

Pre-lecture brain teaser

What is the context-free grammar of the following push-down automata:

start —)
g,e—$

ECE-374-B: Lecture 7 - Context-sensitive and decidable
languages

Instructor: Nickvash Kani
September 18, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

What is the context-free grammar of the following push-down automata:

start —)
g,e—$

Larger world of languages!

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Remember our hierarchy of languages

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular

You've mastered regular expressions.

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Now what about the next level up?

Chomsky Hierarchy

On to the next one

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular

Context-Sensitive Languages

The language L = {a"b"c"|n > 1} is not a context free language.

O™ —> CF Ligyeses

The language L = {a"b"c"|n > 1} is not a context free language. but it is a
context-sensitive language!

-V ={S,A,B}
- T={a,b,c}

(S — abclaAbc, \
Ab — DA,
-P=<¢ Ac — Bbcc mbé‘?—a
bB — Bb
aB — aalaaA

(o Abe —abhe 2 abBbec)
g&-bbée—ca — a0 tbec 8

The language L = {a"b"c"|n > 1} is not a context free language. but it is a
context-sensitive language!

-V ={S,A,B}
- T={a,b,c}
(5 abc|aAbc, \
Ab — DA,
- P = Ac — Bbcc >
bB — Bb
aB — aalaaA

S ~ aAbc ~ abAc ~ abBbcc ~~ aBbbcc ~~ aaAbbcc ~~ aabAbcc

~s aabbAcc ~» aabbBbccc ~ aabBbbccc ~~ aaBbbbccc 8

1 1 1

Context Sensitive Grammar (CSG) Definition

Definition
A CSG Is a quadruple G=(V,T,P,S)

-V is a finite set of non-terminal symbols v eaniables

P

- T is a finite set of terminal symbols (alphabet)

- Pis a finite set of productions, each of the form

o,
where o and 3 are string

V' is a start symbol

Gz(Variables, Terminals, Productions, Startvar)

Example formally...

L={a"b"c"|n > 1}

- V={S,A, B}
- T=1{a,b,c}
(5 abc|aAbc, \
Ab — DA,
- P = Ac — Bbcc >
bB — Bb
aB — aalaaA

((5 abc|aAbc, \ \
Ab — DA,
G=|{S,A B}, {ab,c}, ¢ Ac—Bbcc , S
bB — Bb

10

Other examples of context-sensitive languages

LC,’OSS — {Omanmdn|m, N Z 1} (1)

1

i

_—
/

Turing Machines

L(/Mif”ﬁ/t“
2 >

“Most General” computer?

- DFAs are simple model of computation.
- Accept only the regular languages.

- Is there a kind of computer that can accept any language, or compute any
function?

—
- Recall counting argument. Set of all languages:w
{L| L C{0,1}*} is COUNtablFINMTe / Uncountably infinite ﬁ

12

“Most General” computer?

- DFAs are simple model of computation.
- Accept only the regular languages.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L]LC{0,1}*"} ism/ uncountably infinite

- Set of all programs:
{P | Pis a finite length computer program}:

is countably infinite /W

12

“Most General” computer?

- DFAs are simple model of computation.
- Accept only the regular languages.

- Is there a kind of computer that can accept any language, or compute any
function?

- Recall counting argument. Set of all languages:

{L]LC{0,1}*"} ism/ uncountably infinite

- Set of all programs:
{P | Pis a finite length computer program}:

is countably infinite /W

- Conclusion: There are languages for which there are no programs.

12

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Regular

13

Chomsky Hierarchy

Non-recursively-enumerable

Recursively-enumerable

Context-sensitive

Context-Free

Onto our final class of languages - recursively enumerable (aka Tv&n’/%%ﬂé)

What is a Turing machine

Turing machine

Illblalalalal

L p

Input/Output Tape

Reading and Writing Head
moves in both directions)

ds3
o, \/ dn
g1 do

Finite Control

- Input written on (infinite) one sided
tape.

- Special blank characters.
- Finite state control (similar to DFA).

- Ever step: Read character under
head, write character out, move the
head right or left (or stay).

14

High level goals

- Church-Turing thesis: TMs are the most general computing devices. So far no
counter example.

- Every TM can be represented as a string.

- Existence of Universal Turing Machine which is the model/inspiration for
stored program computing. UTM can simulate any TM

- Implications for what can be computed and what cannot be computed

D@aabb“ [::6'7

15

Examples of Turing

turingmachine.io

- binary increment

16

Turing machine: Formal definition

A Turing machine is a 7-tuple (Q, X, T, 8, o, Gace, Grej)

- Q: finite set of states.

- 2 finite input alphabet.

- [finite tape alphabet.

+0:QxT —QxTI x{L,R,S}: Transition function.
* go € Qis the initial state.

- Jace € Q is the accepting/final state.

* Qrej € QIS the rejecting state.

- Jor E Special blank symbol on the tape.

17

Turing machine: Transition function

0:QxI—=QxTIx{LR,S}

As such, the transition

6(g,c) = (p,d, L)
- @: current state.
- C: character under tape head.
* p: new state.

- d: character to write under tape
head

- L: Move tape head left.

D
q

Can also be written as

c—d,L

(2)

18

Turing machine: Transition function

0:QxI—=QxTIx{LR,S}

As such, the transition

6(g,c) = (p,d, L)
- @: current state.
- C: character under tape head.
* p: new state.

- d: character to write under tape
head

- L: Move tape head left.

D
q

Missing transitions lead to
hell state.

“Blue screen of death’”
“Machine crashes.”

18

Some examples of Turing machines

turingmachine.io

- equal strings TM
- palindrome T™M

19

Languages defined by a Turing
machine

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages

L ={L(M) | M some Turing machine}.

- Recursive / decidable languages

L = {L(M) | M some Turing machine that halts on all inputs}.

20

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.

20

Recursive vs. Recursively Enumerable

- Recursively enumerable (aka RE) languages (bad)

L ={L(M) | M some Turing machine} .

- Recursive / decidable languages (gOOd)

L = {L(M) | M some Turing machine that halts on all inputs}.

- Fundamental questions:
- What languages are RE? VN o waalc OQ' e e
- Which are recursive?
- What is the difference?
- What makes a language decidable?
20

What is Decidable?

Decidable vs recursively-enumerable

A semi-decidable problem (equivalent of recursively enumerable) could be:

- Decidable - equivalent of recursive (T always accepts or rejects).

- Undecidable - Problem is not recursive (doesn't always halt on negative)

There are undecidable problem that are not semi-decidable (recursively

enumerable). = M
/ e szblp /ﬂ;wgf‘: - _

21

Infinite Tapes? Do we need them?

Let’s look at the TM that recognizes L = {a"b"c"|n > 0}:

C/C, «
b/b, «
B/B, «
a/a, «—
A/A, — N
a/a, — b/b, —
B/B, — c/C, —
N N o/C, =
a/A, — Find & b/B,— [Find &
mark b mark ¢ : : p—
B/B, — l! ,Lla‘,b‘w blC’, (- J
B/B, — C/C, — y
P P L~ L—

22

Linear Bounded Automata

Reading and Writing Head

oves in both directions) ¢TNondeterministiyLinear bounded

automata can recognize all context
. | sensitive languages.

as - Machine can non-deterministically
apply all production rule to input in
as an reverse and see if we end up with

/ the start token.
91 90 EXPSPALE ~omyle®e

Finite Control 23

Well that was a journey....

Zooming out

)-8

[/:

y

recurs'fve‘mnumerablg

context sensitive

context free

regular

DFA<

Grammar | Languages Production Rules Automation Examples
. — . . 4 .
Type-0 Recursively enumerable T . Turing machine L={(M,w)|Mis a TM which halts on w}
(no constraints)

Linear bounded

Type-1 Context-sensitive aAB — avp Non-deterministic L={a"b"c"|n > 0} .
Turing machine
Non-deterministic

Type-2 Context-free A=« L={a"b"|n > 0}
Push-down automata

Type-3 Regular A — aB Finite State Machine L = {a"|n > 0}

Meaning of symbols: - a =terminal -+ A,B=variables - «,f,v=stringof {aUA}* - «,p = maybe empty — ~ = never empty

24

