Find the regular expressions for the following languages (if possible)

1.  $L_1 = \{0^m 1^n | m, n \ge 0\}$ 

2. 
$$L_2 = \{0^n 1^n \mid n \ge 0\}$$

3.  $L_3 = L_1 \cup L_2$ 

4. 
$$L_4 = L_1 \cap L_2$$



# CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Nickvash Kani

September 07, 2023

University of Illinois at Urbana-Champaign

Find the regular expressions for the following languages (if possible)

1. 
$$L_1 = \{0^m 1^n | m, n \ge 0\}$$



3. 
$$L_3 = L_1 \cup L_2 \equiv L_1 \quad O \neq l^*$$

4.  $L_4 = L_1 \cap L_2 \cong L_2$ 

#### Pre-lecture brain teaser

We have a language  $L = \{0^n 1^n | n \ge 0\}$ Prove that *L* is non-regular.

#### Proving non-regularity: Methods

- Pumping lemma. We will not cover it but it is *sometimes* an easier proof technique to apply, but not as general as the fooling set technique.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Fooling sets- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.

Not all languages are regular

#### Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

#### Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet  $\Sigma$  by appropriate encoding
- Hence number of regular languages is <u>countably infinite</u>
- Number of languages is <u>uncountably infinite</u>
- Hence there must be a non-regular language!

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$ 

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$ 

**Theorem** *L* is not regular.

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$ 

**Theorem** *L* is not regular.

**Question:** Proof?

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$ 

**Theorem** *L* is not regular.

**Question:** Proof?

**Intuition:** Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

 $L = \{0^{n}1^{n} \mid n \ge 0\} = \{\epsilon, 01, 0011, 000111, \cdots, \}$ 

**Theorem** L is not regular.

**Question:** Proof?

**Intuition:** Any program to recognize *L* seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| is finite.

• Suppose L is regular. Then there is a DFA M such that L={on1n [ n>0} L(M) = L.

• Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| is finite.  $\int \mathcal{L}$ 



61

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| = n.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| = n.

Consider strings  $\epsilon$ , 0, 00, 000,  $\cdots$ , 0<sup>n</sup> total of n + 1 strings.

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| = n.

Consider strings  $\epsilon$ , 0, 00, 000,  $\cdots$ , 0<sup>n</sup> total of n + 1 strings.

What states does *M* reach on the above strings? Let  $q_i = \delta^*(s, 0^i)$ .

By pigeon hole principle  $q_i = q_j$  for some  $0 \le i < j \le n$ . That is, *M* is in the same state after reading  $0^i$  and  $0^j$  where  $i \ne j$ .

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| = n.

Consider strings  $\epsilon$ , 0, 00, 000,  $\cdots$ , 0<sup>n</sup> total of n + 1 strings.

What states does *M* reach on the above strings? Let  $q_i = \delta^*(s, 0^i)$ .

By pigeon hole principle  $q_i = q_j$  for some  $0 \le i < j \le n$ . That is, *M* is in the same state after reading  $0^i$  and  $0^j$  where  $i \ne j$ .

M should accept  $0^{i}1^{i}$  but then it will also accept  $0^{j}1^{i}$  where  $i \neq j$ .

- Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let  $M = (Q, \{0, 1\}, \delta, s, A)$  where |Q| = n.

Consider strings  $\epsilon$ , 0, 00, 000,  $\cdots$ , 0<sup>n</sup> total of n + 1 strings.

What states does *M* reach on the above strings? Let  $q_i = \delta^*(s, 0^i)$ .

By pigeon hole principle  $q_i = q_j$  for some  $0 \le i < j \le n$ . That is, *M* is in the same state after reading  $0^i$  and  $0^j$  where  $i \ne j$ .

M should accept  $0^{i}1^{i}$  but then it will also accept  $0^{j}1^{i}$  where  $i \neq j$ . This contradicts the fact that M accepts L. Thus, there is no DFA

# When two states are equivalent?

#### States that cannot be combined?



We concluded that because each 0<sup>*i*</sup> prefix has a unique state. Are there states that aren't unique? Can states be combined?

#### Equivalence between states

**Definition**   $M = (Q, \Sigma, \delta, s, A)$ : DFA.  $\gamma'$ Two states  $p, q \in Q$  are equivalent if for all strings  $w \in \Sigma^*$ , we have that

$$\delta^*(p,w) \in A \iff \delta^*(q,w) \in A.$$

One can merge any two states that are equivalent into a single state.

$$\delta(q_1, 1) - q_4 \in A$$
  
 $\delta(q_2, 1) - q_4 \in A$ 



## Distinguishing between states

 $S(q_1, \epsilon) = q_1 \notin A$  $\{(q_2, \epsilon) = q_2 \in A$ Definition  $M = (Q, \Sigma, \delta, s, A)$ : DFA. Two states  $p, q \in Q$  are distinguishable if there exists a string **q**<sub>1</sub>  $w \in \Sigma^*$ , such that 0,1 S(qu, 0) = 9, 4 A 0 0 8(q,10)=2, EA start  $\longrightarrow (q_0)$  $q_2$  $q_4$ () $\delta^*(q, w) \notin A.$  $\delta^*(p,w) \in A$ and  $q_3$  $S(q_{r_1}, O) \equiv q_i \notin A$ Or  $S(q_3, G) = q_2 \in A$  $\delta^*(q, w) \in A.$  $\delta^*(p, w) \notin A$ and

 $M = (Q, \Sigma, \delta, s, A)$ : DFA

**Idea:** Every string  $w \in \Sigma^*$  defines a state  $\nabla w = \delta^*(s, w)$ .

 $M = (Q, \Sigma, \delta, s, A)$ : DFA

**Idea:** Every string  $w \in \Sigma^*$  defines a state  $\nabla w = \delta^*(s, w)$ .

#### Definition

Two strings  $u, w \in \Sigma^*$  are distinguishable for M (or L(M)) if  $\nabla u$  and  $\nabla w$  are distinguishable.

**Definition (Direct restatement)** Two prefixes  $u, w \in \Sigma^*$  are **distinguishable** for a language *L* if there exists a string *x*, such that  $ux \in L$  and  $wx \notin L$  (or  $ux \notin L$  and  $wx \in L$ ).



**Lemma** L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$ : DFA for L.

If  $x, y \in \Sigma^*$  are distinguishable, then  $\nabla x \neq \nabla y$ .

Reminder:  $\nabla x = \delta^*(s, x) \in Q$  and  $\nabla y = \delta^*(s, y) \in Q$ 

## Proof by a figure



## Review questions...

Zw=i

• Are  $\nabla 0^i$  and  $\nabla 0^j$  are distinguishable for the language  $\{0^n 1^n \mid n \ge 0\}$ .  $i \ne 5$ 

o'l' EL

osli & C

## Review questions...

- Are  $\nabla 0^i$  and  $\nabla 0^j$  are distinguishable for the language  $\{0^n 1^n \mid n \ge 0\}.$
- Let *L* be a regular language, and let  $w_1, \ldots, w_k$  be strings that are all pairwise distinguishable for *L*. How many states must the DFA for *L* have?  $\underset{k}{\leftarrow} \overset{(\begin{subarray}{c})}{\leftarrow} \overset{(\$

- Are  $\nabla 0^i$  and  $\nabla 0^j$  are distinguishable for the language  $\{0^n 1^n \mid n \ge 0\}.$
- Let L be a regular language, and let w<sub>1</sub>,..., w<sub>k</sub> be strings that are all pairwise distinguishable for L. How many states must the DFA for L have?
- Prove that  $\{0^n 1^n \mid n \ge 0\}$  is not regular.

## Fooling sets: Proving non-regularity

#### Definition

For a language *L* over  $\Sigma$  a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings *x*, *y*  $\in$  *F* are distinguishable.

#### Definition

For a language *L* over  $\Sigma$  a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings *x*, *y*  $\in$  *F* are distinguishable.

**Example:**  $F = \{0^i \mid i \ge 0\}$  is a fooling set for the language  $L = \{0^n 1^n \mid n \ge 0\}$ . Oi Oi Oi Oi C Oi Oi C Oi Oi C Oi Oi Oi Oi Oi Oi Oi C Oi OiOi

#### Definition

For a language *L* over  $\Sigma$  a set of strings *F* (could be infinite) is a fooling set or distinguishing set for *L* if every two distinct strings *x*, *y*  $\in$  *F* are distinguishable.

**Example:**  $F = \{0^i \mid i \ge 0\}$  is a fooling set for the language  $L = \{0^n 1^n \mid n \ge 0\}.$ 

#### Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA M that accepts L with less than |F| states.

Already proved the following lemma:

**Lemma** L: regular language.

 $M = (Q, \Sigma, \delta, s, A)$ : DFA for L.

If  $x, y \in \Sigma^*$  are distinguishable, then  $\nabla x \neq \nabla y$ .

Reminder:  $\nabla x = \delta^*(s, x)$ .

#### **Theorem (Reworded.)** L: A language

F: a fooling set for L.

If F is finite then any DFA M that accepts L has at least |F| states.

**Proof.** Let  $F = \{w_1, w_2, ..., w_m\}$  be the fooling set. Let  $M = (Q, \Sigma, \delta, s, A)$  be any DFA that accepts L. Let  $q_i = \nabla w_i = \delta^*(s, x_i)$ . By lemma  $q_i \neq q_j$  for all  $i \neq j$ .

As such,  $|Q| \ge |\{q_1, \ldots, q_m\}| = |\{W_1, \ldots, W_m\}| = |A|$ .

Corollary

If L has an infinite fooling set F then L is not regular.

Proof.

Let  $w_1, w_2, \ldots \subseteq F$  be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that  $\exists M \in DFA$  for L.

#### Corollary

If L has an infinite fooling set F then L is not regular.

#### Proof.

Let  $w_1, w_2, \ldots \subseteq F$  be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that  $\exists M \in DFA$  for L.

Let  $F_i = \{W_1, ..., W_i\}.$ 

By theorem, # states of  $M \ge |F_i| = i$ , for all *i*.

As such, number of states in M is infinite.

#### Corollary

If L has an infinite fooling set F then L is not regular.

#### Proof.

Let  $w_1, w_2, \ldots \subseteq F$  be an infinite sequence of strings such that every pair of them are distinguishable.

Assume for contradiction that  $\exists M \in DFA$  for L.

Let  $F_i = \{W_1, ..., W_i\}.$ 

By theorem, # states of  $M \ge |F_i| = i$ , for all *i*.

As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But *M* not finite.

#### Examples

•  $\{0^n 1^n \mid n \ge 0\} = \bigcup_{n \ge 1}$ Assume L. is regular that Know 3 M = (Q, 2, 5, 5, A) represents 2 (L(M)=L1) L has fooling set F= EO' ( 1>03 F is a fading b/a for every 2 prévoes in F 0°,0° F suffix wayi where d'iEL, but oiliteL, Therefore M must have |a| = |F|but F is infinite contradiction 20

#### Examples

•  $\{0^n 1^n \mid n \ge 0\}$ 

(041) ×

• {bitstrings with equal number of 0s and 1s} = LZ

Ma passure 22 is regular Assaure F= {0'11 = 03  $\exists \omega = 1^{i}$ O'I'EL2 as 1' 4 L2

10gl is infinite ... contradiction

• 
$$\{0^n 1^n \mid n \ge 0\}$$

• {bitstrings with equal number of 0s and 1s}

•  $\{0^{k}1^{\ell} \mid k \neq \ell\} = \lfloor 2$  $w = 1^{i}$   $o^{i}l^{i} \not\in L$ F= 501/1203

#### Examples

 $L_{\mu} = \{ \text{strings of properly matched open and closing parentheses} \}$ 

F={C(1:>0)  $(i)^{i} \in C$ is je Z L

5=3(,)3

#### Examples

 $L = \{ \text{palindromes over the binary alphabet} \Sigma = \{0, 1\} \}$ A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

F= 2011203 10 S'O'EL. 0104  $\dot{v}$   $\dot{v}$ 

Closure properties: Proving non-regularity

 $H = \{\text{bitstrings with equal number of 0s and 1s}\}$  $H' = \{0^{k} | h \ge 0\}$ 

Suppose we have already shown that L' is non-regular. Can we show that  $\mu$  is non-regular without using the fooling set argument from scratch?

 $H = \{\text{bitstrings with equal number of 0s and 1s}\}$  $H' = \{0^{k}1^{k} \mid k \ge 0\}$ 

Suppose we have already shown that *L*' is non-regular. Can we show that *L* is non-regular without using the fooling set argument from scratch?

 $H'=H\cap L(0^*1^*)$ 

**Claim:** The above and the fact that *L*′ is non-regular implies *L* is non-regular. Why?

 $H = \{\text{bitstrings with equal number of 0s and 1s}\}$  $H' = \{0^{k}1^{k} \mid k \ge 0\}$ 

Suppose we have already shown that *L*' is non-regular. Can we show that *L* is non-regular without using the fooling set argument from scratch?

 $H'=H\cap L(0^*1^*)$ 

**Claim:** The above and the fact that *L*′ is non-regular implies *L* is non-regular. Why?

Suppose *H* is regular. Then since  $L(0^{*}1^{*})$  is regular, and regular languages are closed under intersection, *H'* also would be regular. But we know *H'* is not regular, a contradiction.

## Non-regularity via closure properties

#### General recipe:



Examples

L= 20~14/n 203  $L = \{0^k 1^k \mid k \ge 1\}$ Non-regular Assume Li is regular

Sot/K/K>12 U 223 = 0"1"

 $L' = \{0^k 1^k \mid k \ge 0\}$ 

Complement of  $L(\overline{L})$  is also not regular.

But  $L \cup \overline{L} = (0 + 1)^*$  which is regular.

In general, always use closure in forward direction, (i.e L and L' are regular, therefore L OP L' is regular. )

In particular, regular languages are not closed under subset/superset relations.

### Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that *L* is non-regular find an infinite fooling set.
- Closure properties. Use existing non-regular languages and regular languages to prove that some new language is non-regular.
- Pumping lemma. We did not cover it but it is sometimes an easier proof technique to apply, but not as general as the fooling set technique.