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Pre-lecture teaser

Given the language:

L = {wwR|w 2 {0, 1}⇤} (1)

Prove that this language is non-regular
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Pre-lecture teaser

Given the language:

L = {wwR|w 2 {0, 1}⇤} (2)

Prove that this language is non-regular
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Chomsky hierarchy revisited

regular
context free

context sensitive

recursively enumerable
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Example of Context-Free Languages



New addition to our toolbox

Regular languages could be constructed using a finite number
of:

• Unions
• Concatenations
• Repetitions

With context-free languages we have a much more powerful
tool:

Substitution (aka recursion)!
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Example

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

S 0S0 01S10 011S110 011 " 110 011110

What strings can S generate like this?
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Example

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)
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Formal definition of context-free
languages (CFGs)



Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A! ↵

where A 2 V and ↵ is a string in (V [ T)⇤.
Formally, P ⇢ V ⇥ (V [ T)⇤.

• S 2 V is a start symbol

G =
⇣

Variables, Terminals, Productions, Start var
⌘
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Example formally...

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

G =

0

B@{S}, {0, 1},

8
><

>:

S! ✏,

S! 0S0
S! 1S1

9
>=

>;
S

1

CA

7



Notation and Convention

Let G = (V, T,P, S) then

• a,b, c,d, . . . , in T (terminals)
• A,B, C,D, . . . , in V (non-terminals)
• u, v,w, x, y, . . . in T⇤ for strings of terminals
• ↵,�, �, . . . in (V [ T)⇤

• X, Y, X in V [ T
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“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V, T,P, S) be a CFG. For strings ↵1,↵2 2 (V [ T)⇤ we say
↵1 derives ↵2 denoted by ↵1  G ↵2 if there exist strings �, �, �
in (V [ T)⇤ such that

• ↵1 = �A�
• ↵2 = ���

• A! � is in P.

Examples: S ✏, S 0S1, 0S1 00S11, 0S1 01.
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“Derives” relation continued

Definition
For integer k � 0, ↵1  k ↵2 inductive defined:

• ↵1  0 ↵2 if ↵1 = ↵2

• ↵1  k ↵2 if ↵1  �1 and �1  k�1 ↵2.

• Alternative definition: ↵1  k ↵2 if ↵1  k�1 �1 and �1  ↵2

 ⇤ is the reflexive and transitive closure of .

↵1  ⇤ ↵2 if ↵1  k ↵2 for some k.

Examples: S ⇤ ✏, 0S1 ⇤ 0000011111.
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Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by
L(G) where L(G) = {w 2 T⇤ | S ⇤ w}.

Definition
A language L is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L = L(G).
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Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by
L(G) where L(G) = {w 2 T⇤ | S ⇤ w}.

Definition
A language L is context free (CFL) if it is generated by a context
free grammar. That is, there is a CFG G such that L = L(G).
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Example

L = {0n1n | n � 0}

L = {0n1m | m > n}
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Example

L = {0n1n | n � 0}

L = {0n1m | m > n}
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Converting regular languages into
CFL



Regular Grammar

What was the grammar for a regular language?

Let’s figure it out visually!

13



Converting regular languages into CFL I

CA B D E

a, b a, b

a ab b

G =

0

BBBBBB@
{A,B, C,D, E}, {a,b},

8
>>>>>><

>>>>>>:

A! aA,A! bA,A! aB,
B! bC,
C ! aD,
D! bE,

E ! aE, E ! bE, E ! "

9
>>>>>>=

>>>>>>;

,A

1

CCCCCCA
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Converting regular languages into CFL II

M = (Q,⌃, �, s,A): DFA for regular language L.

G =
⇣ Variablesz}|{

Q ,

Terminalsz}|{
⌃ ,

Productionsz }| {
{q! a�(q,a) | q 2 Q,a 2 ⌃}

[ {q! " | q 2 A}
,

Start varz}|{
s

⌘

CA B D E

a, b a, b

a ab b
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Converting regular languages into CFL I

G =

0

BBBBBB@
{A,B, C,D, E}, {a,b},

8
>>>>>><

>>>>>>:

A! aA,A! bA,A! aB,
B! bC,
C ! aD,
D! bE,

E ! aE, E ! bE, E ! "

9
>>>>>>=

>>>>>>;

,A

1

CCCCCCA

In regular languages:

• Terminals can only appear on one side of the production
string

• Only one varibale allowed in production result
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The result...

Lemma
For an regular language L, there is a context-free grammar
(CFG) that generates it.
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Push-down automata



The machine that generates CFGs

{0n1n|n � 0} is a CFL.

We have NFAs from regular languages. What can we add to
enable them to recognize CFLs?

We need a stack!

18
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The machine that generates CFGs

{0n1n|n � 0} is a CFL.

We have NFAs from regular languages. What can we add to
enable them to recognize CFLs?

We need a stack!
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Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $ ! "

Each transition is formatted as:

hinput readi, hstack popi ! hstack pushi (3)

19
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Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $ ! "

Does this machine recognize 0011?
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Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $ ! "

Does this machine recognize 0101?
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Formal Tuple Notation

Definition
A non-deterministic push-down automata P = (Q,⌃, �, �, s,A)
is a six tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � is a finite set called the stack alphabet,
• � : Q⇥ ⌃ [ {"}⇥ � [ {"} ! P(Q⇥ (� [ {"})) is the
transition function

• s is the start state
• A is the set of accepting states

Non-deterministic PDAs are more powerful than deterministic
PDAs. Hence we’ll only be talking about non-determinisitc
PDAs.
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Formal Tuple Notation of 0n1n

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $ ! "

• Q =

• ⌃ =

• � =

• s =
• A =

� =

Input Stack 0 1 "

0 $ " 0 $ " 0 $ "

q1 {(q2, $)}
q2 {(q2, 0)}{(q3, ")}
q3 {(q3, ")} {(q4, ")}
q4

21
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CFGs and PDAs



Convert a CFG to a PDA I

Converting a CFG to a PDA is simple (but a little tedious). Let’s
demonstrate via simple example:

S! 0S|1

Idea:
• We try to recreate the string on the stack:

• Everytime we see a non-terminal, we replace it by one of
the replacement rules.

• Everytime we see a terminal symbol, we take that symbol
from the input.

• if we reach a point where there stack is empty and the
input is empty, then we accept the string.

22
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Convert a CFG to a PDA I

qsstart

q2

ql

qa

", " ! $

", " ! S

", $ ! "

S! 0S|1|✏

• First let’s put in a $ to mark the
end of the string

• Also let’s put in the start symbol
on the stack.

23



Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S

", $ ! "

", S! S

", " ! 0

S! 0S|1|✏

Next we want to add a loop for every
non-terminla symbol that replaces
that non-terminal with the result.
Consider the rule: S! 0S
• So we got to pop the S
non-terminal,

• Add a S non-terminal to the
stack.

• And add a 0 terminal to the stack.

24
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Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S

✏, S! 1
✏, S! ✏

", $ ! "

", S! S

", " ! 0

S! 0S|1|✏

Do the same thing for S! 1 and
S! ✏

25
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Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $ ! "

", S! S

", " ! 0

S! 0S|1|✏

If we see a non-terminal symbol on
the stack, then we can cross that
symbol from the input.
Got to add transitions to do that.
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Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $ ! "

", S! S

", " ! 0

S! 0S|1|✏

Let’s go over the operation again:

• Does this automata accept 001?
• Does this automata accept 010?
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Convert a CFG to a PDA I
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q2
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Convert a CFG to a PDA II

Let’s do a harder example:

S! 0T1|1
T ! T0|"

28



Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $ ! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

The goal of our PDA is to
construct the string
within the stack and pop
off the leftmost
terminals when we read
those terminals on the
input string.

29
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Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $ ! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

• First we need to
mark the start of the
stack.

• Then we put the
start variable on the
stack.
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Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $ ! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

• We create a loop for
each production
rule.

• If we read a terminal
that matches the
input we pop it.
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Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $ ! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

Computation ends
when all the
variables/terminals have
been popped off the
stack and the input is
empty.
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Determinism in Context-Free Languages

As you remember, deterministic finite automata (DFAs) and
nondeterministic finite automata (NFAs) are equivalent in
language recognition power.

Not so for PDAs. The previous PDA could not be completed
using a deterministic PDA because we need to know where the
middle of the input string is for determinism!

L = {0n1n|n � 0} can be modeled with a deterministic-PDA.

Learn more in CS 475 (Beyond the scope of this class.)
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Closure properties of CFLs



Closure Properties of CFLs

G1 = (V1, T,P1, S1) and G2 = (V2, T,P2, S2)
Assumption: V1 \ V2 = ;, that is, non-terminals are not shared

31
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Closure Properties of CFLs- Union

G1 = (V1, T,P1, S1) and G2 = (V2, T,P2, S2)
Assumption: V1 \ V2 = ;, that is, non-terminals are not shared.

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 [ L2 is a CFL.

32
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Closure Properties of CFLs- Concatenation

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2
is a CFL.

33
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Closure Properties of CFLs- Kleene star

Theorem
CFLs are closed under Kleene star.

If L is a CFL =) L⇤ is a CFL.

34
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Bad news: Canonical non-CFL

Theorem
L =

�
anbncn

�� n � 0
 
is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for
the proof.
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More bad news: CFL not closed under intersection

Theorem
CFLs are not closed under intersection.

36
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Even more bad news: CFL not closed under complement

Theorem
CFLs are not closed under complement.

37



The more you know!

regular
context free

context sensitive

recursively enumerable

We’re making our way up the Chompsky hierarchy!

Next stop: context-sensitive, and decidable languages.

38
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Parse trees and ambiguity



Parse Trees or Derivation Trees

A tree to represent the derivation S ⇤ w.

• Rooted tree with root labeled S
• Non-terminals at each internal node of tree
• Terminals at leaves
• Children of internal node indicate how non-terminal was
expanded using a production rule

A picture is worth a thousand words

39



Parse Trees or Derivation Trees

A tree to represent the derivation S ⇤ w.

• Rooted tree with root labeled S
• Non-terminals at each internal node of tree
• Terminals at leaves
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expanded using a production rule
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Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

40



Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w 2 L(G) with two
different parse trees. If there is no such string then G is
unambiguous.

Example: S! S� S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1 
41



Ambiguity in CFLs

• Original grammar: S! S� S | 1 | 2 | 3
• Unambiguous grammar:
S! S� C | 1 | 2 | 3
C ! 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1 

The grammar forces a parse 
corresponding to  left-to-right 
evaluation.

42



Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous
CFG G such that L = L(G).

• There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

• Given a grammar G it is undecidable to check whether L(G)
is inherently ambiguous. No algorithm!
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Supplemental: Why anbncn is not CFL



You are bound to repeat yourself...

L =
�
anbncn

�� n � 0
 
.

• For the sake of contradiction assume that there exists a
grammar:
G a CFG for L.

• Ti: minimal parse tree in G for aibici.

• hi = height(Ti): Length of longest path from root to leaf in
Ti.

• For any integer t, there must exist an index j(t), such that
hj(t) > t.

• There an index j, such that hj >
⇣
2 ⇤ # variables in G

⌘
.
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Repetition in the parse tree...

–

—
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Repetition in the parse tree...

–

—

–

x y z v w

—

xyzvw = ajbjcj
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Repetition in the parse tree...

–

x y z v w

—

–

x w

—

—Õ

y z v

y v

xyzvw = ajbjcj =) xy2zv2w 2 L

45



Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.

• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0
 
.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then...
#(a)(⌧) 6= #(c)(⌧).
Not possible.

46
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Now for some case analysis...

• Similarly, not possible that y contains only as, and v
contains only cs.
Similarly, not possible that y contains only bs, and v
contains only cs.

• Must be that ⌧ /2 L. A contradiction.
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Now for some case analysis...

• Similarly, not possible that y contains only as, and v
contains only cs.
Similarly, not possible that y contains only bs, and v
contains only cs.

• Must be that ⌧ /2 L. A contradiction.
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We conclude...

Lemma
The language L =

�
anbncn

�� n � 0
 
is not CFL (i.e., there is no

CFG for it).
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