

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani
August 31, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that donot contain the subsequence 1@7{)
l‘; CD,/

O Y D) 1
0 W0 g O
N Ay

> w5 o ~OF 0%:'0?? /

T KF 10 IR+

Pre-lecture brain teaser Il

Find the regular expression for the language containing all
binary strings that do not contain the substring 101010

Pre-lecture brain teaser Il

Find the regular expression for the language containing all
binary strings that do not contain the substring 101010

Pre-lecture brain teaser llI

Find the regular expression for the language contains all binary
strings whose #o(w)%7 = 0(number of 0’s divisible by 7).

Pre-lecture brain teaser llI

Find the regular expression for the language contains all binary
strings whose #o(w)%7 = 0(number of 0’s divisible by 7).

1 1 1 1 1 1 1 01
0 0 0 0 0 0 0
start

Pre-lecture brain teaser llI

Show that the following string(w) is @ member of the language
that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’'s divisible by 7

Pre-lecture brain teaser llI

Show that the following string(w) is @ member of the language
that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’'s divisible by 7

w =1001110110111001
1000010111110010
071070170011001111
1007001011111100

You have 30 seconds.

Pre-lecture brain teaser llI

Show that the following string(w) is @ member of the language
that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’'s divisible by 7

w =1001110110111001
1000010111110010
071070170011001111
1007001011111100

You have 30 seconds. Pray, choose a strategy and hope you get
lucky:.

Tangential Thought

Does luck allow us to solve unsolvable problems?

Tangential Thought

Does luck allow us to solve unsolvable problems? New
example: Consider two machines: My and M,

- M4 Is a classic deterministic machine.

- My 1s a “lucky” machine that will always make the right
choice.

Lucky machine programs

Problem: Find shortest path from ato b

Program on M4 (Dijkstra’s algorithm):

Initialize for each node v, Dist(s,v)=d'(s,v) = o0
Initialize X=0, d'(s,s)=0
for i=1 to |V| do
Let v be node realizing d’'(s,v) = minyey—xd'(s,u)
Dist(s,v) = d'(s, V)
X=XU{v}
Update d'(s,u) for each u in V—X as follows:
d'(s, u) = min (d’(s, u), Dist(s, V) + £(v, u))

Lucky machine programs

Problem: Find shortest path from ato b

Program on M, (Blind luck):

Initialize path =]

path += a

While(notath) oo & b
take an outgoing edge (u,v) from current node u to v
current = v
path +=v

return path

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 Is a classic deterministic machine.

- My 1s a “lucky” machine that will always make the right
choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 Is a classic deterministic machine.

- My 1s a “lucky” machine that will always make the right
choice.

Question: Are there problems which M, can solve that M;
cannot.

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 Is a classic deterministic machine.

- My 1s a “lucky” machine that will always make the right
choice.

Question: Are there problems which M, can solve that M;
cannot.

The notion was first posed by Robert W. Floyd in 1967

HO&,V‘Q

Non-determinism in computing

In computer science, a
nondeterministic machine is a
theoretical device that can
have more than one output for
the same input.

Deterministic

A machine that is capable of

taking multiple states i
concurrently. Whenever it l
reaches a choice, it takes both ““’

aths. v
- R

If there Is a path for the string
to be accepted by the machine,
then the string Is part of the
language.

Non-Deterministic

X ./.\.
accept — o/ o/sl'\o
7N
f(n) -
N\

e — reject

- e —accept

10

Non-determinism in media

Placeholder slide for youtube.

1

Why non-determinism?

- Non-determinism adds power to the model; richer
programming language and hence (much) easier to
“design” programs

- Fundamental in theory to prove many theorems

- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly:.

12

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take It.

13

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take It.

Today we'll talk about automata whose logic is not
deterministic.

13

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

14

NFA acceptance: Informal

O/O—:‘ééb@g@gi Dsec 2 < - _

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

14

NFA acceptance: Example

- 1s 010110 accepted?

15

NFA acceptance: Wait! what about the €?!

16

NFA acceptance: Example

0,1 0,1
1 0 1
start {% fq—w\ a2
&

IS 010110 accepted?

17

NFA acceptance: Example

Symbol Read:

17

NFA acceptance: Example

- 1s 010110 accepted? \/

18

NFA acceptance: Example

- 15 010110 accepted?
- Is 010 accepted? L)

18

NFA acceptance: Example

01 0,1
1 0
E

- 15 010110 accepted?

- Is 010 accepted?
- Is 101 accepted? \(‘

18

NFA acceptance: Example

- 15 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 15 10011 accepted?%/

18

NFA acceptance: Example

- 15 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 15 10011 accepted?

- What is the language accepted by N?

Hivag Y ot At 100 o I

18

NFA acceptance: Example

- 15 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 15 10011 accepted?

- What is the language accepted by N?

18

NFA acceptance: Example

- 15 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 15 10011 accepted?

- What is the language accepted by N?

Comment: Unlike DFAs, it Is easier in NFAs to show that a string
IS accepted than to show that a string Is not accepted.

18

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

- 2 1s a finite set called the input alphabet,

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,
- 2 1s a finite set called the input alphabet,

- §:Q x ZU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,
- 2 1s a finite set called the input alphabet,

- §:Q x ZU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Reminder: Power set

Q: a set. Power set of Qis: P(Q) =29 = {X | X C Q} is set of all
subsets of Q.

Example
Q= {1,2,3,4}

{1,2,3,4},
12,3,4},{1,3,4},{1,2,4} ,{1,2,3},
PQ) =4 {1,2},{1,3},{1,4},{2,3},{2,4},{3, 4},
111,42}, 43}, {4},

\ U)

Vs

20

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,
- 2 1s a finite set called the input alphabet,

- §:Q x ZU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where
- Q Is a finite set whose elements are called states,

- 2 1s a finite set called the input alphabet,

- §:Q x ZU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- S € Q Is the start state,

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, §,s,A) is a

five tuple where

- Q Is a finite set whose elements are called states,

- 2 1s a finite set called the input alphabet,

- §:Q x ZU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

- S € Q Is the start state,
- A C Q is the set of accepting/final states.

6(g,a) fora e T U{e} is a subset of Q — a set of states.

21

0, 0,1

start @ 1 @ L 1
-
E

: Q:é@o /Z7/Zz,72<3

T L= {o, Ny
\% | é‘iof {20 /({,ZO/Z'>
9 ZZ, /%) $223 Z53
D | 2223 $% £95%
ZJ l 5Zz-j (ZSE 574$
I o 2

Extending the transition function to
strings

Extending the transition function to strings

. NFA N = (Q, %, 4,5, A)

23

Extending the transition function to strings

. NFA N = (Q, %, 4,5, A)

+ 0(q,a): set of states that N can go to from g on reading

an

23

Extending the transition function to strings

- NFAN = (Q, %, 6,s,A)

+ 0(q,a): set of states that N can go to from g on reading
aeXxU{e}.

- Want transition functio Qx ¥X* — P(Q)

—

23

Extending the transition function to strings

- NFAN = (Q, %, 6,s,A)

+ 0(q,a): set of states that N can go to from g on reading
aeXxU{e}.

- Want transition function 6* : Q x ¥* — P(Q)

+ 0%(qg,w): set of states reachable on input w starting in
state q.

23

Extending the transition function to strings

Definition
For NFAN = (Q, %, 4,s,A) and g € Q the ereach(q) Is the set of

all states that g can reach using only e-transitions.

24

Extending the transition function to strings

Definition
For NFAN = (Q, %, 6,S,A) and g € Q the ereach(q) Is the set of

all states that g can reach using only e-transitions.

Definition , A
For X C Q: ereach(X) = U,y ereach(x). (;i;, X

24

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1f w =g, §*(qg,w) = ereach(q)

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1f w =g, §*(qg,w) = ereach(q)
- If w=awherea e ¥x:

5*(g, a) = ereach (L) dlp, a))

pEereach(q)

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only
e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw =¢, 6*(q,w) = ereach(q)
- If w=awherea e X:

5*(g, a) = ereach (L) dlp, a))

pEereach(q)

- Ifw=ax:

5*(q,w) = ereach | L) 5 (r.x)
pcereach(q) \redé*(p,a)

25

Example of extended transition function

26

Example of extended transition function

Find 6* (go, 11):

5*(q, w) = ereach | L 5 (r.0)
peereach(q) \red*(p,a)

26

Example of extended transition function

We knoww =1=axsoa=Tand x =1

5*(qo, 11) = ereach g L) & ()

peereach(qgop) \red*(p,1)

27

Example of extended transition function

ereach(qo) = {qo0}

6*(qo,11)ereach(| (| 5*(r,1)>)
pE{Gor \red*(p,1)

28

Example of extended transition function

Simplify:

0"(go,11) = ereach (U 5*(r,1)>

red*({qot,1)

29

Example of extended transition function

Need 6*(qo,1) = ereach(Up&reach(q) o(p, a)) = ereach(d(qgo,1)):
— EreaCh({q()? q1}) — {q07 d1, Q2}

5*(qo, 11) = ereach (| 5*(1’,1))

res*({qo},1)

30

Example of extended transition function

Need 6*(qo,1) = ereach(Up&reach(q) o(p, a)) = ereach(d(qgo,1)):
— EreaCh({q()? q1}) — {q07 d1, Q2}

5*(qo, 11) = ereach (g 5*(r,1)>

rG{CICJaCI'I 7CI2}

3

Example of extended transition function

0, 0,

A
E

Simplify

6*(go, 1) = ereach(6*(qgo, 1) U d* (g1, 1) Ud*(qg2, 1))
_Julgd

QM,% PRAREEN)

%% 9. e {'5\’2

32

Transition for strings: w = ax

5*(q, w) = ereach g L 5 (r.x0)
pcereach(q) \ reé*(p,a)

+ R =ereach(q) =

5*(q, w) = ereach (U v 5*(r,x))

peER red*(p,a)

- N = U 6" (p,a): All the states reachable from g with the

PER
letter a.

- (g, w) = ereach (U (5*(r,x)>

renN

33

Formal definition of language accepted by N

Definition |
A string w is accepted by NFA N if 65 (s, w) N A # (.

Definition |
The language L(N) accepted by a NFAN = (Q, X%, 6,S,A) IS

fwe | 5 (s,w) NA £ D).

34

Formal definition of language accepted by N

Definition |
A string w is accepted by NFA N if 65 (s, w) N A # (.

Definition |
The language L(N) accepted by a NFAN = (Q, X%, 6,S,A) IS

fweX*|6(s,w)NA£D}
important: Formal definition of the language of NFA above

uses 6* and not 4. As such, one does not need to include
e-transitions closure when specifying é, since 6* takes care of

that.

34

35

35

35

What Is:

. §*(b,00) =

35

Constructing generalized NFAs

DFAs and NFAs

- Every DFA Is a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

- Easy proofs of some closure properties

36

L = {bitstrings that have a 1 three positions from the end}
O//

B e I >

37

A simple transformation

Theorem |
For every NFA N there is another NFA N’ such that L(N) = L(N)

and such that N" has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N Is different from f

38

A simple transformation

Theorem |
For every NFA N there is another NFA N’ such that L(N) = L(N)

and such that N" has the following two properties:

- N’ has single final state f that has no outgoing transitions
- The start state s of N Is different from f

Why couldn’t we say this for DFA’'s?

38

A simple transformation

Hint: Consider the L = 0* + 1*.

%Q (39

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

- union

- Intersection

- concatenation
- Kleene star

- complement

40

Closure under union

Theorem |
For any two NFAs Nq and N, there is a NFA N such that

L(N) = L(Nq) U L(N,).

41

Closure under union

Theorem |
For any two NFAs Nq and N, there is a NFA N such that

L(N) = L(Nq) U L(N,).

. N, ‘%\
z (@) ‘V

41

Closure under concatenation

Theorem |
For any two NFAs Nq and N, there is a NFA N such that

L(N) = L(N1)+L(N>).

42

Closure under concatenation

Theorem |
For any two NFAs Nq and N, there is a NFA N such that

L(N) = L(N1)+L(N>).

w O @ W @F®

N

42

Closure under Kleene star

Theorem |
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

AN

(A)

N

& J

43

Closure under Kleene star

Theorem |
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

bty

Closure under Kleene star

Theorem |
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

&
N :
\ " @ J

Does not work! Why?

bty

Closure under Kleene star

Theorem |
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

\

5@ » @

€

45

Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or
languages, perform some operation and get a new language
that belongs to that same class (closure).

Tomorrow’s lab will go over more examples of language
transformations.

46

Last thought

Do all NFAs have a corresponding DFA?
0,1

1 01 01
start —

47

Do all NFAs have a corresponding DFA?
0,1

0, 0,
{20}

Yes but it likely won't be pretty.
0

0
0 0
start Clo®< do10
0 1 1 0

« 1 1

