Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000
ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani
August 31, 2023

University of Illinois at Urbana-Champaign
Find the regular expression for the language containing all binary strings that **do not** contain the subsequence 11000.
Find the regular expression for the language containing all binary strings that do not contain the substring 101010.
Find the regular expression for the language containing all binary strings that do not contain the substring 101010.
Find the regular expression for the language contains all binary strings whose $\#_0(w) \% 7 = 0$ (number of 0’s divisible by 7).
Find the regular expression for the language contains all binary strings whose $\#_0(w) \equiv 0 \mod 7$ (number of 0’s divisible by 7).
Show that the following string \(w \) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’s divisible by 7
Show that the following string \(w \) is a member of the language that:

- does not contain the subsequence \(111000 \) or
- does not contain the substring \(101010 \) or
- or has a number of 0’s divisible by 7

\[
w = 1001110110111001
\]
\[
100010111110010
\]
\[
0101010011001111
\]
\[
1001001011111100
\]

You have 30 seconds.
Show that the following string \(w \) is a member of the language that:

- does not contain the subsequence \(\text{111000} \) or
- does not contain the substring \(\text{101010} \) or
- or has a number of 0’s divisible by 7

\[
\begin{align*}
w &= 1001110110111001 \\
&1000010111110010 \\
&0101010011001111 \\
&1001001011111100
\end{align*}
\]

You have 30 seconds. Pray, choose a strategy and hope you get lucky.
Does luck allow us to solve unsolvable problems?
Does luck allow us to solve unsolvable problems? New example: Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.
Lucky machine programs

Problem: Find shortest path from a to b

Program on M_1 (Dijkstra’s algorithm):

```
 Initialize for each node $v$, $\text{Dist}(s, v) = d'(s, v) = \infty$
 Initialize $X = \emptyset$, $d'(s, s) = 0$
 for $i = 1$ to $|V|$ do
  Let $v$ be node realizing $d'(s, v) = \min_{u \in V - X} d'(s, u)$
  $\text{Dist}(s, v) = d'(s, v)$
  $X = X \cup \{v\}$
  Update $d'(s, u)$ for each $u$ in $V - X$ as follows:
  $d'(s, u) = \min\left(d'(s, u), \text{Dist}(s, v) + \ell(v, u)\right)$
```
Problem: Find shortest path from a to b

Program on M_2 (Blind luck):

```
Initialize path = []
path += a
While(not at b)
    take an outgoing edge $(u,v)$ from current node $u$ to $v$
    current = v
    path += v
return path
```
Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.

Question:
Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.
Does luck allow us to solve unsolvable problems?
Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a “lucky” machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

The notion was first posed by Robert W. Floyd in 1967.
In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.
Non-determinism in media

Placeholder slide for youtube.
Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to “design” programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.
Non-deterministic finite automata (NFA) Introduction
When you come to a fork in the road, take it.
When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not deterministic.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.
Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N) = \{w \mid N$ accepts $w\}$.
• Is 010110 accepted?
NFA acceptance: Wait! what about the ϵ?!
NFA acceptance: Example

Is 010110 accepted?
Is \texttt{010110} accepted?
NFA acceptance: Example

• Is 010110 accepted?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted? \(\not\)
NFA acceptance: Example

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
NFA acceptance: Example

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Strings that contain substring 101 or 11
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?
NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.
Formal definition of NFA
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)).
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example

$Q = \{1, 2, 3, 4\}$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\
\{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\
\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\
\{1\}, \{2\}, \{3\}, \{4\}, \\
\{} \end{array} \right\}$$
Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called **states**,
- Σ is a finite set called the **input alphabet**,
- $\delta : Q \times \Sigma \cup \{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the **transition function** (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the **start state**,
- $A \subseteq Q$ is the set of **accepting/final states**.
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) \(N = (Q, \Sigma, \delta, s, A) \) is a five tuple where

- \(Q \) is a finite set whose elements are called states,
- \(\Sigma \) is a finite set called the input alphabet,
- \(\delta : Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathcal{P}(Q) \) is the transition function (here \(\mathcal{P}(Q) \) is the power set of \(Q \)),
- \(s \in Q \) is the start state,
Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

$\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.
Example

- \(Q = \{ q_0, q_1, q_2, q_3 \} \)
- \(\Sigma = \{ 0, 1 \} \)
- \(\delta = \)

\[
\begin{array}{ccc}
\varepsilon & 0 & 1 \\
q_0 & \{ q_0, q_1 \} & \{ q_0, q_3 \} \\
q_1 & \{ q_1, q_2 \} & \{ q_1, q_3 \} \\
q_2 & \{ q_2, q_3 \} & \{ q_2 \} \\
q_3 & \{ q_3 \} & \{ q_3 \} \\
\end{array}
\]

- \(s = q_0 \)
- \(A = \{ q_3 \} \)
Extending the transition function to strings
Extending the transition function to strings

• NFA $N = (Q, \Sigma, \delta, s, A)$
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$.

Extending the transition function to strings

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.
Extending the transition function to strings

Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.
Definition
For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ε-reach(q) is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q$: ε-reach$(X) = \bigcup_{x \in X} \varepsilon$-reach$(x)$.
Extending the transition function to strings

εreach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ^* : $Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \varepsilon$reach($q$)
Extending the transition function to strings

ϵ\text{reach}(q)$: set of all states that q can reach using only ϵ-transitions.

Definition
Inductive definition of $\delta^* : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \epsilon$, $\delta^*(q, w) = \epsilon$\text{reach}(q)$
- if $w = a$ where $a \in \Sigma$:
 $$\delta^*(q, a) = \epsilon\text{reach}\left(\bigcup_{p \in \epsilon\text{reach}(q)} \delta(p, a)\right)$$
Extending the transition function to strings

ε-reach(q): set of all states that q can reach using only ε-transitions.

Definition
Inductive definition of δ^*: $Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \varepsilon$-reach($q$)
- if $w = a$ where $a \in \Sigma$:
 $$\delta^*(q, a) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \delta(p, a) \right)$$
- if $w = ax$:
 $$\delta^*(q, w) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$
Example of extended transition function

Find $\delta^* (q_0, 11)$:
Example of extended transition function

Find $\delta^*(q_0, 11)$:

$$\delta^*(q, w) = \varepsilon\text{reach} \left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$
Example of extended transition function

We know \(w = 11 = ax \) so \(a = 1 \) and \(x = 1 \)

\[
\delta^*(q_0, 11) = \varepsilon\text{reach}\left(\bigcup_{p \in \varepsilon\text{reach}(q_0)} \left(\bigcup_{r \in \delta^*(p,1)} \delta^*(r, 1) \right) \right)
\]
Example of extended transition function

\[\epsilon \text{reach}(q_0) = \{q_0\} \]

\[\delta^*(q_0, 11) = \epsilon \text{reach} \left(\bigcup_{p \in \{q_0\}} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1) \right) \right) \]
Example of extended transition function

Simplify:

$$\delta^*(q_0, 11) = \varepsilon\text{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1) \right)$$
Example of extended transition function

Need \(\delta^*(q_0, 1) = \varepsilon\text{reach} \left(\bigcup_{p \in \varepsilon\text{reach}(q)} \delta(p, a) \right) = \varepsilon\text{reach}(\delta(q_0, 1)) \):

\[
= \varepsilon\text{reach} (\{q_0, q_1\}) = \{q_0, q_1, q_2\}
\]

\[
\delta^*(q_0, 11) = \varepsilon\text{reach} \left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1) \right)
\]
Example of extended transition function

Need \(\delta^*(q_0, 1) = \epsilon \text{reach} \left(\bigcup_{p \in \epsilon \text{reach}(q)} \delta(p, a) \right) = \epsilon \text{reach}(\delta(q_0, 1)) : \\
= \epsilon \text{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\} \\
\delta^*(q_0, 11) = \epsilon \text{reach} \left(\bigcup_{r \in \{q_0, q_1, q_2\}} \delta^*(r, 1) \right) \)
Example of extended transition function

\[
\begin{align*}
\delta^*(q_0, 11) &= \varepsilon\text{reach}\left(\delta^*(q_0, 1) \cup \delta^*(q_1, 1) \cup \delta^*(q_2, 1)\right)
\end{align*}
\]
Transition for strings: $w = ax$

$$\delta^*(q, w) = \varepsilon\text{reach} \left(\bigcup_{p \in \varepsilon\text{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$

- $R = \varepsilon\text{reach}(q) \implies$
 $$\delta^*(q, w) = \varepsilon\text{reach} \left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right)$$

- $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.

- $\delta^*(q, w) = \varepsilon\text{reach} \left(\bigcup_{r \in N} \delta^*(r, x) \right)$
Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$
Definition
A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition
The language $L(N)$ accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \Sigma^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^* takes care of that.
What is:

\[\delta^*(s, \varepsilon) = \]
What is:

• \(\delta^*(s, \epsilon) = \)

• \(\delta^*(s, 0) = \)
Example

What is:

* $\delta^*(s, \epsilon) =$
* $\delta^*(s, 0) =$
* $\delta^*(b, 0) =$
Example

What is:

- \(\delta^*(s, \epsilon) = \)
- \(\delta^*(s, 0) = \)
- \(\delta^*(b, 0) = \)
- \(\delta^*(b, 00) = \)
Constructing generalized NFAs
Every DFA is a NFA so NFAs are at least as powerful as DFAs.

NFAs prove ability to “guess and verify” which simplifies design and reduces number of states.

Easy proofs of some closure properties.
Example

\[L = \{ \text{bitstrings that have a } 1 \text{ three positions from the end} \} \]
A simple transformation

Theorem
For every NFA N there is another NFA N’ such that L(N) = L(N’)
and such that N’ has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’s?
A simple transformation

Theorem
For every NFA N there is another NFA N' such that $L(N) = L(N')$ and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA’s?
A simple transformation

Hint: Consider the $L = 0^* + 1^*$.
Closure Properties of NFAs
Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that
$L(N) = L(N_1) \cup L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Theorem
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.
Theorem
For any NFA N_1 there is an NFA N such that $L(N) = (L(N_1))^*$.
Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.
Closure under Kleene star

Theorem
For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?
Closure under Kleene star

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^$.*
All these examples are examples of language *transformations*. A language transformation is one where you take one class or languages, perform some operation and get a new language that belongs to that same class (closure). Tomorrow’s lab will go over more examples of language transformations.
Last thought
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.
Do all NFAs have a corresponding DFA?

Yes but it likely won’t be pretty.