
1

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

1

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani
August 31, 2023

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all
binary strings that do not contain the subsequence 111000

2

our

Is b took
0 0 1 0 0 10 104

040 1041 4

Pre-lecture brain teaser II

Find the regular expression for the language containing all
binary strings that do not contain the substring 101010

q0start q1 q2 q3 q4 q5 q6

1

0

1

0

1

0,1

1 0 1 0 1 0

3

Pre-lecture brain teaser II

Find the regular expression for the language containing all
binary strings that do not contain the substring 101010

q0start q1 q2 q3 q4 q5 q6

1

0

1

0

1

0,1

1 0 1 0 1 0

3

Pre-lecture brain teaser III

Find the regular expression for the language contains all binary
strings whose #0(w)%7 = 0(number of 0’s divisible by 7).

q0start q1 q2 q3 q4 q5 q6 q7

1 1 1 1 1 1 1 0,1

0 0 0 0 0 0 0

4

Pre-lecture brain teaser III

Find the regular expression for the language contains all binary
strings whose #0(w)%7 = 0(number of 0’s divisible by 7).

q0start q1 q2 q3 q4 q5 q6 q7

1 1 1 1 1 1 1 0,1

0 0 0 0 0 0 0

4

Pre-lecture brain teaser III

Show that the following string(w) is a member of the language
that:

• does not contain the subsequence 111000 or
• does not contain the substring 101010 or
• or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get
lucky.

5

Pre-lecture brain teaser III

Show that the following string(w) is a member of the language
that:

• does not contain the subsequence 111000 or
• does not contain the substring 101010 or
• or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds.

Pray, choose a strategy and hope you get
lucky.

5

Pre-lecture brain teaser III

Show that the following string(w) is a member of the language
that:

• does not contain the subsequence 111000 or
• does not contain the substring 101010 or
• or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get
lucky. 5

Tangential Thought

Does luck allow us to solve unsolvable problems?

New
example: Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

6

Tangential Thought

Does luck allow us to solve unsolvable problems? New
example: Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

6

Lucky machine programs

Problem: Find shortest path from a to b

Program on M1 (Dijkstra’s algorithm):
Initialize for each node v, Dist(s, v) = d0(s, v) = 1
Initialize X = ;, d0(s, s) = 0
for i = 1 to |V| do

Let v be node realizing d0(s, v) = minu2V�X d0(s,u)
Dist(s, v) = d0(s, v)
X = X [{v}
Update d0(s,u) for each u in V � X as follows:

d0(s,u) = min
⇣
d0(s,u), Dist(s, v) + `(v,u)

⌘

7

Lucky machine programs

Problem: Find shortest path from a to b

Program on M2 (Blind luck):
Initialize path = []

path += a
While(notatb)

take an outgoing edge (u, v) from current node u to v
current = v
path += v

return path

8

not at b

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

Question:

Are there problems which M2 can solve that M1
cannot.

The notion was first posed by Robert W. Floyd in 1967.

9

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

Question: Are there problems which M2 can solve that M1
cannot.

The notion was first posed by Robert W. Floyd in 1967.

9

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M1 and M2

• M1 is a classic deterministic machine.
• M2 is a “lucky” machine that will always make the right
choice.

Question: Are there problems which M2 can solve that M1
cannot.

The notion was first posed by Robert W. Floyd in 1967.

9

Hoare

Non-determinism in computing

In computer science, a
nondeterministic machine is a
theoretical device that can
have more than one output for
the same input.

A machine that is capable of
taking multiple states
concurrently. Whenever it
reaches a choice, it takes both
paths.

If there is a path for the string
to be accepted by the machine,
then the string is part of the
language. 10

Non-determinism in media

Placeholder slide for youtube.

11

Why non-determinism?

• Non-determinism adds power to the model; richer
programming language and hence (much) easier to
“design” programs

• Fundamental in theory to prove many theorems
• Very important in practice directly and indirectly
• Many deep connections to various fields in Computer
Science and Mathematics

Many interpretations of non-determinism. Hard to understand
at the outset. Get used to it and then you will appreciate it
slowly.

12

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not
deterministic.

q0start q1 q2 q3

0,1

1 0

"

1

0,1

13

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we’ll talk about automata whose logic is not
deterministic.

q0start q1 q2 q3

0,1

1 0

"

1

0,1

13

NFA acceptance: Informal

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

14

NFA acceptance: Informal

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

14

0 10 EO EDES EE E E

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?

15

NFA acceptance: Wait! what about the ✏?!

q0start q1 q2 q3

0,1

1 0

"

1

0,1

16

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Is 010110 accepted?

17

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Is 010110 accepted?

17

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?

• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

Y

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?

• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

N

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?

• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

Y

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?

• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

an

Y

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

Strings that contain substring 101 or 11

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

NFA acceptance: Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Is 010110 accepted?
• Is 010 accepted?
• Is 101 accepted?
• Is 10011 accepted?
• What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

18

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,

• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,

• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

P(Q)?

19

Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 2Q = {X | X ✓ Q} is set of all
subsets of Q.

Example
Q = {1, 2, 3, 4}

P(Q) =

8
>>>>>><

>>>>>>:

{1, 2, 3, 4} ,
{2, 3, 4} , {1, 3, 4} , {1, 2, 4} , {1, 2, 3} ,

{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} ,
{1} , {2} , {3} , {4} ,

{}

9
>>>>>>=

>>>>>>;

20

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

• s 2 Q is the start state,
• A ✓ Q is the set of accepting/final states.

�(q,a) for a 2 ⌃ [{"} is a subset of Q — a set of states.

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

• s 2 Q is the start state,

• A ✓ Q is the set of accepting/final states.

�(q,a) for a 2 ⌃ [{"} is a subset of Q — a set of states.

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q,⌃, �, s,A) is a
five tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � : Q⇥ ⌃ [{"} ! P(Q) is the transition function (here
P(Q) is the power set of Q),

• s 2 Q is the start state,
• A ✓ Q is the set of accepting/final states.

�(q,a) for a 2 ⌃ [{"} is a subset of Q — a set of states.

21

Example

q0start q1 q2 q3

0,1

1 0

"

1

0,1

• Q =

• ⌃ =

• � =

• s =
• A =

22

90197 92193

0,13

3ÉÉ
9 Yi EE EE
83 q2 Eq get
go
as

Extending the transition function to
strings

Extending the transition function to strings

• NFA N = (Q,⌃, �, s,A)

• �(q,a): set of states that N can go to from q on reading
a 2 ⌃ [{"}.

• Want transition function �⇤ : Q⇥ ⌃⇤ ! P(Q)
• �⇤(q,w): set of states reachable on input w starting in
state q.

23

Extending the transition function to strings

• NFA N = (Q,⌃, �, s,A)
• �(q,a): set of states that N can go to from q on reading
a 2 ⌃ [{"}.

• Want transition function �⇤ : Q⇥ ⌃⇤ ! P(Q)
• �⇤(q,w): set of states reachable on input w starting in
state q.

23

0

Extending the transition function to strings

• NFA N = (Q,⌃, �, s,A)
• �(q,a): set of states that N can go to from q on reading
a 2 ⌃ [{"}.

• Want transition function �⇤ : Q⇥ ⌃⇤ ! P(Q)

• �⇤(q,w): set of states reachable on input w starting in
state q.

23

O

Extending the transition function to strings

• NFA N = (Q,⌃, �, s,A)
• �(q,a): set of states that N can go to from q on reading
a 2 ⌃ [{"}.

• Want transition function �⇤ : Q⇥ ⌃⇤ ! P(Q)
• �⇤(q,w): set of states reachable on input w starting in
state q.

23

Extending the transition function to strings

Definition
For NFA N = (Q,⌃, �, s,A) and q 2 Q the ✏reach(q) is the set of
all states that q can reach using only "-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ✓ Q: ✏reach(X) =

S
x2X ✏reach(x).

24

Extending the transition function to strings

Definition
For NFA N = (Q,⌃, �, s,A) and q 2 Q the ✏reach(q) is the set of
all states that q can reach using only "-transitions.

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

Definition
For X ✓ Q: ✏reach(X) =

S
x2X ✏reach(x).

24

event sf
s did
e e is

Extending the transition function to strings

✏reach(q): set of all states that q can reach using only
"-transitions.
Definition
Inductive definition of �⇤ : Q⇥ ⌃⇤ ! P(Q):

• if w = ", �⇤(q,w) = ✏reach(q)

• if w = a where a 2 ⌃:

�⇤(q,a) = ✏reach

0

@
[

p2✏reach(q)
�(p,a)

1

A

• if w = ax:

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

25

Extending the transition function to strings

✏reach(q): set of all states that q can reach using only
"-transitions.
Definition
Inductive definition of �⇤ : Q⇥ ⌃⇤ ! P(Q):

• if w = ", �⇤(q,w) = ✏reach(q)
• if w = a where a 2 ⌃:

�⇤(q,a) = ✏reach

0

@
[

p2✏reach(q)
�(p,a)

1

A

• if w = ax:

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

25

Extending the transition function to strings

✏reach(q): set of all states that q can reach using only
"-transitions.
Definition
Inductive definition of �⇤ : Q⇥ ⌃⇤ ! P(Q):

• if w = ", �⇤(q,w) = ✏reach(q)
• if w = a where a 2 ⌃:

�⇤(q,a) = ✏reach

0

@
[

p2✏reach(q)
�(p,a)

1

A

• if w = ax:

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

25

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Find �⇤ (q0, 11):

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

26

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Find �⇤ (q0, 11):

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

26

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

We know w = 11 = ax so a = 1 and x = 1

�⇤(q0, 11) = ✏reach

0

@
[

p2✏reach(q0)

0

@
[

r2�⇤(p,1)
�⇤(r, 1)

1

A

1

A

27

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

✏reach(q0) = {q0}

�⇤(q0, 11) = ✏reach

0

@
[

p2{q0}

0

@
[

r2�⇤(p,1)
�⇤(r, 1)

1

A

1

A

28

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Simplify:

�⇤(q0, 11) = ✏reach

0

@
[

r2�⇤({q0},1)
�⇤(r, 1)

1

A

29

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Need �⇤(q0, 1) = ✏reach
⇣S

p2✏reach(q) �(p,a)
⌘
= ✏reach(� (q0, 1)):

= ✏reach({q0,q1}) = {q0,q1,q2}

�⇤(q0, 11) = ✏reach

0

@
[

r2�⇤({q0},1)
�⇤(r, 1)

1

A

30

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Need �⇤(q0, 1) = ✏reach
⇣S

p2✏reach(q) �(p,a)
⌘
= ✏reach(� (q0, 1)):

= ✏reach({q0,q1}) = {q0,q1,q2}

�⇤(q0, 11) = ✏reach

0

@
[

r2{q0,q1,q2}
�⇤(r, 1)

1

A

31

Example of extended transition function

q0start q1 q2 q3

0,1

1 0

"

1

0,1

Simplify

�⇤(q0, 11) = ✏reach(�⇤(q0, 1) [�⇤(q1, 1) [�⇤(q2, 1))

32

In

4019,3
U 2,3 U EE B

q q Ee 9,3

Transition for strings: w = ax

�⇤(q,w) = ✏reach

0

@
[

p2✏reach(q)

0

@
[

r2�⇤(p,a)
�⇤(r, x)

1

A

1

A

• R = ✏reach(q) =)

�⇤(q,w) = ✏reach

0

@
[

p2R

[

r2�⇤(p,a)
�⇤(r, x)

1

A

• N =
[

p2R
�⇤(p,a): All the states reachable from q with the

letter a.

• �⇤(q,w) = ✏reach

[

r2N
�⇤(r, x)

!

33

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if �⇤N(s,w) \ A 6= ;.

Definition
The language L(N) accepted by a NFA N = (Q,⌃, �, s,A) is

{w 2 ⌃⇤ | �⇤(s,w) \ A 6= ;}.

Important: Formal definition of the language of NFA above
uses �⇤ and not �. As such, one does not need to include
"-transitions closure when specifying �, since �⇤ takes care of
that.

34

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if �⇤N(s,w) \ A 6= ;.

Definition
The language L(N) accepted by a NFA N = (Q,⌃, �, s,A) is

{w 2 ⌃⇤ | �⇤(s,w) \ A 6= ;}.

Important: Formal definition of the language of NFA above
uses �⇤ and not �. As such, one does not need to include
"-transitions closure when specifying �, since �⇤ takes care of
that.

34

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• �⇤(s, ✏) =

• �⇤(s, 0) =
• �⇤(b, 0) =
• �⇤(b, 00) =

35

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• �⇤(s, ✏) =
• �⇤(s, 0) =

• �⇤(b, 0) =
• �⇤(b, 00) =

35

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• �⇤(s, ✏) =
• �⇤(s, 0) =
• �⇤(b, 0) =

• �⇤(b, 00) =

35

Example

Models of Computation Lecture �: Nondeterministic Automata [Fa’��]

the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this
metaphor is that if an NFA reads a string that is not in its language, it destroys all universes.

Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as
a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes
00 or 11, it suffices to demonstrate a single walk in our example NFA that starts at s and ends
at c, and whose edges are labeled with the symbols in w. Equivalently, whenever the NFA faces a
nontrivial choice, the prover can simply tell the NFA which state to move to next.

This intuition can be formalized as follows. Consider a deterministic finite state machine
whose input alphabet is the product ⌃⇥⌦ of an input alphabet ⌃ and an oracle alphabet ⌦.
Equivalently, we can imagine that this DFA reads simultaneously from two strings of the same
length: the input string w and the oracle string !. In either formulation, the transition function
has the form � : Q⇥ (⌃⇥⌦)! Q. As usual, this DFA accepts the pair (w,!) 2 (⌃⇥⌦)⇤ if and
only if �⇤(s, (w,!)) 2 A. Finally, M nondeterministically accepts the string w 2 ⌃⇤ if there is
an oracle string ! 2 ⌦⇤ with |!|= |w| such that (w,!) 2 L(M).

�.� "-Transitions

It is fairly common for NFAs to include so-called "-transitions, which allow the machine to
change state without reading an input symbol. An NFA with "-transitions accepts a string w

if and only if there is a sequence of transitions s
a1�! q1

a2�! q2
a3�! · · · a`�! q` where the final

state q` is accepting, each ai is either " or a symbol in ⌃, and a1a2 · · · a` = w.
For example, consider the following NFA with "-transitions. (For this example, we indicate

the "-transitions using large red arrows; we won’t normally do that.) This NFA deliberately has
more "-transitions than necessary.

0 0

1 1

1,0 1,0s

b

g

e
ε

ε

εε
ε

c

f

a

d
ε

An NFA with "-transitions

The NFA starts as usual in state s. If the input string is 100111, the the machine might
non-deterministically choose the following transitions and then accept.

s
1�! s

"�! d
"�! a

0�! b
0�! c

"�! d
1�! e

1�! f
"�! e

1�! f
"�! c

"�! g

More formally, the transition function in an NFA with "-transitions has a slightly larger
domain � : Q⇥ (⌃[{"})! 2Q. The "-reach of a state q 2Q consists of all states r that satisfy
one of the following conditions:

• either r = q,

• or r 2 �(q0,") for some state q
0 in the "-reach of q.

In other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions
leading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f , g}.

�

What is:

• �⇤(s, ✏) =
• �⇤(s, 0) =
• �⇤(b, 0) =
• �⇤(b, 00) =

35

Constructing generalized NFAs

DFAs and NFAs

• Every DFA is a NFA so NFAs are at least as powerful as DFAs.
• NFAs prove ability to “guess and verify” which simplifies
design and reduces number of states

• Easy proofs of some closure properties

36

Example

L = {bitstrings that have a 1 three positions from the end}

37

Tasos

100

00100,000

A simple transformation

Theorem
For every NFA N there is another NFA N0 such that L(N) = L(N0)

and such that N0 has the following two properties:

• N0 has single final state f that has no outgoing transitions
• The start state s of N is different from f

Why couldn’t we say this for DFA’s?

38

A simple transformation

Theorem
For every NFA N there is another NFA N0 such that L(N) = L(N0)

and such that N0 has the following two properties:

• N0 has single final state f that has no outgoing transitions
• The start state s of N is different from f

Why couldn’t we say this for DFA’s?

38

A simple transformation

Hint: Consider the L = 0⇤ + 1⇤.

39

DFA É
Os

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the
following operations?

• union
• intersection
• concatenation
• Kleene star
• complement

40

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) [L(N2).

41

Closure under union

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1) [L(N2).

q1 f1N1

q2 f2N2

41

É
E

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

42

Closure under concatenation

Theorem
For any two NFAs N1 and N2 there is a NFA N such that
L(N) = L(N1)·L(N2).

q1 f1N1 q2 f2N2

42

as I

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))⇤.

q1 f1N1

43

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))⇤.

q1 f1N1

ε

Does not work! Why?

44

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))⇤.

q1 f1N1

ε

Does not work! Why?

44

Closure under Kleene star

Theorem
For any NFA N1 there is a NFA N such that L(N) = (L(N1))⇤.

q1 f1N1q0
ε

ε

45

Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or
languages, perform some operation and get a new language
that belongs to that same class (closure).

Tomorrow’s lab will go over more examples of language
transformations.

46

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

q0start q1 q2 q3

0,1

1 0,1 0,1

Yes but it likely won’t be pretty.

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1

47

Equivalence

Do all NFAs have a corresponding DFA?

q0start q1 q2 q3

0,1

1 0,1 0,1

Yes but it likely won’t be pretty.

q000start q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1 47

