

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do
not contain the subsequence 111000

ECE-374-B: Lecture 3 - NFAs

Instructer: Nickvash Kani
September 04, 2025

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expression for the language containing all binary strings that do
not contain the subsequence 111000 ‘ '

6/‘
GSGEIE o h L g
DIV IR NI, SRS
Koul*(ybcow-: 0"_e0*l O ~ O*1 O*10~
+ 0¥ ()"[O*l‘ke o> 1 0X]| O&['Of*

v ofl 010" 1T o 1k0o I f
| “X%\z

Pre-lecture brain teaser Il

Find the regular expression for the language containing all binary strings that do
not contain the substring 101010

Pre-lecture brain teaser Il

Find the regular expression for the language containing all binary strings that do
not contain the substring 101010

Pre-lecture brain teaser llI

Find the regular expression for the language contains all binary strings whose
#o(Ww)%7 = 0(number of 0’s divisible by 7).

Pre-lecture brain teaser llI

Find the regular expression for the language contains all binary strings whose
#o(Ww)%7 = 0(number of 0’s divisible by 7).

Pre-lecture brain teaser llI

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’s divisible by 7

Pre-lecture brain teaser llI

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’s divisible by 7

w =1001110110111001
1000010111110010
0101010011001111
1001001011111100

You have 30 seconds.

Pre-lecture brain teaser llI

Show that the following string(w) is a member of the language that:

- does not contain the subsequence 111000 or
- does not contain the substring 101010 or
- or has a number of 0’s divisible by 7

w =1001110110111001 (V
1000010111110010 cs

0101010011001111
1001001011111100

You have 30 seconds. Pray, choose a strategy and hope you get lucky.

Tangential Thought

Does luck allow us to solve unsolvable problems?

Tangential Thought

Does luck allow us to solve unsolvable problems? New example: Consider two
machines: M4 and M,

- M4 is a classic deterministic machine.

- My is a “lucky” machine that will always make the right choice.

Lucky machine programs

Problem: Find shortest path from a to b

Program oggld: (Dijkstra’s algorithm):

Initialize for each node v, Dist(s,v)=d'(s,v) = oo
Initialize X=0, d'(s,5)=0
for i=1 to |V| do
Let v be node realizing d'(s,v) = minyev—xd'(s, u)
Dist(s,v) = d'(s, V)
X =XU{v}
Update d'(s,u) for each u in V—X as follows:
d'(s,u) = min (d’(s, u), Dist(s,v) + £(v, u))
L d—

Lucky machine programs

Problem: Find shortest path from a to b

Program on M, (Blind luck):

Initialize path =]
path +=a

While(notatb)
take an outgoing edge (u,v) from current node u to v

current = v
path +=v
return path

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 is a classic deterministic machine.

- My is a “lucky” machine that will always make the right choice.

Question:

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 is a classic deterministic machine.

- My is a “lucky” machine that will always make the right choice.

Question: Are there problems which M, can solve that My cannot.

Tangential Thought

Does luck allow us to solve unsolvable problems?
Consider two machines: My and M,

- M4 is a classic deterministic machine.

- My is a “lucky” machine that will always make the right choice.

Question: Are there problems which M, can solve that My cannot.

The notion was first posed by Robert W. Floyd in 1967.

Non-determinism in computing

In computer science, a nondeterministic
machine Is a theoretical device that can

have more than one output for the same
Input.

A machine that is capable of taking
multiple states concurrently. Whenever
It reaches a choice, it takes both paths.

If there is a path for the string to be
accepted by the machine, then the string
IS part of the language.

J

accept or

l
M reject

N :
e — reject
"4
¢ —accept

10

Non-determinism in media

Placeholder slide for youtube.

1

Why non-determinism?

- Non-determinism adds power to the model; richer programming language
q * ”n
and hence (much) easier to “design” programs

- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly

- Many deep connections to various fields in Computer Science and
Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get
used to it and then you will appreciate it slowly.

12

Non-deterministic finite automata
(NFA) Introduction

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

13

Non-deterministic Finite State Automata by example

When you come to a fork in the road, take it.

13

NFA acceptance: Informal

start

Informal definition: An NFA N accepts a string w iff some accepting state is
reached by N from the start state on input w.

14

NFA acceptance: Informal

Informal definition: An NFA N accepts a string w iff some accepting state is p&g‘é[«.
reached by N from the start state on input w.

Theeguage accepted (or recognized) by a NFA N is denote by L(N) and defined
a @ {w | N accepts w}.

14

NFA acceptance: Example

- 1s 010110 accepted?

15

NFA acceptance: Wait! what about the €?!

16

NFA acceptance: Example

0] 01
1

s 010110 accepted?

17

NFA acceptance: Example

Symbol Read:

s 010110 accepted?

17

NFA acceptance: Example

- Is 010110 accepted?

18

NFA acceptance: Example

- Is 010110 accepted?

- 1s 010 accepted? %

18

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted? \le/}

18

NFA acceptance: Example

- Is 010110 accepted?
- Is 010 accepted?
- Is 101 accepted?
- 1s 10011 accepted?
S

18

NFA acceptance: Example

start
a a,'
- 1S 010110 accepted? GOA Y,
- 1s 010 accepted? > . /%O_/)&)
- Is 101 accepted?
- 1510011 accepted? =7 ’@
- What Is the language accepted by N? o
L"‘§“ O by cubshing asco/so e,
((
of bk F L M OD—=D —O)
3 Q/e

NFA acceptance: Example

- Is 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 1s 10011 accepted?

- What Is the language accepted by N?

18

NFA acceptance: Example

- Is 010110 accepted?

- Is 010 accepted?

- Is 101 accepted?

- 1s 10011 accepted?

- What Is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than

to show that a string is not accepted. i

Formal definition of NFA

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- Q Is a finite set whose elements are called states,

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- Q Is a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,

-s/

soc &S
~ A : g-@'&te&

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- QIs a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,

- §:Qx X U{e} = P(Q)is the transition function (here P(Q) is the power set
of Q),

19

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- Q Is a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,
- §:Qx X U{e} = P(Q)is the transition function (here P(Q) is the power set
of Q),

P(Q)?

19

Reminder: Power set

Q: a set. Power set of Q is: P(Q) = 29 = {X | X C Q} is set of all subsets of Q.

Example
Q=11,2,3,4}

{1,2,3,4},
(2,3,6},{1,3,4},{1,2,4},{1,2,3},
P(Q) =< {1,2},{1,3},{1,4},{2,3},{2,4},{3,4},
35421355445,

U)

-~

20

\:w \
Ml /p(‘l)l:Z’\

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- QIs a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,

- §:Qx X U{e} = P(Q)is the transition function (here P(Q) is the power set
of Q),

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- Q Is a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,

- §:Qx X U{e} = P(Q)is the transition function (here P(Q) is the power set
of Q),

- s € Qs the start state,

21

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, %, 4,5s,A) is a five tuple where

- Q Is a finite set whose elements are called states,

- Y 1s a finite set called the input alphabet,

- §:Qx X U{e} = P(Q)is the transition function (here P(Q) is the power set
of Q),

- s € Qs the start state,

- A C Qs the set of accepting/final states.

6(g,a) fora € X U {e} Is a subset of Q — a set of states.

21

0,1 0,

C Q= {40 7€ 12 '27? Aééq,;s
- §0,13
C 5= L 4, ¢, Z. 5
— y; £2.3 <. 1223 (Z&? {?v’l
o £90% $9273 £3 £253
5= Lo | ; éqv" ﬂ'z és ¢ :3 éi’;s 22

Extending the transition function to
strings

Extending the transition function to strings

- NFAN = (Q,%,4,s,A)

23

Extending the transition function to strings

- NFAN = (Q,%,6,5,A)
+ (g, a): set of states that N can go to from g on reading a € EU {e}.

23

Extending the transition function to strings

- NFAN = (Q,%,6,5,A)
+ (g, a): set of states that N can go to from g on reading a € X U {&}.
-+ Want transition function 6* : Q x £* — P(Q)

23

Extending the transition function to strings

- NFAN = (Q,%,6,5,A)
+ (g, a): set of states that N can go to from g on reading a € X U {&}.

-+ Want transition function 6* : Q x £* — P(Q)
+ 0%(g,w): set of states reachable on input w starting in state g.

23

Extending the transition function to strings

Definition ‘
For NFAN = (Q, %,6,s,A) and g € Q the ereach(q) Is the set of all states that g can

reach using only e-transitions.

60 |

1,0

24

Extending the transition function to strings

Definition ‘
For NFAN = (Q, %,6,s,A) and g € Q the ereach(q) Is the set of all states that g can

reach using only e-transitions.

Oad Oy

10\
g <‘L 1 @T’
Definition < resck- (43 - fs, Jn‘s

For X C Q: ereach(X) = [,y ereach(x).

24

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw=¢, 0"(g,w) = ereach(q)

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw=¢, 0"(g,w) = ereach(q)

peereach(q)

- ifw=awhereaeXx: §%(g,a)= ereach (U o(p, a))

25

Extending the transition function to strings

ereach(q): set of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : Q x ¥* — P(Q):

- 1fw=¢, 0"(g,w) = ereach(q)

peereach(q)

- ifw=awhereaeXx: §%(g,a)= ereach (U o(p, a))

- ifw = ax: 0*(g,w) = ereach (U (U 5*(rax)>)

peereach(q) \red*(p,a)

25

Example of extended transition function

start

Find 6* (go, 11):

26

Example of extended transition function

Find 6* (go, 11):
5*(q, w) = ereach 9 L) & (r.x)
peereach(q) \red*(p,a)

26

Example of extended transition function

We knoww =11=axsoa=1and x =1

5*(qo, 11) = ereach 9 L) o (r,)
p€ereach(qgg) \red*(p,1)

27

Example of extended transition function

ereach(qo) = {qo}

5*(qo, 1) = ereach(9 (L o (r,)))
pe{Go}r \res*(p,1)

28

Example of extended transition function

Simplify:

6(qo,11) = ereach (U 5*(r,1))

reé*({9o},1)

29

Example of extended transition function

Need 6*(qgo, 1) = ereach (Up&reach(q) J(p, a)) = ereach(d (qo,1)):
= ereach({qo, g1}) = {qo0, 91, G2}

5*(qo, 11) = ereach (g (5*(r,1))

reé*({qo},1)

30

Example of extended transition function

Need 6*(qgo, 1) = ereach (Up&reach(q) J(p, a)) = ereach(d (qo,1)):
= ereach({qo, g1}) = {qo0, 91, G2}

5*(qo, 11) = ereach (g (5*(r,1)>

re{qo,91,92}

31

Example of extended transition function

Simplify
6(qo,11) = ereach(6*(qo, 1) U™ (g1, 1) U (g2, 1))

32

Transition for strings: w = ax

5*(g, w) = ereach g L & (r.x)
p€ereach(q) \ redé*(p,a)

- R = ereach(q) = 6%(q,w) = ereach (U g 5*(r,x)>

pER red*(p,a)

- N = U 6*(p,a): All the states reachable from g with the letter a.
pER

- 6*(g, w) = ereach (U 5*(r,x)>

renN

33

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 63(s,w) NA # (.

Definition _
The language L(N) accepted by a NFAN = (Q, ¥,9,5,A) IS

fwe |6 (s,w)NA#D}.

34

Formal definition of language accepted by N

Definition .
A string w is accepted by NFA N if 63(s,w) NA # (.

Definition _
The language L(N) accepted by a NFAN = (Q, ¥,9,5,A) IS

fwe |6 (s,w)NA#D}.

important: Formal definition of the language of NFA above uses §* and not §. As
such, one does not need to include e-transitions closure when specifying §, since

d* takes care of that.

34

What is:

+ 0%(S,€) =

35

What is:

+ 0%(S,€) =
+ 0%(s,0) =

35

What is:

+ 0%(S,€) =
+ 0%(s,0) =
+ 0%(b,0) =

35

What is:
+ 0%(S,€) =
+ 0%(s,0) =
+ 0%(b,0) =
+ 0%(b,00) =

35

Constructing generalized NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.

- NFAs prove ability to “guess and verify” which simplifies design and reduces
number of states

- Easy proofs of some closure properties

36

L = {bitstrings that have a 1 three positions from the end}

st

D —= OG5 OF@

37

A simple transformation

Theorem _
For every NFA N there is another NFA N" such that L(N) = L(N") and such that N’

has the following two properties:

- N" has single final state f that has no outgoing transitions
- The start state s of N is different from f

38

A simple transformation

Theorem _
For every NFA N there is another NFA N" such that L(N) = L(N") and such that N’

has the following two properties:

- N" has single final state f that has no outgoing transitions
- The start state s of N is different from f

Why couldn’t we say this for DFA's?

38

A simple transformation

Hint: Consider the L = 0* + 1*.

39

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following
operations?

- union

- Intersection

- concatenation
- Kleene star

- complement

40

Closure under union

Theorem .
For any two NFAs Ny and N, there is a NFA N such that L(N) = L(Nq) U L(N,).

41

Closure under union

Theorem .
For any two NFAs Nq and N, there is a NFA N such that L(N) = L(N41) U L(Ny).

£ ‘ Ny }

Y@ w0

41

Closure under concatenation

Theorem .
For any two NFAs Ny and N, there is a NFA N such that L(N) = L(Nq)<L(N,).

42

Closure under concatenation

Theorem .
For any two NFAs Ny and N, there is a NFA N such that L(N) = L(Nq)<L(N,).

O w BIEHE w O

42

Closure under Kleene star

Theorem _
For any NFA Ny there is a NFA N such that L(N) = (L(Nq))*.

N1

AN

43

Closure under Kleene star

Theorem '
For any NFA Ny there is a NFA N such that L(N) = (L(Nq))*.

Mﬂk'

A

Closure under Kleene star

Theorem '
For any NFA N1 there is a NFA N such that L(N) = (L(Nq))*.

Does not work! Why?

A

Closure under Kleene star

Theorem _
For any NFA N4 there isa NFAN s

45

Transformations

All these examples are examples of language transformations.

A language transformation is one where you take one class or languages, perform
some operation and get a new language that belongs to that same class (closure).

Tomorrow'’s lab will go over more examples of language transformations.

46

Last thought

Do all NFAs have a corresponding DFA?

47

Equivalence

Do all NFAs have a corresponding DFA?

Yes but it likely won't be pretty. 47

