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Pre-lecture brain teaser

Find the regular expressions for the following languages (if
possible)

1. L1 = {0m1n|m,n ≥ 0}

2. L2 = {0n1n | n ≥ 0}

3. L3 = L1 ∪ L2

4. L4 = L1 ∩ L2
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Pre-lecture brain teaser

We have a language L = {0n1n|n ≥ 0}
Prove that L is non-regular.
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Proving non-regularity: Methods

• Pumping lemma. We will not cover it but it is sometimes
an easier proof technique to apply, but not as general as
the fooling set technique.

• Closure properties. Use existing non-regular languages
and regular languages to prove that some new language is
non-regular.

• Fooling sets- Method of distinguishing suffixes. To prove
that L is non-regular find an infinite fooling set.
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Not all languages are regular



Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions
are the same.

Question: Is every language a regular language? No.

• Each DFA M can be represented as a string over a finite
alphabet Σ by appropriate encoding

• Hence number of regular languages is countably infinite
• Number of languages is uncountably infinite
• Hence there must be a non-regular language!
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A Simple and Canonical Non-regular Language

L = {0n1n | n ≥ 0} = {ε, 01, 0011, 000111, · · · , }

Theorem
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require
counting number of zeros in input which cannot be done with
fixed memory.

How do we formalize intuition and come up with a formal
proof?
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Proof by contradiction

• Suppose L is regular. Then there is a DFA M such that
L(M) = L.

• Let M = (Q, {0, 1}, δ, s,A) where |Q| is finite.

q00start q10 q20 · · · qi qi+1

· · ·
q111 q112

q212

qreject0,1

1

1

0,1 0
0,1

0 0

1

0

1

1

0 0

7



Proof by contradiction

• Suppose L is regular. Then there is a DFA M such that
L(M) = L.

• Let M = (Q, {0, 1}, δ, s,A) where |Q| is finite.

q00start q10 q20 · · · qi qi+1

· · ·
q111 q112

q212

qreject0,1

1

1

0,1 0
0,1

0 0

1

0

1

1

0 0

7



Proof by Contradiction

• Suppose L is regular. Then there is a DFA M such that
L(M) = L.

• Let M = (Q, {0, 1}, δ, s,A) where |Q| = n.

Consider strings ε, 0, 00, 000, · · · , 0n total of n+ 1 strings.

What states does M reach on the above strings? Let
qi = δ∗(s, 0i).

By pigeon hole principle qi = qj for some 0 ≤ i < j ≤ n.
That is, M is in the same state after reading 0i and 0j where
i 6= j.

M should accept 0i1i but then it will also accept 0j1i where i 6= j.

This contradicts the fact that M accepts L. Thus, there is no DFA
for L.
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When two states are equivalent?



States that cannot be combined?

q00start q10 q20 · · · qi qi+1

· · ·
q111 q112

q212

qreject0,1

1

1

0,1 0
0,1

0 0

1

0

1

1

0 0

We concluded that because each 0i prefix has a unique state.
Are there states that aren’t unique?
Can states be combined?
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Equivalence between states

Definition
M = (Q,Σ, δ, s,A): DFA.

Two states p,q ∈ Q are equivalent if
for all strings w ∈ Σ∗, we have that

δ∗(p,w) ∈ A ⇐⇒ δ∗(q,w) ∈ A.

One can merge any two states that
are equivalent into a single state.

q0start q2

q1

q3

q4

0

1

00

0 1

1

1

0,1
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Distinguishing between states

Definition
M = (Q,Σ, δ, s,A): DFA.

Two states p,q ∈ Q are
distinguishable if there exists a string
w ∈ Σ∗, such that

δ∗(p,w) ∈ A and δ∗(q,w) /∈ A.

or

δ∗(p,w) /∈ A and δ∗(q,w) ∈ A.

q0start q2

q1

q3

q4

0

1

00

0 1

1

1

0,1
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Distinguishable prefixes

M = (Q,Σ, δ, s,A): DFA

Idea: Every string w ∈ Σ∗ defines a state ∇w = δ∗(s,w).

Definition
Two strings u,w ∈ Σ∗ are distinguishable for M (or L(M)) if ∇u
and ∇w are distinguishable.

Definition (Direct restatement)
Two prefixes u,w ∈ Σ∗ are
distinguishable for a language L if
there exists a string x, such that
ux ∈ L and wx /∈ L (or ux /∈ L and
wx ∈ L).

q0start q2

q1

q3

q4

0

1

00

0 1

1

1

0,1
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Distinguishable means different states

Lemma
L: regular language.

M = (Q,Σ, δ, s,A): DFA for L.

If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x) ∈ Q and ∇y = δ∗(s, y) ∈ Q
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Proof by a figure

Possible Not possible

sstart

δ∗(s, x)

δ∗(s, y)

δ∗(s, xw)

δ∗(s, yw)

x

y

w

w

sstart δ∗(s, x) =
δ∗(s, y)

δ∗(s, xw)

δ∗(s, yw)

x

y

w

w
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Review questions...

• Are ∇0i and ∇0j are distinguishable for the language
{0n1n | n ≥ 0}.

• Let L be a regular language, and let w1, . . . ,wk be strings
that are all pairwise distinguishable for L. How many
states must the DFA for L have?

• Prove that {0n1n | n ≥ 0} is not regular.
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Fooling sets: Proving non-regularity



Fooling Sets

Definition
For a language L over Σ a set of strings F (could be infinite) is a
fooling set or distinguishing set for L if every two distinct
strings x, y ∈ F are distinguishable.

Example: F = {0i | i ≥ 0} is a fooling set for the language
L = {0n1n | n ≥ 0}.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than |F| states.
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Recall

Already proved the following lemma:

Lemma
L: regular language.

M = (Q,Σ, δ, s,A): DFA for L.

If x, y ∈ Σ∗ are distinguishable, then ∇x 6= ∇y.

Reminder: ∇x = δ∗(s, x).
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Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof.
Let F = {w1,w2, . . . ,wm) be the fooling set.

Let M = (Q,Σ, δ, s,A) be any DFA that accepts L.

Let qi = ∇wi = δ∗(s, xi).

By lemma qi 6= qj for all i 6= j.

As such, |Q| ≥ |{q1, . . . ,qm}| = |{w1, . . . ,wm}| = |A|.
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Infinite Fooling Sets

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.
Let w1,w2, . . . ⊆ F be an infinite sequence of strings such that
every pair of them are distinguishable.

Assume for contradiction that ∃ M a DFA for L.

Let Fi = {w1, . . . ,wi}.

By theorem, # states of M ≥ |Fi| = i, for all i.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not
finite.
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Examples

• {0n1n | n ≥ 0}

• {bitstrings with equal number of 0s and 1s}

• {0k1` | k 6= `}
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Examples

L = {strings of properly matched open and closing parentheses}
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Examples

L = {palindromes over the binary alphabetΣ = {0, 1}}
A palindrome is a string that is equal to its reversal, e.g. 10001
or 0110.
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Closure properties: Proving
non-regularity



Non-regularity via closure properties

H = {bitstrings with equal number of 0s and 1s}

H′ = {0k1k | k ≥ 0}

Suppose we have already shown that L′ is non-regular. Can we
show that L is non-regular without using the fooling set
argument from scratch?

H′ = H ∩ L(0∗1∗)

Claim: The above and the fact that L′ is non-regular implies L
is non-regular. Why?

Suppose H is regular. Then since L(0∗1∗) is regular, and regular
languages are closed under intersection, H′ also would be
regular. But we know H′ is not regular, a contradiction.
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Non-regularity via closure properties

General recipe:

Apply 
closure 
properties

L1

L2

Ln

L?

Lnon-regular
KNOWN 
REGULAR

UNKNOWN
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Examples

L = {0k1k | k ≥ 1}

25



Careful with closure!

L′ = {0k1k | k ≥ 0}

Complement of L (L) is also not regular.

But L ∪ L = (0+ 1)∗ which is regular.

In general, always use closure in forward direction, (i.e L and L′

are regular, therefore L OP L′ is regular. )

In particular, regular languages are not closed under
subset/superset relations.
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Proving non-regularity: Summary

• Method of distinguishing suffixes. To prove that L is
non-regular find an infinite fooling set.

• Closure properties. Use existing non-regular languages
and regular languages to prove that some new language is
non-regular.

• Pumping lemma. We did not cover it but it is sometimes
an easier proof technique to apply, but not as general as
the fooling set technique.
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