Find the regular expression for the language containing all binary strings that do not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani

September 04, 2025

University of Illinois at Urbana-Champaign

Find the regular expression for the language containing all binary strings that do

Find the regular expression for the language containing all binary strings that **do not** contain the substring 101010

Find the regular expression for the language containing all binary strings that **do not** contain the substring 101010

Find the regular expression for the language contains all binary strings whose $\#_0(w)\%7 = 0$ (number of 0's divisible by 7).

Find the regular expression for the language contains all binary strings whose $\#_0(w)\%7 = 0$ (number of 0's divisible by 7).

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0's divisible by 7

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0's divisible by 7

```
W = 1001110110111001
```

1000010111110010

0101010011001111

1001001011111100

You have 30 seconds.

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0's divisible by 7

w = 1001110110111001 1000010111110010 0101001011111100 1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get lucky.

Does luck allow us to solve unsolvable problems?

Does luck allow us to solve unsolvable problems? New example: Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b

Program $o_{1}M_{1}$ (Dijkstra's algorithm):

```
Initialize for each node v, \operatorname{Dist}(s,v) = d'(s,v) = \infty

Initialize X = \emptyset, d'(s,s) = 0

for i = 1 to |V| do

Let v be node realizing d'(s,v) = \min_{u \in V - X} d'(s,u)

\operatorname{Dist}(s,v) = d'(s,v)

X = X \cup \{v\}

Update d'(s,u) for each u in V - X as follows:

d'(s,u) = \min \left( d'(s,u), \operatorname{Dist}(s,v) + \ell(v,u) \right)
```

Lucky machine programs

Problem: Find shortest path from a to b

Program on M₂ (Blind luck):

```
Initialize path = []
path += a
While(notatb)
    take an outgoing edge (u,v) from current node u to v
    current = v
    path += v
return path
```

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M_2 is a "lucky" machine that will always make the right choice.

Question:

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

Does luck allow us to solve unsolvable problems? Consider two machines: M_1 and M_2

- M_1 is a classic deterministic machine.
- M₂ is a "lucky" machine that will always make the right choice.

Question: Are there problems which M_2 can solve that M_1 cannot.

The notion was first posed by **Robert W. Floyd** in 1967.

Non-determinism in computing

In computer science, a nondeterministic machine is a theoretical device that can have more than one output for the same input.

A machine that is capable of taking multiple states concurrently. Whenever it reaches a choice, it takes both paths.

If there is a path for the string to be accepted by the machine, then the string is part of the language.

Non-determinism in media

Placeholder slide for youtube.

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

(NFA) Introduction

Non-deterministic finite automata

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

Today we'll talk about automata whose logic is not deterministic.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is passible reached by N from the start state on input w.

The Language accepted (or recognized) by a NFA N is denote by L(N) and defined as. $L(N) = \{w \mid N \text{ accepts } w\}$.

• Is 010110 accepted?

NFA acceptance: Wait! what about the ϵ ?!

Is 010110 accepted?

Is 010110 accepted?

• Is 010110 accepted?

- Is 010110 accepted?
- Is 010 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- Is 10011 accepted?
- What is the language accepted by *N*?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

Formal definition of NFA

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

• Q is a finite set whose elements are called states,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

 $\mathcal{P}(Q)$?

Reminder: Power set

Q: a set. Power set of Q is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is set of all subsets of Q.

Example
$$Q = \{1, 2, 3, 4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right\}$$

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\cdot \Sigma$ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

 $\delta(q,a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.

• NFA
$$N = (Q, \Sigma, \delta, s, A)$$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$

- NFA $N = (Q, \Sigma, \delta, s, A)$
- $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Definition

For NFA $N=(Q,\Sigma,\delta,s,A)$ and $q\in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

For $X \subseteq Q$: ϵ reach $(X) = \bigcup_{x \in X} \epsilon$ reach(x).

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

 ϵ reach(q): set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

• if
$$w = \varepsilon$$
, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$

• if
$$w = a$$
 where $a \in \Sigma$: $\delta^*(q, a) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right)$

• if
$$w = ax$$
: $\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)\right)$

Find δ^* ($q_0, 11$):

Find
$$\delta^*$$
 ($q_0, 11$):

$$\delta^*(q,w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p,a)} \delta^*(r,x)\right)\right)$$

We know
$$w = 11 = ax$$
 so $a = 1$ and $x = 1$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q_0)} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1) \right) \right)$$

$$\epsilon$$
reach $(q_0) = \{q_0\}$

$$\delta^*(q_0, 11) = \epsilon$$
reach $\left(\bigcup_{p \in \{q_0\}} \left(\bigcup_{r \in \delta^*(p, 1)} \delta^*(r, 1)\right)\right)$

Simplify:

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1)\right)$$

Need
$$\delta^*(q_0, 1) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right) = \epsilon \operatorname{reach}(\delta(q_0, 1))$$
:
$$= \epsilon \operatorname{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \delta^*(\{q_0\}, 1)} \delta^*(r, 1)\right)$$

Need
$$\delta^*(q_0, 1) = \epsilon \operatorname{reach}\left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \delta(p, a)\right) = \epsilon \operatorname{reach}(\delta(q_0, 1))$$
:
$$= \epsilon \operatorname{reach}(\{q_0, q_1\}) = \{q_0, q_1, q_2\}$$

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}\left(\bigcup_{r \in \{q_0, q_1, q_2\}} \delta^*(r, 1)\right)$$

Simplify

$$\delta^*(q_0, 11) = \epsilon \operatorname{reach}(\delta^*(q_0, 1) \cup \delta^*(q_1, 1) \cup \delta^*(q_2, 1))$$

Transition for strings: w = ax

$$\delta^*(q, w) = \epsilon \operatorname{reach} \left(\bigcup_{p \in \epsilon \operatorname{reach}(q)} \left(\bigcup_{r \in \delta^*(p, a)} \delta^*(r, x) \right) \right)$$

•
$$R = \epsilon \operatorname{reach}(q) \implies \delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{p \in R} \bigcup_{r \in \delta^*(p, a)} \delta^*(r, x)\right)$$

• $N = \bigcup_{p \in R} \delta^*(p, a)$: All the states reachable from q with the letter a.

•
$$\delta^*(q, w) = \epsilon \operatorname{reach}\left(\bigcup_{r \in N} \delta^*(r, x)\right)$$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{W \in \Sigma^* \mid \delta^*(s, W) \cap A \neq \emptyset\}.$$

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{W \in \Sigma^* \mid \delta^*(s, W) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

What is:

•
$$\delta^*(s, \epsilon) =$$

What is:

- $\delta^*(s, \epsilon) =$
- $\delta^*(s, 0) =$

What is:

- $\delta^*(s, \epsilon) =$
- $\delta^*(s, 0) =$
- $\delta^*(b,0) =$

Example

What is:

- $\delta^*(s, \epsilon) =$
- $\delta^*(s, 0) =$
- $\delta^*(b, 0) =$
- $\delta^*(b,00) =$

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example

 $L = \{ bitstrings that have a 1 three positions from the end \}$

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn't we say this for DFA's?

A simple transformation

Hint: Consider the L = $0^* + 1^*$.

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Closure under concatenation

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Theorem

For any NFA N_1 there is a NFA N such that $L(N) = (L(N_1))^*$.

Does not work! Why?

Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or languages, perform some operation and get a new language that belongs to that same class (closure).

Tomorrow's lab will go over more examples of language transformations.

Last thought

Equivalence

Do all NFAs have a corresponding DFA?

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty.