\langle M\rangle \mid M$ is a TM and halts on $\varepsilon\}$.

Practice 1: Halt on Input


$$
L_{\text {Haltoninput }}=\{\langle M, w\rangle \mid M \text { is a } T M \text { and halts on } w\} .
$$



Deraceept


Practice 1: Halt on Input

Is the language:
$L_{\text {HeALGOBB}}=\{(M) \mid M$ is aTM \{ halts on $\varepsilon\}$

$$
L_{\text {HaltOninput }}=\{\langle M, w\rangle \mid M \text { is a } T M \text { and halts on } w\} .
$$



Dechalt on


Practice 2: L has fooling set


Practice 2: L has fooling set


NP-Complete practice problems

## Practice: NP-Complete Reduction I

A centipede is an undirected graph formed by a path of length $k$ with two edges (legs) attached to each node on the path as shown in the below figure. Hence, the centipede graph has $3 k$ vertices. The CENTIPEDE problem is the following: given an undirected graph $G=(V, E)$ and an integer $k$, does $G$ contain a centipede of $3 k$ vertices as a subgraph? Prove that CENTIPEDE is NP-Complete. distinto


Practice: NP-Complete Reduction

What do we need to do to prove Centipede is NP-Complete?


Prove CENTIPEDE $\in$ NP
CENT IPEDE $\in N P$-hard

Practice: NP-Complete Reduction

Prove Centipede is in NP:


Certificate. 3 vertex arrays
back bone $[1 . . k]$

$$
\operatorname{leg} \mid[1 \cdots k] \quad \operatorname{leg} 2[1 \cdots k]
$$

Certifier:
check for legs for $i=1 \cdots \mathrm{k}$

$$
(\operatorname{leg}[i], \operatorname{back}[i]) \in G
$$

Mate sure all vertices

$$
\operatorname{leg}[[i] \ldots \in G
$$ are distinct

$$
(\text { back }[i] \text {, back }[i+1]) \in \epsilon^{18}
$$

Practice: NP-Complete Reduction
CENOI $\leq_{p}$ Ind Set $H A M M_{\text {pard }} \varepsilon_{p} A_{T M}$
Prove Centipede is in NP-hard:


## Practice: NP-Complete Reduction

Prove Centipede is in NP-hard:


Hamiltonian Path: Given a graph G (either directed or
undirected), is there a path that visits every vertex exactly once $H C \leq_{p}$ Centipede

## Practice: NP-Complete Reduction I

A quasi-satisfying assignment for a 3CNF boolean formula $\Phi$ is an assignment of truth values to the variables such that at most one clause in $\Phi$ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Practice: NP-Complete Reduction I

A quasi-satisfying assignment for a 3CNF boolean formula $\Phi$ is an assignment of truth values to the variables such that at most one clause in $\Phi$ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.

Prove quasiSAT is in NP
Cert:finte "troth assignment

Certifier:

Practice: NP-Complete Reduction I

A quasi-satisfying assignment for a 3CNF boolean formula $\Phi$ is an assignment of truth values to the variables such that at most one clause in $\Phi$ does not contain a true literal. Prove that it is NP-complete to determine whether a given 3CNF boolean formula has a quasi-satisfying assignment.
Prove quasiSAT is NP-hardSSAS $\subseteq$ Quasi SAT


## Practice: NP-Complete Reduction II

Prove quasiSAT is NP-hard

## Practice: NP-Complete Reduction II

## Prove quasiSAT is NP-hard

3SAT: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause, does the formula have a satisfying assignment.

Good luck on the exam

