Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani
August 31, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do not contain the subsequence 11000

$$
\begin{aligned}
& 0^{*}+0^{*} 10^{*}-0^{*} 10^{*} 10^{*} \\
& +0^{*} 10^{*} 10^{*} / 11^{*}+\ldots
\end{aligned}
$$

Pre-lecture brain teaser II

Find the regular expression for the language containing all binary strings that do not contain the substring 101010

Pre-lecture brain teaser II

Find the regular expression for the language containing all binary strings that do not contain the substring 101010

Pre-lecture brain teaser III

Find the regular expression for the language contains all binary strings whose $\#_{0}(w) \% 7=0$ (number of 0 's divisible by 7).

Pre-lecture brain teaser III

Find the regular expression for the language contains all binary strings whose $\#_{0}(w) \% 7=0(n u m b e r ~ o f ~ 0 ' s ~ d i v i s i b l e ~ b y ~ 7) . ~$

Pre-lecture brain teaser III

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0 's divisible by 7

Pre-lecture brain teaser III

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0 's divisible by 7

$$
\begin{array}{r}
w=1001110110111001 \\
1000010111110010 \\
0101010011001111 \\
1001001011111100
\end{array}
$$

You have 30 seconds.

Pre-lecture brain teaser III

Show that the following string (w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0 's divisible by 7

$$
\begin{array}{r}
w=1001110110111001 \\
1000010111110010 \\
0101010011001111 \\
1001001011111100
\end{array}
$$

You have 30 seconds. Pray, choose a strategy and hope you get lucky.

Tangential Thought

Does luck allow us to solve unsolvable problems?

Tangential Thought

Does luck allow us to solve unsolvable problems? New example: Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b

Program on M_{1} (Dijkstra's algorithm):
Initialize for each node v, $\operatorname{Dist}(s, v)=d^{\prime}(s, v)=\infty$ Initialize $X=\emptyset, d^{\prime}(s, s)=0$ for $i=1$ to $|V|$ do

Let v be node realizing $d^{\prime}(s, v)=\min _{u \in V-x} d^{\prime}(s, u)$
Dist $(s, v)=d^{\prime}(s, v)$
$X=X \cup\{v\}$
Update $d^{\prime}(s, u)$ for each u in $V-X$ as follows:
$d^{\prime}(s, u)=\min \left(d^{\prime}(s, u), \operatorname{Dist}(s, v)+\ell(v, u)\right)$

Lucky machine programs

Problem: Find shortest path from a to b
Program on M_{2} (Blind luck):
Initialize path $=$ []
path $+=a$
While(netatb) not at b
take an outgoing edge (u,v) from current node u to v
current $=v$
path $+=v$
return path

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_{2} can solve that M_{1} cannot.

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: M_{1} and M_{2}

- M_{1} is a classic deterministic machine.
- M_{2} is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_{2} can solve that M_{1} cannot.

The notion was first posed by Robert W. Floyd in 1967.

Non-determinism in computing

In computer science, a
nondeterministic machine is a theoretical device that can
have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Non-determinism in media

Placeholder slide for youtube.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Non-deterministic finite automata (NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not deterministic.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

$010 \Rightarrow \varepsilon 0 \varepsilon \in(1)=1 D \varepsilon \varepsilon \varepsilon \ldots$
Informal definition: An NFA N accepts a string wiff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: Example

- Is 010110 accepted?

NFA acceptance: Wait! what about the ϵ ?!

NFA acceptance: Example

Is 010110 accepted?

NFA acceptance: Example

NFA acceptance: Example

- Is 010110 accepted? Y

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted? N

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N ?

Strings that contain substring 101 or 11

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by N ?

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
-What is the language accepted by N ?
Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

Formal definition of NFA

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,

Formal Tuple Notation

Definition

A non-deterministic finite automata ($N F A$) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,

Formal Tuple Notation

Definition

A non-deterministic finite automata ($N F A$) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
$\mathcal{P}(Q)$?

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q)=2^{Q}=\{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example
$Q=\{1,2,3,4\}$

$$
\mathcal{P}(Q)=\left\{\begin{array}{c}
\{1,2,3,4\}, \\
\{2,3,4\},\{1,3,4\},\{1,2,4\},\{1,2,3\}, \\
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \\
\{1\},\{2\},\{3\},\{4\}, \\
\{ \}
\end{array}\right\}
$$

Formal Tuple Notation

Definition

A non-deterministic finite automata ($N F A$) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Formal Tuple Notation

Definition

A non-deterministic finite automata ($N F A$) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

Formal Tuple Notation

Definition

A non-deterministic finite automata ($N F A$) $N=(Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \Sigma \cup\{\varepsilon\}$ is a subset of $Q-$ a set of states.

Example

$$
\cdot Q=\left\{q_{0}, q_{2}, q_{2}, q_{5}\right\}
$$

$$
\text { . } \Sigma=\{0, i\}
$$

- $\delta=$

	ε	0	1
q_{0}	$\left\{q_{0}\right\}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{3}\right\}$
q_{1}	$\left\{q_{1} q_{3}\right\}$	$\left\{q_{2}\right\}$	$\{3$
q_{2}	$\left\{q_{2}\right\}$	$\}$	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{33}^{3}\right.$	$\left\{q_{3}\right\}$	$\left\{q_{5}\right\}$

- $s=q 0$
- $A=\{23\}$

Extending the transition function to

 strings
Extending the transition function to strings

- $\operatorname{NFA} N=(Q, \Sigma, \delta, s, A)$

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.
- Want transition function $Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$

Extending the transition function to strings

- NFA $N=(Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.
- Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$
- $\delta^{*}(q, w)$: set of states reachable on input w starting in state q.

Extending the transition function to strings

Definition
For $N F A N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε-transitions.

Extending the transition function to strings

Definition
For $N F A N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the $\epsilon \operatorname{reach}(q)$ is the set of all states that q can reach using only ε-transitions.

Definition
For $X \subseteq Q: \epsilon \operatorname{reach}(X)=\bigcup_{X \in X} \in \operatorname{reach}(x)$.

Extending the transition function to strings

$\operatorname{ereach(q):~set~of~all~states~that~q~can~reach~using~only~}$ ε-transitions.

Definition Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\operatorname{\epsilon reach}(q)$

Extending the transition function to strings

$\operatorname{rreach(q):~set~of~all~states~that~q~can~reach~using~only~}$ ε-transitions.

Definition Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $w=a$ where $a \in \Sigma$:

$$
\delta^{*}(q, a)=\epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{ereach}(q)} \delta(p, a)\right)
$$

Extending the transition function to strings

$\operatorname{rreach(q):~set~of~all~states~that~q~can~reach~using~only~}$ ε-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $w=a$ where $a \in \Sigma$:

$$
\delta^{*}(q, a)=\epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{ereach}(q)} \delta(p, a)\right)
$$

- if $w=a x$:

$$
\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

Example of extended transition function

Find $\delta^{*}\left(q_{0}, 11\right)$:

Example of extended transition function

Find $\delta^{*}\left(q_{0}, 11\right)$:
$\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)$

Example of extended transition function

We know $w=11=a x$ so $a=1$ and $x=1$
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}\left(q_{0}\right)}\left(\bigcup_{r \in \delta^{*}(p, 1)} \delta^{*}(r, 1)\right)\right)$

Example of extended transition function

$\operatorname{treach}\left(q_{0}\right)=\left\{q_{0}\right\}$
$\delta^{*}\left(q_{0}, 11\right)=\epsilon \operatorname{reach}\left(\bigcup_{p \in\left\{q_{0}\right\}}\left(\bigcup_{r \in \delta^{*}(p, 1)} \delta^{*}(r, 1)\right)\right)$

Example of extended transition function

Simplify:
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in \delta^{*}\left(\left\{0_{0}\right\}, 1\right)} \delta^{*}(r, 1)\right)$

Example of extended transition function

$\operatorname{Need} \delta^{*}\left(q_{0}, 1\right)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)=\operatorname{\epsilon reach}\left(\delta\left(q_{0}, 1\right)\right)$:
$=\epsilon \operatorname{reach}\left(\left\{q_{0}, q_{1}\right\}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in \delta^{*}\left(\left\{q_{0}\right\}, 1\right)} \delta^{*}(r, 1)\right)$

Example of extended transition function

$\operatorname{Need} \delta^{*}\left(q_{0}, 1\right)=\operatorname{\epsilon reach}\left(\bigcup_{p \in \operatorname{\epsilon reach}(q)} \delta(p, a)\right)=\operatorname{\epsilon reach}\left(\delta\left(q_{0}, 1\right)\right)$:
$=\epsilon \operatorname{reach}\left(\left\{q_{0}, q_{1}\right\}\right)=\left\{q_{0}, q_{1}, q_{2}\right\}$
$\delta^{*}\left(q_{0}, 11\right)=\operatorname{\epsilon reach}\left(\bigcup_{r \in\left\{q_{0}, q_{1}, q_{2}\right\}} \delta^{*}(r, 1)\right)$

Example of extended transition function

Simplify

$$
\begin{aligned}
& \delta^{*}\left(q_{0}, 11\right)=\epsilon \operatorname{reach}\left(\delta^{*}\left(q_{0}, 1\right) \cup \delta^{*}\left(q_{1}, 1\right) \cup \delta^{*}\left(q_{2}, 1\right)\right) \\
& \text { (}\{q 0, q,\} \cup \xi_{3} q^{\prime} \cup\left\{q_{3}\right. \text {) } \\
& \left\{\begin{array}{llll}
q_{0} & q_{1} & q_{2} & q_{3}
\end{array}\right\}
\end{aligned}
$$

Transition for strings: w =ax

$$
\delta^{*}(q, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in \operatorname{ereach}(q)}\left(\bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)
$$

- $R=\operatorname{\epsilon reach}(q) \Longrightarrow$

$$
\delta^{*}(q, w)=\epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)
$$

- $N=\bigcup_{p \in R} \delta^{*}(p, a)$: All the states reachable from q with the letter a.
- $\delta^{*}(q, w)=\operatorname{\epsilon reach}\left(\bigcup_{r \in N} \delta^{*}(r, x)\right)$

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.
Definition
The language $L(N)$ accepted by a $N F A N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Formal definition of language accepted by N

Definition
A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.
Definition
The language $L(N)$ accepted by a $N F A N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \Sigma^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses δ^{*} and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^{*} takes care of that.

Example

What is:

- $\delta^{*}(S, \epsilon)=$

Example

What is:

- $\delta^{*}(s, \epsilon)=$
- $\delta^{*}(s, 0)=$

Example

What is:

- $\delta^{*}(s, \epsilon)=$
- $\delta^{*}(s, 0)=$
- $\delta^{*}(b, 0)=$

Example

What is:

- $\delta^{*}(s, \epsilon)=$
- $\delta^{*}(s, 0)=$
- $\delta^{*}(b, 0)=$
- $\delta^{*}(b, 00)=$

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example
$L=\{$ bitstrings that have a 1 three positions from the end $\}$

100
00100
1000

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state f that has no outgoing transitions
- The start state s of N is different from f

A simple transformation

Theorem

For every NFA N there is another NFA N^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the $L=0^{*}+1^{*}$.

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under union

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under concatenation

Theorem
 For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under concatenation

Theorem

For any two NFAs N_{1} and N_{2} there is a NFA N such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under Kleene star

Theorem
For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Does not work! Why?

Closure under Kleene star

Theorem

For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Transformations

All these examples are examples of language transformations.
A language transformation is one where you take one class or languages, perform some operation and get a new language that belongs to that same class (closure).

Tomorrow's lab will go over more examples of language transformations.

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.

