

Pre-lecture brain teaser

Find the regular expressions for the following languages (if possible)

1. L1 ={0™"m,n > 0}
2. Ly = {On1n | n > O}
3. I3 =1L1UL

L L, =L1NLy

CS/ECE-374: Lecture 5 - Non-regularity and closure

Instructor: Nickvash Kani
September PP ", 2025

University of Illinois at Urbana-Champaign

Pre-lecture brain teaser

Find the regular expressions for the follovvmg langu ? If poss

|4
1 L ={0mM"mn>0} ¥=0O"!

Becanse Ly g rTfes«*a-bk 67 a- P%W/DF‘/A)FA Jlen—

3 (T
) [, ={0"" | n >0} b o= 7

Ol o6t OWILI

3. Li=Liul, = (| /(;. Yo 1\3‘ {o<ed 7

/

4. L4=L1ﬂL2=LL Wit Lcw)“j" Asec Has veyie
ALl gt o wil-

—

Pre-lecture brain teaser

We have a language L = {0"1"|n > 0}
Prove that L Is non-regular.

Proving non-regularity: Methods

¥ Pumping lemma. We will not cover it but it is sometimes an easier proof
technique to apply, but not as general as the fooling set technique.

-[Closure pyoperties. Use existing non-regular languages and regular
languages to prove that some new language IS non-regular.

l- Fooling sets- Mlethod of distinguishing suffixes. To prove that L is non-regular
find an infinite fooling set.

Not all languages are regular

Regular Languages, DFAs, NFAs

Theorem .
Languages accepted by DFAs, NFAs, and reqgular expressions are the same.

Question: Is every language a regular language? No.

Regular Languages, DFAs, NFAs

Theorem .
Languages accepted by DFAs, NFAs, and reqgular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet X by
appropriate encoding

- Hence number of regular languages is countably infinite

- Number of languages is uncountably infinite

- Hence there must be a non-regular language!

A Simple and Canonical Non-regular Language

L={0""|n>0}={e01,0011,000111,--- ,}

A Simple and Canonical Non-regular Language

L ={0""|n>0}={e01,0011,000111,--- ,}

Theorem *)% o wn Do
LisnotregulW‘> {0 l [M 20%

A Simple and Canonical Non-regular Language

L={0""|n>0}={e01,0011,000111,--- ,}

Theorem
L is not reqgular.

Question: Proof?

A Simple and Canonical Non-regular Language

L ={0M"|n>0}={e01,0011,000111,---,}
Theorem pDoooeo !l (1] |

L Is not regular.
Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros
In Input which cannot be done with fixed memory.

Dpp: 1 275%5¢7 87 10 7
&l ="

0‘23’-’76777101(’/z B345¢ 172101

A Simple and Canonical Non-regular Language

L={0""|n>0}={e01,0011,000111,--- ,}

Theorem
L is not reqgular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting number of zeros
In Input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Proof by contradiction

L: ¢o™i1"N
- Suppose L is regular. Then there is a DFA M such tha =35

- LetM =(Q,{0,1},6,s,A) vvher finite. k]
\ E

Proof by contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M =(Q,{0,1},6,s,A) where |Q] is finite.

start

Qreject

Proof by Contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M = (Q,{0,1},46,s,A) where |Q| = n.

Proof by Contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M = (Q,{0,1},46,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- , 0" total of n + 1 strings.

Proof by Contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M = (Q,{0,1},46,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- , 0" total of n + 1 strings.
What states does M reach on the above strings? Let g; = §*(s, 0').

By pigeon hole principle g; = g; forsome 0 <1 < j < n.
That is, M is in the same state after reading 0' and 0/ where | # j.

Proof by Contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M = (Q,{0,1},46,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- , 0" total of n + 1 strings.
What states does M reach on the above strings? Let g; = §*(s, 0').

By pigeon hole principle g; = g; forsome 0 <1 < j < n.
That is, M is in the same state after reading 0' and 0/ where | # j.

M should accept 0'1' but then it will also accept 0/1 where | # J.

Proof by Contradiction

+ Suppose L is regular. Then there is a DFA M such that L(M) = L.
- Let M = (Q,{0,1},46,s,A) where |Q| = n.

Consider strings ¢, 0,00, 000, --- , 0" total of n + 1 strings.
What states does M reach on the above strings? Let g; = §*(s, 0').

By pigeon hole principle g; = g; forsome 0 <1 < j < n.
That is, M is in the same state after reading 0' and 0/ where | # j.

M should accept 0'1' but then it will also accept 0/1 where | # J.
This contradicts the fact that M accepts L. Thus, there is no DFA for L.

When two states are equivalent?

States that cannot be combined?

CIreject

concluded that because each 0' prefix has a unique state.
Are there states that aren’t unique?
Can states be combined? ?

Equivalence between states

Definition
M= (Q,%,8,s,A): DFA.

Two states p,g € Q are equivalent if for all
strings w € ¥*, we have that

0 (p,w) € A <= 0"(q,w) €

1~
One can merge any two states that ar , &
. . . [} - ‘Zm ’:"U m
equivalent into a single state. r" bt < ¥ Ha

5*(2 w)éﬁ ddz ou Qa%@hqwﬁ
" 3 Hae LOFE Wil egundat
§7(13, €4 JM4+ Het an ot eoptecd b His

.o, 10

Distinguishing between states

Definition
M= (Q,%,6,5s,A): DFA.

Two states p,q € Q are distinguishable If there
exists a string w € ¥*, such that

0" (p,w) € A and 0*(q,w) ¢ A.

or

(p,w)¢ A and §*(g,w) € A. f,

‘Za,éiv P w=0 1

Distinguishable prefixes

M= (Q,X,8,5,A): DFA

Idea: Every string w € ¥* defines a state Vw = §*(s, w).

12

Distinguishable prefixes

M=(Q,X,6,5,A): DFA
Idea: Every string w € ¥* defines a state Vw = §*(s, w).

Definition
Two strings u,w € £* are distinguishable for M (or L(M)) if Vu and Vw are

distinguishable.

Definition (Direct restatement)
Two prefixes u,w € ¥* are distinguishable for a start

language L if there exists a string x, such that

ux e Land wx ¢ L (orux ¢ L and wx € L).
i 7 w= 00O

w= | urél wx e L 12

Distinguishable means different states

Lemma
L: regular language.

M=(Q,%,d,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s,x) € Qand Vy = d*(s,y) € Q

13

Proof by a figure

Possible Not possible

14

Review questions...

x Y
- Are V0" and V0 are distinguishable for the language {0"" | n>0}2 L

v. = xw=0"l" &L
€5 w yw:_@&ll%(_-

15

Review questions...

- Are V0' and V0’ are distinguishable for the language {0"1" | n > 0}.

- Let L be a regular language, and let Wi, ..o, W be strings that are all pairwise
distinguishable for L. How many states must fﬁe DFA for L have?

Jo sttes

15

Review questions...

- Are V0' and V0’ are distinguishable for the language {0"1" | n > 0}.

- Let L be a regular language, and let wq, ..., w, be strings that are all pairwise
distinguishable for L. How many states must the DFA for L have?

- Prove that {0"" | n > 0} is not regular.

15

Fooling sets: Proving non-regularity

Fooling Sets

Definition ov Piite
For a language L over ¥ a set of strings F (could be infinite) is a fooling set or

distinguishing set for L If every two distinct strings x,y € F are distinguishable.,

| -

16

Fooling Sets

Definition
For a language L over ¥ a set of strings F (could be infinite) is a fooling set or

distinguishing set for L if every two distinct strings x,y € F are distinguishable.

Example: F = {0' | i > 0} is a fooling set for the language L = {0"1" | n > 0}.
A

) %)
F.’ g £ (/] €
00 o 0000 i
o000
: (=0, faw & w=1
Han x=w €L Y")%L'

Fooling Sets

Definition
For a language L over ¥ a set of strings F (could be infinite) is a fooling set or

distinguishing set for L if every two distinct strings x,y € F are distinguishable.

Example: F = {0' | i > 0} is a fooling set for the language L = {0"1" | n > 0}.

Theorem . - _
Suppose F is a fooling set for L. H-EemimitastheonThere is no DFA M that accepts L

with less than |F| states.

——

F={c ,6 003

16

Already proved the following lemma:

Lemma
L: regular language.

M=(Q,%,6,s,A): DFA for L.
If X,y € ¥* are distinguishable, then Vx # Vy.

Reminder: Vx = §*(s, X).

17

Proof of theorem

Theorem (Reworded.)
L: A language

F: a fooling set for L.
If F Is finite then any DFA M that accepts L has at least |F| states.

Proof. _
Let F = {wy,wy, ..., wp) be the fooling set.

Let M = (Q, %, 9,s,A) be any DFA that accepts L.
Let g; = Vw; = 0*(s, X;).
By lemma qg; # g; for all i # J.

Assuch, [Q = [{Gr,...,qm}t| = [{wr, ..., wm}| = |Al. m

18

Infinite Fooling Sets

Corollary . _
If L has an infinite fooling set F then L Is not regular.

Proof.
Let wq, Wy, ... C F be an infinite sequence of strings such that every pair of them

are distinguishable.

Assume for contradiction that 3 M a DFA for L.

19

Infinite Fooling Sets

Corollary . _
If L has an infinite fooling set F then L Is not regular.

Proof.
Let wq, Wy, ... C F be an infinite sequence of strings such that every pair of them

are distinguishable.

Assume for contradiction that 3 M a DFA for L.
Let Fj = {wq, ..., w;}.

By theorem, # states of M > |F;| = |, for all I.

As such, number of states in M is infinite.

19

Infinite Fooling Sets

Corollary . _
If L has an infinite fooling set F then L Is not regular.

Proof.
Let wq, Wy, ... C F be an infinite sequence of strings such that every pair of them

are distinguishable.

Assume for contradiction that 3 M a DFA for L.
Let Fj = {wq, ..., w;}.

By theorem, # states of M > |F;| = |, for all I.
As such, number of states in M is infinite.

Contradiction: DFA = deterministic finite automata. But M not finite.]

19

L ={0""|n>0}

Avine L vesphar

F=f{O0|izod if
Pov amy dwo st X <O
Hew optc o sbFix

avdore Ha DFACMD

shdes . Bk
8o DR st b o RSt

Cotvadickion in orgink vyt

—_— 3

2 o {bitstrings with equal number of 0s and 1s}
p-folizss

’de Wwe U

: 0
4

20

- {0"1" | n >0}
+ {bitstrings with equal number of 0s and 1s}

{0 | R £ 6)

20

L = {strings of properly matched open and closing parentheses}

21

L = {palindromes over the binary alphabet® = {0,1}}
A palindrome is a string that is equal to its reversal, e.g. 10001 or 0110.

22

Closure properties: Proving
non-regularity

Non-regularity via closure properties

ﬁ
H = {bitstrings with equal number of 0s and 1s}
(rH’: {OR1* | k > oﬂ
— -

no*

' 4

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

23

Non-regularity via closure properties

H = {bitstrings with equal number of 0s and 1s}

EH’ : [0R1% | k > §>

Suppose we have already shown that L’ is non-regular. Can we show that L is

non—regulgg&ﬂ-mout using the fooling set argument from scratch?
v

e’
Y

Cla and the fact that L’ is non-regular implies L is non-regular. Why?

47.’)0(2. i S fﬂ—g"‘l‘“’ é
Has Hvey oy et D VL

&/

23

Non-regularity via closure properties

H = {bitstrings with equal number of 0s and 1s}

H = {0f1* | k > 0}

Suppose we have already shown that L’ is non-regular. Can we show that L is
non-regular without using the fooling set argument from scratch?

H' = H N L(0*1%)

Claim: The above and the fact that L’ is non-regular implies L is non-regular. Why?

Suppose H is regular. Then since L(0*1*) is regular, and regular languages are
closed under intersection, H" also would be regular. But we know H’ is not regular,

a contradiction.
23

Non-regularity via closure properties

General recipe:

UNKNOWN L5

/

_

Apply
closure

properties

)

: I—non-regular

24

L={0R* | kr>1}

25

Careful with closure!

(L’:{O’?T’?H?z(h

_/ _‘I
Complement of L (L) is also not regular.

< But LUL = (04 1)* which is regular.

" In general, always use closure in forward direction, (i.e L and L’ are regular,
therefore L OP L’ is regular.) ~

In particular, regular languages are not closed under subset/superset relations.

e ——————
/

26

Proving non-regularity: Summary

- Method of distinguishing suffixes. To prove that L is non-regular find an
Infinite fooling set.

- Closure properties. Use existing non-regular languages and regular
languages to prove that some new isnon-resular .

- Pumping lemma. We did not cover it but it is sometimes an easier proof
technique to apply, but not as general as the fooling set technique.

27

