Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. $L_{1}=\left\{0^{m} 1^{n} \mid m, n \geq 0\right\}$
2. $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
3. $L_{3}=L_{1} \cup L_{2}$
4. $L_{4}=L_{1} \cap L_{2}$

CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Nickvash Kani
September 07, 2023
University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. $L_{1}=\left\{0^{m} 1^{n} \mid m, n \geq 0\right\}$
2. $L_{2}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
3. $L_{3}=L_{1} \cup L_{2}$
4. $L_{4}=L_{1} \cap L_{2}$

Pre-lecture brain teaser

We have a language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
Prove that L is non-regular.

Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem
Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet Σ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

A Simple and Canonical Non-regular Language

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots,\}
$$

Theorem
L is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

Proof by contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|$ is finite.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0,1\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, 0,00,000, \cdots, 0^{n}$ total of $n+1$ strings.

What states does M reach on the above strings? Let $q_{i}=\delta^{*}\left(s, 0^{i}\right)$.

By pigeon hole principle $q_{i}=q_{j}$ for some $0 \leq i<j \leq n$. That is, M is in the same state after reading 0^{i} and 0^{j} where $i \neq j$.
M should accept $0^{i} 1^{i}$ but then it will also accept $0^{j} 1^{i}$ where $i \neq j$.
This contradicts the fact that M accepts L. Thus, there is no DFA

When two states are equivalent?

States that cannot be combined?

We concluded that because each 0^{i} prefix has a unique state.
Are there states that aren't unique?
Can states be combined?

Equivalence between states

Definition

$M=(Q, \Sigma, \delta, s, A): D F A$.
Two states $p, q \in Q$ are equivalent if for all strings $w \in \Sigma^{*}$, we have that

$$
\delta^{*}(p, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A
$$

One can merge any two states that are equivalent into a single state.

Distinguishing between states

Definition

$M=(Q, \Sigma, \delta, s, A): D F A$.
Two states $p, q \in Q$ are
distinguishable if there exists a string $w \in \sum^{*}$, such that

$$
\delta^{*}(p, w) \in A \quad \text { and } \quad \delta^{*}(q, w) \notin A .
$$

or
$\delta^{*}(p, w) \notin A \quad$ and $\quad \delta^{*}(q, w) \in A$.

Distinguishable prefixes

$$
M=(Q, \Sigma, \delta, s, A): D F A
$$

Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.

Distinguishable prefixes

$M=(Q, \Sigma, \delta, s, A): D F A$
Idea: Every string $w \in \Sigma^{*}$ defines a state $\nabla w=\delta^{*}(s, w)$.
Definition
Two strings $u, w \in \Sigma^{*}$ are distinguishable for $M(\operatorname{or} L(M))$ if ∇u and ∇w are distinguishable.

Definition (Direct restatement) Two prefixes $u, w \in \Sigma^{*}$ are
distinguishable for a language L if there exists a string x, such that $u x \in L$ and $w x \notin L$ (or $u x \notin L$ and $w x \in L)$.

Distinguishable means different states

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.

Reminder: $\nabla x=\delta^{*}(s, x) \in Q$ and $\nabla y=\delta^{*}(s, y) \in Q$

Proof by a figure

Review questions...

- Are $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Review questions...

- Are $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. How many states must the DFA for L have?

Review questions...

- Are $\nabla 0^{i}$ and $\nabla 0^{j}$ are distinguishable for the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Let L be a regular language, and let w_{1}, \ldots, w_{k} be strings that are all pairwise distinguishable for L. How many states must the DFA for L have?
- Prove that $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.

Fooling sets: Proving non-regularity

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Fooling Sets

Definition

For a language L over Σ a set of strings F (could be infinite) is a fooling set or distinguishing set for L if every two distinct strings $x, y \in F$ are distinguishable.

Example: $F=\left\{0^{i} \mid i \geq 0\right\}$ is a fooling set for the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

Theorem
Suppose F is a fooling set for L. If F is finite then there is no
DFA M that accepts L with less than $|F|$ states.

Recall

Already proved the following lemma:

Lemma

L: regular language.
$M=(Q, \Sigma, \delta, s, A): D F A$ for L.
If $x, y \in \Sigma^{*}$ are distinguishable, then $\nabla x \neq \nabla y$.
Reminder: $\nabla x=\delta^{*}(s, x)$.

Proof of theorem

Theorem (Reworded.)
L: A language
F: a fooling set for L.
If F is finite then any DFA M that accepts L has at least $|F|$ states.
Proof.
Let $F=\left\{w_{1}, w_{2}, \ldots, w_{m}\right)$ be the fooling set.
Let $M=(Q, \Sigma, \delta, s, A)$ be any DFA that accepts L.
Let $q_{i}=\nabla w_{i}=\delta^{*}\left(s, x_{i}\right)$.
By lemma $q_{i} \neq q_{j}$ for all $i \neq j$.
As such, $|Q| \geq\left|\left\{q_{1}, \ldots, q_{m}\right\}\right|=\left|\left\{w_{1}, \ldots, w_{m}\right\}\right|=|A|$.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.
Proof.
Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.

Infinite Fooling Sets

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let $w_{1}, w_{2}, \ldots \subseteq F$ be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that $\exists M$ a DFA for L.
Let $F_{i}=\left\{w_{1}, \ldots, w_{i}\right\}$.
By theorem, \# states of $M \geq\left|F_{i}\right|=i$, for all i.
As such, number of states in M is infinite.
Contradiction: DFA = deterministic finite automata. But M not finite.

Examples

- $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Examples

- $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- \{bitstrings with equal number of 0s and 1s\}

Examples

- $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s \}
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$

Examples

$L=$ strings of properly matched open and closing parentheses $\}$

Examples

$L=\{$ palindromes over the binary alphabet $\Sigma=\{0,1\}\}$
A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

Closure properties: Proving non-regularity

Non-regularity via closure properties

$H=\{$ bitstrings with equal number of $0 s$ and $1 s\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?

Non-regularity via closure properties

$H=\{$ bitstrings with equal number of $0 s$ and $1 s\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$H^{\prime}=H \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Non-regularity via closure properties

$H=\{$ bitstrings with equal number of $0 s$ and $1 s\}$
$H^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$H^{\prime}=H \cap L\left(0^{*} 1^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since $L\left(0^{*} 1^{*}\right)$ is regular, and regular languages are closed under intersection, H^{\prime} also would be regular. But we know H^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Examples

$L=\left\{0^{k} 1^{k} \mid k \geq 1\right\}$

Careful with closure!

$L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
Complement of $L(\bar{L})$ is also not regular.
But $L \cup \bar{L}=(0+1)^{*}$ which is regular.
In general, always use closure in forward direction, (i.e L and L^{\prime} are regular, therefore $L O P L^{\prime}$ is regular.)

In particular, regular languages are not closed under subset/superset relations.

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.

