
1

Pre-lecture teaser

Given the language:
L = {wwR|w 2 {0, 1}⇤} (1)

Prove that this language is non-regular

1

ECE-374-B: Lecture 6 - Context-Free Grammars

Instructor: Nickvash Kani
September 16, 2025

University of Illinois Urbana-Champaign

Languages

Pre-lecture teaser

Given the language:
L = {wwR|w 2 {0, 1}⇤} (2)

Prove that this language is non-regular

2

Reverse

All even palindromes

Proof by contradiction
Assumption L is regular
2 is representable by

a DRA

fooling set for 2

i i j 2 01 43 22
affording
for 2

Every string in F has a distinguishable state
But IF x
Contradiction means L is not regular

Chomsky hierarchy revisited

regular
context free

context sensitive

recursively enumerable

3

language are representable

by a OFA NFA RegEx

Example of Context-Free Languages

New addition to our toolbox

Regular languages could be constructed using a finite number of:

• Unions
• Concatenations
• Repetitions

With context-free languages we have a much more powerful tool:

Substitution (aka recursion)!

4

Example

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

S 0S0 01S10 011S110 011 " 110 011110

What strings can S generate like this?

5

variables

Tartt Grammar

Example

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

S 0S0 01S10 011S110 011 " 110 011110

What strings can S generate like this?

5

021110L

11 10111

S E

5 151 10501 10201

S 151 as 11511 111 5111 1110050111

1110151014 11101510111

Example

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

S 0S0 01S10 011S110 011 " 110 011110

What strings can S generate like this?

5

wWR

Formal definition of context-free
languages (CFGs)

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols

• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A! ↵

where A 2 V and ↵ is a string in (V [T)⇤.
Formally, P ⇢ V ⇥ (V [T)⇤.

• S 2 V is a start symbol

G =
⇣

Variables, Terminals, Productions, Start var
⌘

6

we

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)

• P is a finite set of productions, each of the form
A! ↵

where A 2 V and ↵ is a string in (V [T)⇤.
Formally, P ⇢ V ⇥ (V [T)⇤.

• S 2 V is a start symbol

G =
⇣

Variables, Terminals, Productions, Start var
⌘

6

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A! ↵

where A 2 V and ↵ is a string in (V [T)⇤.
Formally, P ⇢ V ⇥ (V [T)⇤.

• S 2 V is a start symbol

G =
⇣

Variables, Terminals, Productions, Start var
⌘

6

this is for Cf specifically

Context Free Grammar (CFG) Definition

Definition
A CFG is a quadruple G = (V, T,P, S)

• V is a finite set of non-terminal (variable) symbols
• T is a finite set of terminal symbols (alphabet)
• P is a finite set of productions, each of the form
A! ↵

where A 2 V and ↵ is a string in (V [T)⇤.
Formally, P ⇢ V ⇥ (V [T)⇤.

• S 2 V is a start symbol

G =
⇣

Variables, Terminals, Productions, Start var
⌘

6

variable

Example formally...

• V = {S}
• T = {0, 1}
• P = {S! ✏ | 0S0 | 1S1}
(abbrev. for S! ✏, S! 0S0, S! 1S1)

G =

0

B@{S}, {0, 1},

8
><

>:

S! ✏,

S! 0S0
S! 1S1

9
>=

>;
S

1

CA

7
L G wwR w

Notation and Convention

Let G = (V, T,P, S) then

• a,b, c,d, . . . , in T (terminals)
• A,B, C,D, . . . , in V (non-terminals)
• u, v,w, x, y, . . . in T⇤ for strings of terminals
• ↵,�, �, . . . in (V [T)⇤

• X, Y, X in V [T

8

“Derives” relation

Formalism for how strings are derived/generated

Definition
Let G = (V, T,P, S) be a CFG. For strings ↵1,↵2 2 (V [T)⇤ we say ↵1 derives ↵2
denoted by ↵1 G ↵2 if there exist strings �, �, � in (V [T)⇤ such that

• ↵1 = �A�
• ↵2 = ���

• A! � is in P.

Examples: S ✏, S 0S1, 0S1 00S11, 0S1 01.

9

8 8

Q
derives

051 01

“Derives” relation continued

Definition
For integer k � 0, ↵1 k ↵2 inductive defined:

• ↵1 0 ↵2 if ↵1 = ↵2

• ↵1 k ↵2 if ↵1 �1 and �1 k�1 ↵2.

• Alternative definition: ↵1 k ↵2 if ↵1 k�1 �1 and �1 ↵2

 ⇤ is the reflexive and transitive closure of .

↵1 ⇤ ↵2 if ↵1 k ↵2 for some k.

Examples: S ⇤ ✏, 0S1 ⇤ 0000011111.

10

8 q w q w E

8 8 qa x

w ax

“Derives” relation continued

Definition
For integer k � 0, ↵1 k ↵2 inductive defined:

• ↵1 0 ↵2 if ↵1 = ↵2

• ↵1 k ↵2 if ↵1 �1 and �1 k�1 ↵2.
• Alternative definition: ↵1 k ↵2 if ↵1 k�1 �1 and �1 ↵2

 ⇤ is the reflexive and transitive closure of .

↵1 ⇤ ↵2 if ↵1 k ↵2 for some k.

Examples: S ⇤ ✏, 0S1 ⇤ 0000011111.

10

“Derives” relation continued

Definition
For integer k � 0, ↵1 k ↵2 inductive defined:

• ↵1 0 ↵2 if ↵1 = ↵2

• ↵1 k ↵2 if ↵1 �1 and �1 k�1 ↵2.
• Alternative definition: ↵1 k ↵2 if ↵1 k�1 �1 and �1 ↵2

 ⇤ is the reflexive and transitive closure of .

↵1 ⇤ ↵2 if ↵1 k ↵2 for some k.

Examples: S ⇤ ✏, 0S1 ⇤ 0000011111.

10

Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by L(G) where
L(G) = {w 2 T⇤ | S ⇤ w}.

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

11

to must have only terminal symbols
at the end

Context Free Languages

Definition
The language generated by CFG G = (V, T,P, S) is denoted by L(G) where
L(G) = {w 2 T⇤ | S ⇤ w}.

Definition
A language L is context free (CFL) if it is generated by a context free grammar. That
is, there is a CFG G such that L = L(G).

11

Grammar where every
production is of the

form TUVI

Example

L = {0n1n | n � 0}

L = {0n1m | m > n}

12

non regular
context free

V25 ET 0.13
8 cP 5 e 0 51

5 5

Example

L = {0n1n | n � 0}

L = {0n1m | m > n}

12

V25 A
T 20,13
P 5 At

A OAI AI E

5 5

Converting regular languages into
CFL

Regular Grammar

What was the grammar for a regular language?

Let’s figure it out visually!

13

contest free

Converting regular languages into CFL I

CA B D E

a, b a, b

a ab b

G =

0

BBBBBB@
{A,B, C,D, E}, {a,b},

8
>>>>>><

>>>>>>:

A! aA,A! bA,A! aB,
B! bC,
C ! aD,
D! bE,

E ! aE, E ! bE, E ! "

9
>>>>>>=

>>>>>>;

,A

1

CCCCCCA

14

abab

7

A a B abc abaD ababe
aboutΣ abab

Converting regular languages into CFL II

M = (Q,⌃, �, s,A): DFA for regular language L.

G =
⇣ Variablesz}|{

Q ,

Terminalsz}|{
⌃ ,

Productionsz }| {
{q! a�(q,a) | q 2 Q,a 2 ⌃}

[{q! " | q 2 A}
,

Start varz}|{
s

⌘

CA B D E

a, b a, b

a ab b

15

NFA

Converting regular languages into CFL I

G =

0

BBBBBB@
{A,B, C,D, E}, {a,b},

8
>>>>>><

>>>>>>:

A! aA,A! bA,A! aB,
B! bC,
C ! aD,
D! bE,

E ! aE, E ! bE, E ! "

9
>>>>>>=

>>>>>>;

,A

1

CCCCCCA

In regular languages:

• Terminals can only appear on one side of the production string
• Only one varibale allowed in production result

16

TV regular grammar

The result...

Lemma
For an regular language L, there is a context-free grammar (CFG) that generates it.

17

Push-down automata

The machine that generates CFGs

{0n1n|n � 0} is a CFL.

We have NFAs from regular languages. What can we add to enable them to
recognize CFLs?

We need a stack!

18

The machine that generates CFGs

{0n1n|n � 0} is a CFL.

We have NFAs from regular languages. What can we add to enable them to
recognize CFLs?

We need a stack!

18

Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $! "

Each transition is formatted as:

hinput readi, hstack popi ! hstack pushi (3)

19

1010001

Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $! "

Does this machine recognize 0011?

19

0011
of

Ñ

Yes

Push-down automata example

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $! "

Does this machine recognize 0101?

19

o e

0401
07

1
No

Formal Tuple Notation

Definition
A non-deterministic push-down automata P = (Q,⌃, �, �, s,A) is a six tuple where

• Q is a finite set whose elements are called states,
• ⌃ is a finite set called the input alphabet,
• � is a finite set called the stack alphabet,
• � : Q⇥ ⌃ [{"}⇥ � [{"} ! P(Q⇥ (� [{"})) is the transition function
• s is the start state
• A is the set of accepting states

Non-deterministic PDAs are more powerful than deterministic PDAs. Hence we’ll
only be talking about non-determinisitc PDAs.

20

Formal Tuple Notation of 0n1n

q1start q2

q3q4

", " ! $
0, " ! 0

1, 0! "

1, 0! "
", $! "

• Q =

• ⌃ =

• � =

• s =
• A =

� =

Input Stack 0 1 "

0 $ " 0 $ " 0 $ "

q1 {(q2, $)}
q2 {(q2, 0)} {(q3, ")}
q3 {(q3, ")} {(q4, ")}
q4

21

CFGs and PDAs

Convert a CFG to a PDA I

Converting a CFG to a PDA is simple (but a little tedious). Let’s demonstrate via
simple example:

S! 0S|1

Idea:
• We try to recreate the string on the stack:

• Everytime we see a non-terminal, we replace it by one of the replacement rules.
• Everytime we see a terminal symbol, we take that symbol from the input.

• if we reach a point where there stack is empty and the input is empty, then
we accept the string.

22

Convert a CFG to a PDA I

Converting a CFG to a PDA is simple (but a little tedious). Let’s demonstrate via
simple example:

S! 0S|1

Idea:
• We try to recreate the string on the stack:

• Everytime we see a non-terminal, we replace it by one of the replacement rules.
• Everytime we see a terminal symbol, we take that symbol from the input.

• if we reach a point where there stack is empty and the input is empty, then
we accept the string.

22

Convert a CFG to a PDA I

qsstart

q2

ql

qa

", " ! $

", " ! S

", $! "

S! 0S|1|✏

• First let’s put in a $ to mark the end of the
string

• Also let’s put in the start symbol on the
stack.

23

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S

", $! "

", S! S

", " ! 0

S! 0S|1|✏

Next we want to add a loop for every
non-terminla symbol that replaces that
non-terminal with the result.
Consider the rule: S! 0S
• So we got to pop the S non-terminal,
• Add a S non-terminal to the stack.
• And add a 0 terminal to the stack.

24

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S

✏, S! 1
✏, S! ✏

", $! "

", S! S

", " ! 0

S! 0S|1|✏

Do the same thing for S! 1 and S! ✏

25

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $! "

", S! S

", " ! 0

S! 0S|1|✏

If we see a non-terminal symbol on the stack,
then we can cross that symbol from the input.
Got to add transitions to do that.

26

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $! "

", S! S

", " ! 0

S! 0S|1|✏

Let’s go over the operation again:

• Does this automata accept 001?
• Does this automata accept 010?

27

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $! "

", S! S

", " ! 0

S! 0S|1|✏

Let’s go over the operation again:
• Does this automata accept 001?

• Does this automata accept 010?

27

Convert a CFG to a PDA I

qsstart

q2

ql

qa

qp21

", " ! $

", " ! S
✏, S! 1
✏, S! ✏

0, 0! "

1, 1! "

", $! "

", S! S

", " ! 0

S! 0S|1|✏

Let’s go over the operation again:
• Does this automata accept 001?
• Does this automata accept 010?

27

Convert a CFG to a PDA II

Let’s do a harder example:

S! 0T1|1
T ! T0|"

28

Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

The goal of our PDA is to
construct the string within the
stack and pop off the leftmost
terminals when we read those
terminals on the input string.

29

Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

• First we need to mark the
start of the stack.

• Then we put the start
variable on the stack.

29

Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

• We create a loop for each
production rule.

• If we read a terminal that
matches the input we pop
it.

29

Convert a CFG to a PDA II

qsstart

q2

ql

qa

qp11 qp12

qp21

", " ! $

", " ! S
", S! 1
", T ! "

0, 0! "

1, 1! "

", $! "

",
S!

1

", " ! T

", "
! 0

", T !
0

", "!
T

S! 0T1|1
T ! T0|"

Computation ends when all
the variables/terminals have
been popped off the stack and
the input is empty.

29

Determinism in Context-Free Languages

As you remember, deterministic finite automata (DFAs) and nondeterministic
finite automata (NFAs) are equivalent in language recognition power.

Not so for PDAs. The previous PDA could not be completed using a deterministic
PDA because we need to know where the middle of the input string is for
determinism!

L = {0n1n|n � 0} can be modeled with a deterministic-PDA.

Learn more in CS 475 (Beyond the scope of this class.)

30

Closure properties of CFLs

Closure Properties of CFLs

G1 = (V1, T,P1, S1) and G2 = (V2, T,P2, S2)
Assumption: V1 \ V2 = ;, that is, non-terminals are not shared

31

Closure Properties of CFLs

G1 = (V1, T,P1, S1) and G2 = (V2, T,P2, S2)
Assumption: V1 \ V2 = ;, that is, non-terminals are not shared

31

Closure Properties of CFLs- Union

G1 = (V1, T,P1, S1) and G2 = (V2, T,P2, S2)
Assumption: V1 \ V2 = ;, that is, non-terminals are not shared.

Theorem
CFLs are closed under union. L1, L2 CFLs implies L1 [L2 is a CFL.

32

2 Ulz Lz is CF

L representable by a CFG V1 T P 5 3

Va T Pz 523

U VV T P UR 5 5 25

Closure Properties of CFLs- Concatenation

Theorem
CFLs are closed under concatenation. L1, L2 CFLs implies L1·L2 is a CFL.

33

s 5 52

5,52

Closure Properties of CFLs- Kleene star

Theorem
CFLs are closed under Kleene star.

If L is a CFL =) L⇤ is a CFL.

34

is e 1

s SS SSS Ssss

Bad news: Canonical non-CFL

Theorem
L =

�
anbncn

�� n � 0

is not context-free.

Proof based on pumping lemma for CFLs. See supplemental for the proof.

35

More bad news: CFL not closed under intersection

Theorem
CFLs are not closed under intersection.

36

L a b em 1 n m 03

am6 e n m 303

4122 a b e 14303

Even more bad news: CFL not closed under complement

Theorem
CFLs are not closed under complement.

37

2,122 TIL

The more you know!

regular
context free

context sensitive

recursively enumerable

We’re making our way up the Chompsky hierarchy!

Next stop: context-sensitive, and decidable languages.

38

Parse trees and ambiguity

Parse Trees or Derivation Trees

A tree to represent the derivation S ⇤ w.

• Rooted tree with root labeled S
• Non-terminals at each internal node of tree
• Terminals at leaves
• Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

39

Parse Trees or Derivation Trees

A tree to represent the derivation S ⇤ w.

• Rooted tree with root labeled S
• Non-terminals at each internal node of tree
• Terminals at leaves
• Children of internal node indicate how non-terminal was expanded using a
production rule

A picture is worth a thousand words

39

Example

S	à aSb | bSa | SS	| ab| ba |	ε

S è aSb è abSab è abSSab è abbaSab è abbaab

A corresponding derivation of abbaab

S

S ba

S ab

S S

b a ε

A derivation tree for abbaab
(also called “parse tree”)

40

Ambiguity in CFLs

Definition
A CFG G is ambiguous if there is a string w 2 L(G) with two different parse trees. If
there is no such string then G is unambiguous.

Example: S! S� S | 1 | 2 | 3

S

S

S

S– – SS

–S S–S S3

2 1 3 2

1

3–(2–1) (3–2)–1
41

Ambiguity in CFLs

• Original grammar: S! S� S | 1 | 2 | 3
• Unambiguous grammar:
S! S� C | 1 | 2 | 3
C ! 1 | 2 | 3

S

S – C

–S C

3 2

1

(3–2)–1

The grammar forces a parse
corresponding to left-to-right
evaluation.

42

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

• There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

• Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

• There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

• Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43

Inherently ambiguous languages

Definition
A CFL L is inherently ambiguous if there is no unambiguous CFG G such that
L = L(G).

• There exist inherently ambiguous CFLs.
Example: L = {anbmck | n = m or m = k}

• Given a grammar G it is undecidable to check whether L(G) is inherently
ambiguous. No algorithm!

43

Supplemental: Why anbncn is not CFL

You are bound to repeat yourself...

L =
�
anbncn

�� n � 0

.

• For the sake of contradiction assume that there exists a grammar:
G a CFG for L.

• Ti: minimal parse tree in G for aibici.

• hi = height(Ti): Length of longest path from root to leaf in Ti.
• For any integer t, there must exist an index j(t), such that hj(t) > t.

• There an index j, such that hj >
⇣
2 ⇤ # variables in G

⌘
.

44

You are bound to repeat yourself...

L =
�
anbncn

�� n � 0

.

• For the sake of contradiction assume that there exists a grammar:
G a CFG for L.

• Ti: minimal parse tree in G for aibici.
• hi = height(Ti): Length of longest path from root to leaf in Ti.
• For any integer t, there must exist an index j(t), such that hj(t) > t.

• There an index j, such that hj >
⇣
2 ⇤ # variables in G

⌘
.

44

Repetition in the parse tree...

–

—

45

Repetition in the parse tree...

–

—

–

x y z v w

—

xyzvw = ajbjcj

45

Repetition in the parse tree...

–

x y z v w

—

–

x w

—

—Õ

y z v

y v

xyzvw = ajbjcj =) xy2zv2w 2 L

45

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.

• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.
• If y contains both a and b, then, ⌧ = ...a...b...a...b....

Impossible, since ⌧ 2 L =
�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.
• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.
• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.

• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.
• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.

• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• We know:
xyzvw = ajbjcj
|y|+ |v| > 0.

• We proved that ⌧ = xy2zv2w 2 L.
• If y contains both a and b, then, ⌧ = ...a...b...a...b....
Impossible, since ⌧ 2 L =

�
anbncn

�� n � 0

.

• Similarly, not possible that y contains both b and c.
• Similarly, not possible that v contains both a and b.
• Similarly, not possible that v contains both b and c.
• If y contains only as, and v contains only bs, then... #(a)(⌧) 6= #(c)(⌧).
Not possible.

46

Now for some case analysis...

• Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

• Must be that ⌧ /2 L. A contradiction.

47

Now for some case analysis...

• Similarly, not possible that y contains only as, and v contains only cs.
Similarly, not possible that y contains only bs, and v contains only cs.

• Must be that ⌧ /2 L. A contradiction.

47

We conclude...

Lemma
The language L =

�
anbncn

�� n � 0

is not CFL (i.e., there is no CFG for it).

48

