Find the regular expressions for the following languages (if possible)

1. $L_1 = \{0^m 1^n | m, n \ge 0\}$

2.
$$L_2 = \{0^n 1^n \mid n \ge 0\}$$

3. $L_3 = L_1 \cup L_2$

4. $L_4 = L_1 \cap L_2$

CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Nickvash Kani

September 07, 2023

University of Illinois at Urbana-Champaign

Find the regular expressions for the following languages (if possible)

1. $L_1 = \{0^m 1^n | m, n \ge 0\}$

2.
$$L_2 = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$$

3. $L_3 = L_1 \cup L_2$

4. $L_4 = L_1 \cap L_2$

We have a language $L = \{0^{n}1^{n} | n \ge 0\}$ Prove that *L* is non-regular.

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.

Not all languages are regular

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is <u>countably infinite</u>
- Number of languages is <u>uncountably infinite</u>
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

A Simple and Canonical Non-regular Language

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$

Theorem *L* is not regular.

Question: Proof?

Intuition: Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| is finite.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let $M = (Q, \{0, 1\}, \delta, s, A)$ where |Q| = n.

Consider strings ϵ , 0, 00, 000, \cdots , 0ⁿ total of n + 1 strings.

What states does *M* reach on the above strings? Let $q_i = \delta^*(s, 0^i)$.

By pigeon hole principle $q_i = q_j$ for some $0 \le i < j \le n$. That is, M is in the same state after reading 0^i and 0^j where $i \ne j$.

M should accept $0^{i}1^{i}$ but then it will also accept $0^{j}1^{i}$ where $i \neq j$. This contradicts the fact that *M* accepts *L*. Thus, there is no DFA

8

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{*i*} prefix has a unique state. Are there states that aren't unique?

Can states be combined?

Definition $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^*$, we have that

$$\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition $M = (Q, \Sigma, \delta, s, A)$: DFA.

Two states $p, q \in Q$ are distinguishable if there exists a string $w \in \Sigma^*$, such that

start q_0 q_1 q_1 q_1 q_1 q_1 q_1 q_2 q_2 q_2 q_2 q_3 q_4

or

 $\delta^*(p,w) \notin A$ and $\delta^*(q,w) \in A$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

 $M = (Q, \Sigma, \delta, s, A)$: DFA

Idea: Every string $w \in \Sigma^*$ defines a state $\nabla w = \delta^*(s, w)$.

Definition

Two strings $u, w \in \Sigma^*$ are distinguishable for M (or L(M)) if ∇u and ∇w are distinguishable.

Definition (Direct restatement) Two prefixes $u, w \in \Sigma^*$ are **distinguishable** for a language *L* if there exists a string *x*, such that $ux \in L$ and $wx \notin L$ (or $ux \notin L$ and $wx \in L$).

Lemma L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x) \in Q$ and $\nabla y = \delta^*(s, y) \in Q$

Proof by a figure

• Are $\nabla 0^{j}$ and $\nabla 0^{j}$ are distinguishable for the language $\{0^{n}1^{n} \mid n \geq 0\}.$

Review questions...

- Are $\nabla 0^{j}$ and $\nabla 0^{j}$ are distinguishable for the language $\{0^{n}1^{n} \mid n \geq 0\}.$
- Let *L* be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for *L*. How many states must the DFA for *L* have?

Review questions...

- Are $\nabla 0^{j}$ and $\nabla 0^{j}$ are distinguishable for the language $\{0^{n}1^{n} \mid n \geq 0\}.$
- Let *L* be a regular language, and let w_1, \ldots, w_k be strings that are all pairwise distinguishable for *L*. How many states must the DFA for *L* have?
- Prove that $\{0^n 1^n \mid n \ge 0\}$ is not regular.

Fooling sets: Proving non-regularity

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$

Definition

For a language *L* over Σ a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings *x*, *y* \in *F* are distinguishable.

Example: $F = \{0^i \mid i \ge 0\}$ is a fooling set for the language $L = \{0^n 1^n \mid n \ge 0\}.$

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Already proved the following lemma:

Lemma L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$: DFA for L.

If $x, y \in \Sigma^*$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x = \delta^*(s, x)$.

Theorem (Reworded.) L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

Proof. Let $F = \{w_1, w_2, \dots, w_m\}$ be the fooling set. Let $M = (Q, \Sigma, \delta, s, A)$ be any DFA that accepts *L*. Let $q_i = \nabla w_i = \delta^*(s, x_i)$. By lemma $q_i \neq q_j$ for all $i \neq j$. As such, $|Q| \ge |\{q_1, \dots, q_m\}| = |\{w_1, \dots, w_m\}| = |A|$. **Corollary** If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Corollary If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Let $F_i = \{w_1, ..., w_i\}.$

By theorem, # states of $M \ge |F_i| = i$, for all *i*.

As such, number of states in M is infinite.

Corollary If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_1, w_2, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M \in DFA$ for L.

Let $F_i = \{w_1, ..., w_i\}.$

By theorem, # states of $M \ge |F_i| = i$, for all i.

As such, number of states in M is infinite.

Contradiction: **DFA** = deterministic finite automata. But *M* not finite.

• $\{\mathbf{0}^{n}\mathbf{1}^{n} \mid n \ge 0\}$

• $\{0^n 1^n \mid n \ge 0\}$

• {bitstrings with equal number of 0s and 1s}

• $\{0^n 1^n \mid n \ge 0\}$

• {bitstrings with equal number of 0s and 1s}

• $\{\mathbf{0}^k \mathbf{1}^\ell \mid k \neq \ell\}$

 $L = \{\text{strings of properly matched open and closing parentheses}\}$

 $L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \}$ A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110. Closure properties: Proving non-regularity

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \ge 0\}$

Suppose we have already shown that *L*' is non-regular. Can we show that *L* is non-regular without using the fooling set argument from scratch?

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \ge 0\}$

Suppose we have already shown that *L*' is non-regular. Can we show that *L* is non-regular without using the fooling set argument from scratch?

 $H'=H\cap L(0^*1^*)$

Claim: The above and the fact that *L*′ is non-regular implies *L* is non-regular. Why?

 $H = \{$ bitstrings with equal number of 0s and 1s $\}$

 $H' = \{0^k 1^k \mid k \ge 0\}$

Suppose we have already shown that *L*' is non-regular. Can we show that *L* is non-regular without using the fooling set argument from scratch?

 $H'=H\cap L(0^*1^*)$

Claim: The above and the fact that *L*' is non-regular implies *L* is non-regular. Why?

Suppose *H* is regular. Then since $L(0^{*1*})$ is regular, and regular languages are closed under intersection, *H'* also would be regular. But we know *H'* is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

$$L = \{0^{k}1^{k} \mid k \ge 1\}$$

 $L' = \{0^k 1^k \mid k \ge 0\}$

Complement of L (\overline{L}) is also not regular.

But $L \cup \overline{L} = (0 + 1)^*$ which is regular.

In general, always use closure in forward direction, (i.e L and L' are regular, therefore L OP L' is regular.)

In particular, regular languages are not closed under subset/superset relations.

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.