
1

Pre-lecture brain teaser

Given ⌃ = {0, 1}, find the regular expression for the language
containing all binary strings with an odd number of 0’s

Formulate a language that describes the above problem.

1

ECE-374 B: Lecture 2 - DFAs

Lecturer: Nickvash Kani
August 29, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Given ⌃ = {0, 1}, find the regular expression for the language
containing all binary strings with an odd number of 0’s

Formulate a language that describes the above problem.

2

Cw odd
1 01 01 040

2 203 01007

2 10131 01 01 014

A simple program

Program to check if an input string w has odd number of 0’s
int n = 0
While input is not finished

read next character c
If (c ⌘'0')

n n+ 1
endWhile
If (n is odd) output YES
Else output NO

bit x = 0
While input is not finished

read next character c
If (c ⌘'0')

x flip(x)
endWhile
If (x = 1) output YES
Else output NO

3

A simple program

Program to check if an input string w has odd number of 0’s
int n = 0
While input is not finished

read next character c
If (c ⌘'0')

n n+ 1
endWhile
If (n is odd) output YES
Else output NO

bit x = 0
While input is not finished

read next character c
If (c ⌘'0')

x flip(x)
endWhile
If (x = 1) output YES
Else output NO

3

Another view

• Machine has input written on a read-only tape
• Start in specified start state
• Start at left, scan symbol, change state and move right
• Circled states are accepting
• Machine accepts input string if it is in an accepting state
after scanning the last symbol. 4

O

O

Deterministic-finite-automata (DFA)
Introduction

DFAs also called Finite State Machines (FSMs)

• The “simplest” model for computers?
• State machines that are common in practice.

• Vending machines
• Elevators
• Digital watches
• Simple network protocols

• Programs with fixed memory

5

Graphical representation of DFA

Graphical Representation/State Machine

q0start q1

1
0

1

0

• Directed graph with nodes representing states and
edge/arcs representing transitions labeled by symbols in
⌃

• For each state (vertex) q and symbol a 2 ⌃ there is exactly
one outgoing edge labeled by a

• Initial/start state has a pointer (or labeled as s, q0 or
“start”)

• Some states with double circles labeled as accepting/final
states

6

even odd

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?

• Where does 10010 lead?
• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a
given state q by reading one letter of w from left to right.

7

go

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?

• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a
given state q by reading one letter of w from left to right.

7

9

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?
• Which strings end up in accepting state?

• Every string w has a unique walk that it follows from a
given state q by reading one letter of w from left to right.

7

odd O's

Graphical Representation

q0start q1

1
0

1

0

• Where does 001 lead?
• Where does 10010 lead?
• Which strings end up in accepting state?
• Every string w has a unique walk that it follows from a
given state q by reading one letter of w from left to right.

7

Graphical Representation

q0start q1

1
0

1

0

Definition
A DFA M accepts a string w iff the unique walk starting at the
start state and spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by
L(M) and defined as: L(M) = {w | M accepts w}.

8

Graphical Representation

q0start q1

1
0

1

0

Definition
A DFA M accepts a string w iff the unique walk starting at the
start state and spelling out w ends in an accepting state.

Definition
The language accepted (or recognized) by a DFA M is denote by
L(M) and defined as: L(M) = {w | M accepts w}.

8

Cr

Formal definition of DFA

Formal Tuple Notation

Definition
A deterministic finite automata (DFA) M = (Q,⌃, �, s,A) is a five
tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ ! Q is the transition function,
• s 2 Q is the start state,
• A ✓ Q is the set of accepting/final states.

Common alternate notation: q0 for start state, F for final states.

9

DFA Notation

M =
⇣ z}|{

Q , ⌃|{z} ,
z}|{
� , s|{z} ,

z}|{
A

⌘

10

at we v9

at age

Example

q0start q1

1
0

1

0

• Q =

• ⌃ =

• � =

• s =
• A =

11

go q

0,13

go
O 3 q

go 1 go
q go 9i

a

Extending the transition function to
strings

Extending the transition function to strings

Given DFA M = (Q,⌃, �, s,A), �(q,a) is the state that M goes to
from q on reading letter a

Useful to have notation to specify the unique state that M will
reach from q on reading string w

Transition function �⇤ : Q⇥ ⌃⇤ ! Q defined inductively as
follows:

• �⇤(q,w) = q if w = ✏

• �⇤(q,w) = �⇤(�(q,a), x) if w = ax.

12

q

Extending the transition function to strings

Given DFA M = (Q,⌃, �, s,A), �(q,a) is the state that M goes to
from q on reading letter a

Useful to have notation to specify the unique state that M will
reach from q on reading string w

Transition function �⇤ : Q⇥ ⌃⇤ ! Q defined inductively as
follows:

• �⇤(q,w) = q if w = ✏

• �⇤(q,w) = �⇤(�(q,a), x) if w = ax.

12

Ea

Formal definition of language accepted by M

Definition
The language L(M) accepted by a DFA M = (Q,⌃, �, s,A) is

{w 2 ⌃⇤ | �⇤(s,w) 2 A}.

13

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =

• �⇤(q0, 1011) =
• �⇤(q1, 010) =

14

q

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =
• �⇤(q0, 1011) =

• �⇤(q1, 010) =

14

q

Example

q0start q1

1
0

1

0

What is:

• �⇤(q1, ✏) =
• �⇤(q0, 1011) =
• �⇤(q1, 010) =

14

q

Constructing DFAs: Examples

DFAs: State = Memory

How do we design a DFA M for a given language L? That is
L(M) = L.

• DFA is a like a program that has fixed number of states
regardless of its input size.

• The state must capture enough information from the input
seen so far that it is sufficient for the suffix that is yet to
be seen (note that DFA cannot go back)

15

I

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

OD F
Es 80

My
LIMO 3 0 011

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

Egon

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

DE

DFA Construction: Example I: Basic languages

Assume ⌃ = {0, 1}.

1. L = ;

2. L = ⌃⇤

3. L = {✏}

4. L = {0}

16

It

DFA Construction: Example II: Length divisible by 5

Assume ⌃ = {0, 1}.

L = {w 2 {0, 1}⇤ | |w| is divisible by 5}

17

set I

DFA Construction: Example III: Ends with 01

Assume ⌃ = {0, 1}.

L = {w 2 {0, 1}⇤ | w ends with 01}

18

É

Complement language

Complement

Question: If M is a DFA, is there a DFA M0 such that
L(M0) = ⌃⇤ \ L(M)? That is, are languages recognized by DFAs
closed under complement?

q0start q1

1
0

1

0

19

e

Complement

Just flip the state of the states!

q0start q1

1
0

1

0

q0start q1

1
0

1

0

20

M M

t

ta t
v1 we w 111 fog

L w I w 1113 FO'D 0 50

Complement

Theorem
Languages accepted by DFAs are closed under complement.

Proof.
Let M = (Q,⌃, �, s,A) such that L = L(M).
Let M0 = (Q,⌃, �, s,Q \ A). Claim: L(M0) = L̄. Why?
�⇤M = �⇤M0 . Thus, for every string w, �⇤M(s,w) = �⇤M0(s,w).
�⇤M(s,w) 2 A) �⇤M0(s,w) 62 Q \ A.
�⇤M(s,w) 62 A) �⇤M0(s,w) 2 Q \ A.

21

Complement

Theorem
Languages accepted by DFAs are closed under complement.

Proof.
Let M = (Q,⌃, �, s,A) such that L = L(M).
Let M0 = (Q,⌃, �, s,Q \ A). Claim: L(M0) = L̄. Why?
�⇤M = �⇤M0 . Thus, for every string w, �⇤M(s,w) = �⇤M0(s,w).
�⇤M(s,w) 2 A) �⇤M0(s,w) 62 Q \ A.
�⇤M(s,w) 62 A) �⇤M0(s,w) 2 Q \ A.

21

Product Construction

Union and Intersection

Are languages accepted by DFAs closed under union? That is,
given DFAs M1 and M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one
accepts then w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track
of states of both machines

22

Union and Intersection

Are languages accepted by DFAs closed under union? That is,
given DFAs M1 and M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one
accepts then w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track
of states of both machines

22

Union and Intersection

Are languages accepted by DFAs closed under union? That is,
given DFAs M1 and M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one
accepts then w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.

• Solution: Simulate M1 and M2 in parallel by keeping track
of states of both machines

22

Union and Intersection

Are languages accepted by DFAs closed under union? That is,
given DFAs M1 and M2 is there a DFA that accepts L(M1) [L(M2)?

How about intersection L(M1) \ L(M2)?

Idea from programming: on input string w

• Simulate M1 on w
• Simulate M2 on w
• If both accept than w 2 L(M1) \ L(M2). If at least one
accepts then w 2 L(M1) [L(M2).

• Catch: We want a single DFA M that can only read w once.
• Solution: Simulate M1 and M2 in parallel by keeping track
of states of both machines

22

Example

0

1

1

0

0

1

M2 accepts #1 = odd

0 1
10

0

1

M1 accepts #0 = odd

23

if startV

L Mi U Ma m Language that has

strings with a odd
of O's or odd El's

Example

Cross-product machine

0 1
10

0

1

M1 accepts #0 = odd

0

1

1

0

0

1

M2 accepts #1 = odd

0

00 10

01 11

0

0

0
1 1 1 1

24

W 01

It Represented by
DFI

is closed

under
intersection

LCM A LCM M

Product construction for intersection

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)

Theorem
L(M) = L(M1) \ L(M2).

Create M = (Q,⌃, �, s,A) where

• Q =

• s =
• � :

• A =

25

Product construction for intersection

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)

Theorem
L(M) = L(M1) \ L(M2).

Create M = (Q,⌃, �, s,A) where

• Q =

• s =
• � :

• A =

25

E E
Q x Q2 Ca ge la EQ qzEQz
sa sa q q8
Q XE Q f a a EY

Cq q7 a SCen a Iqa a

A X Az Cq izz q EA i qzEAz

Intersection vs Union

M1:
q0start q1

1
0

1

0 M2 :
q0start q1

0
1

0

1

M1 \M2 M1 [M2

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

26

Product construction for union

M1 = (Q1,⌃, �1, s1,A1) and M2 = (Q2,⌃, �2, s2,A2)

Theorem
L(M) = L(M1) [L(M2).

Create M = (Q,⌃, �, s,A) where

• Q = Q1 ⇥ Q2 = {(q1,q2) | q1 2 Q1,q2 2 Q2}
• s = (s1, s2)
• � : Q⇥ ⌃ ! Q where

�((q1,q2),a) = (�1(q1,a), �2(q2,a))

• A =

27

A X Az Ca ga q EA Of EE AB

Constructing regular expressions

DFAs to regular expressions

Personal Lemma:
Mastering a concept means being able to do a problem in both
direction.

Time to reverse problem direction and find regular expressions
using DFAs.

Multiple methods but the ones I’m focusing on:

• State removal method
• Algebraic method

28

State Removal method

If q1 = �(q0, x) and q2 = �(q1, y)

then q2 = �(q1, y) = �(�(q0, x), y) = �(q0, xy)

29

State Removal method - Example

q0start

q1

q2

0

1

0

1

1

0

q0start q2

01 1+00 10

0+11

30

State Removal method - Example

q0start

q1

q2

0

1

0

1

1

0

q0start q2

01 1+00 10

0+11
30

o

State Removal method - Example

q0start q2

01 1+00 10

0+11

q0start

01+ (1+ 00)(10)⇤(0+ 11)

(01+ (1+ 00)(10)⇤(0+ 11))⇤

31

State Removal method - Example

q0start q2

01 1+00 10

0+11

q0start

01+ (1+ 00)(10)⇤(0+ 11)

(01+ (1+ 00)(10)⇤(0+ 11))⇤

31

State Removal method - Example

q0start q2

01 1+00 10

0+11

q0start

01+ (1+ 00)(10)⇤(0+ 11)

(01+ (1+ 00)(10)⇤(0+ 11))⇤

31

DFAs and regular expressions

The thing to know right now is that DFAs and regular
expressions represent the same set of languages!

32

The End - Reminders

• HW 1 has been assigned. Will be due next week.
• Lab tomorrow will go over DFAs

33

Extra Slides

Algebraic method

Transition functions are themselves algebraic expressions!

Demarcate states as variables.

Can rewrite q1 = �(q0, x) as q1 = q0x

Solve for accepting state.

34

Algebraic method - Example

q0start q1

q2 q3

0

1

10 0

1 0,1

• q0 = ✏+ q11+ q20
• q1 = q00
• q2 = q01
• q3 = q10+ q21+ q3(0+ 1)

35

Algebraic method - Example

q0start q1

q2 q3

0

1

10 0

1 0,1

• q0 = ✏+ q11+ q20
• q1 = q00
• q2 = q01
• q3 = q10+ q21+ q3(0+ 1)

35

Algebraic method - Example

• q0 = ✏+ q11+ q20
• q1 = q00
• q2 = q01
• q3 = q10+ q21+ q3(0+ 1)

Now we simple solve the system of equations for q0:

• q0 = ✏+ q11+ q20
• q0 = ✏+ q001+ q010
• q0 = ✏+ q0(01+ 10)

Theorem (Arden’s Theorem)
R = Q+ RP = QP⇤

36

Algebraic method - Example

• q0 = ✏+ q11+ q20
• q1 = q00
• q2 = q01
• q3 = q10+ q21+ q3(0+ 1)

Now we simple solve the system of equations for q0:

• q0 = ✏+ q11+ q20
• q0 = ✏+ q001+ q010
• q0 = ✏+ q0(01+ 10)
• q0 = ✏(01+ 10)⇤ = (01+ 10)⇤

37

