You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0, 1\}$. Please describe the language.
You have the following Turing machine diagram that accepts a particular language whose alphabet $\Sigma = \{0, 1\}$. Please describe the language.

$L = \{0^n 1^m 0^n | m, n > 0\}$
Can simulate TM on turingmachine.io using the following code:

```plaintext
start state: start

table:

start:
    # Inductive case: start with the same symbol.
    0: {write: '$', R: seek1}
    # Base case: empty string.
    'x': {write: '$', R: verify}

seek1:
    [0,'x']: R
    1: {write: 'x', R: seek0}

seek0:
    [1,'x']: R
    0: {write: 'x', L: reset}

reset:
    [0,1,'x']: L
    '$': {R: start}

verify:
    x: {write: '$', R}
    ': {L: accept}

accept:
```

Turing machine recap
Turing machine

Reading and Writing Head (moves in both directions)

- Input written on (infinite) one sided tape.
- Special blank characters.
- Finite state control (similar to DFA).
- Every step: Read character under head, write character out, move the head right or left (or stay).
Transition Function

\[\delta : Q \times \Gamma = Q \times \Gamma \times \{L, R\} \]

\[\delta(q, a) = (p, b, L) \] means from state \(q \), on reading \(a \):

- go to state \(p \)
- write \(b \)
- move head Left
Turing machine variants
Equivalent Turing Machines

Several variations of a Turing machine:

- Standard Turing machine (single infinite tape)
- Multi-track tapes
- Doubly-Infinite Tape
- Multiple heads
- Multiple heads and tapes
Suppose we have a TM with multiple tracks:

\[
\begin{array}{cccccc}
\square & 1 & 1 & 0 & 0 & 0 & \square \\
\square & 0 & 1 & 0 & 1 & 1 & 0 \\
\square & 0 & 1 & 0 & 0 & 1 & 1 \\
\end{array}
\]

Tape 0

Tape 1

Tape 2

Is there an equivalent single-track TM?

New transition function:

\[\delta : Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \to Q \times \Gamma_1 \times \Gamma_2 \times \Gamma_3 \times \{-1, +1\}\]
Suppose we have a TM with multiple tracks.

Is there an equivalent single-track TM?

Can model as multiple tapes.
Infinite Bi-directional Tape

Suppose we have a TM with a bidirectional tape:

Is there an equivalent single-track TM?

Or as single tape interleaved with positive and negative indexes.
Suppose we have a TM with multiple heads:

What does the transition function for the equivalent nominal TM look like?
Multiple Read/Write Heads

Suppose we have a TM with multiple heads and tracks:

What does the transition function for the equivalent nominal TM look like?
Determinism in Turing machines
Remember Non-determinism?

Deterministic

\[
f(n) \quad \cdots \quad \downarrow \\
\downarrow \quad \downarrow \quad \downarrow \\
\downarrow \\
\text{accept or reject}
\]

Non-Deterministic

\[
f(n) \quad \cdots \\
\downarrow \\
\text{accept} \\
\downarrow \\
\text{reject}
\]
Non-deterministic Turing machine?

What does a non-deterministic Turing machine look like?
Non-deterministic Turing machine?

What does a non-deterministic Turing machine look like?

Is a NTM more powerful than a DTM?
Power of **NTM**

No. A **DTM** can simulate a **NTM** in the following ways:

- **Multiplicity of configuration of states**
 1. Have the store multiple configurations of the **NTM**.
 2. At every timestep, process each configuration. Add configurations to the set if multiple paths exist.

- **Multiple Tapes** - Can simulate **NTM** with 3-tape **DTM**:
 1. First tape holds original input
 2. Second used to simulate a particular computation of **NTM**
 3. Third tape encodes path in **NTM** computation tree.

Effectively this is a breadth-first search of non-deterministic computation tree.

\[
\text{NTM} = \langle Q_0, \Gamma_0, \Sigma^*, \delta \rangle \\
\text{DTM} = \langle Q_0 = P(\langle Q_0 \rangle), \Gamma_0, \Sigma^* \rangle
\]
Savitch’s Theorem

Proved by Walter Savitch in 1970, states that for any function $f \in \Omega(\log(n))$:

$$\text{NSPACE}(f(n)) \subseteq \text{DSPACE}(f(n)^2)$$

Lemma

If a *NTM* can solve a problem using $f(n)$ space, a *DTM* can solve the same problem in the square of that space bound.

\implies Even though non-determinism significantly reduces time to solve problem, it reduces space requirements far less!
Universal Turing Machine
Special Purpose Machines?

We’ve seen that you need different DFAs for different languages.

We’ve seen that you need different TMs for different languages.

Early computers were no different.
Universal Turing Machine

A single TM M_u that can compute anything computable!

Takes as input:

- the description of some other TM M
- data w for M to run on

Outputs:

- results of running $M(w)$
Coding of TMs

Show how to represent every TM as a natural number

Lemma

If L over alphabet $\{0, 1\}$ is accepted by some TM M, then there is a one-tape TM M that accepts L, such that

- $\Gamma = \{0, 1, B\}$
- states numbered $1, \ldots, k$
- q_1 is a unique start state
- q_2 is a unique halt/accept state
- q_3 is a unique halt/reject state

So to represent a TM, we need only list its set of transitions - everything else is implicit by the above.
Consider the TM that recognizes the language \(L = \{0^n1^n0^n | n \geq 0\} \) with the state diagram shown below:

Input encoding:

- \(\langle 0 \rangle = 001 \)
- \(\langle 1 \rangle = 010 \)
- \(\langle $ \rangle = 011 \)
- \(\langle X \rangle = 100 \)
- \(\langle \downarrow \rangle = 000 \)

Example: \(\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001] \)

(Putting \(\cdot \) separators for the sake of legibility)
Consider the TM that recognizes the language
\[L = \{0^n1^n0^n | n \geq 0\} \] with the state diagram shown below:

State encoding:

- \langle \text{start} \rangle = 001
- \langle \text{seek1} \rangle = 010
- \langle \text{seek0} \rangle = 011
- \langle \text{reset} \rangle = 100
- \langle \text{verify} \rangle = 101
- \langle \text{accept} \rangle = 110
- \langle \text{reject} \rangle = 000
Consider the TM that recognizes the language $L = \{0^n1^n0^n|n \geq 0\}$ with the state diagram shown below:

Now we need to encode a transition. Last thing we’ll need is to encode the movement of the head which we’ll describe as: $[\text{left, right}] = [0, 1]$.

Example: How do we encode: $\delta(\text{reset}, \$) = (\text{start}, \$, \text{right})$

Answer: $[100 \cdot 011|001 \cdot 011 \cdot 1]$
Encoding machine through transitions

\[
\delta^M = \begin{bmatrix}
[001 \cdot 001 \cdot 010 \cdot 011 \cdot 1] & [001 \cdot 100 \cdot 101 \cdot 011 \cdot 1] \\
[010 \cdot 001 \cdot 010 \cdot 001 \cdot 1] & [010 \cdot 100 \cdot 010 \cdot 100 \cdot 1] \\
[010 \cdot 010 \cdot 011 \cdot 100 \cdot 1] & [011 \cdot 010 \cdot 011 \cdot 010 \cdot 1] \\
[011 \cdot 100 \cdot 011 \cdot 100 \cdot 1] & [011 \cdot 001 \cdot 100 \cdot 100 \cdot 1] \\
[100 \cdot 001 \cdot 100 \cdot 001 \cdot 0] & [100 \cdot 010 \cdot 100 \cdot 010 \cdot 0] \\
[100 \cdot 100 \cdot 100 \cdot 100 \cdot 0] & [100 \cdot 011 \cdot 001 \cdot 011 \cdot 1] \\
[101 \cdot 100 \cdot 101 \cdot 011 \cdot 1] & [101 \cdot 000 \cdot 110 \cdot 000 \cdot 0]
\end{bmatrix}
\]
Encoding machine through transitions

$$\delta^M = \begin{bmatrix}
[001 \cdot 001|010 \cdot 011 \cdot 1]
[010 \cdot 001|010 \cdot 001 \cdot 1]
[010 \cdot 010|011 \cdot 100 \cdot 1]
[011 \cdot 100|011 \cdot 100 \cdot 1]
\end{bmatrix}$$

$$\delta(\text{seek0}, x) = (\text{seek0}, x, \text{right})$$
Ok so now we’ve encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if $M(w)$ accepts, and rejects if $M(w)$ rejects?
Ok so now we’ve encoded the Turing machine (M) into a string, how do we make a machine $M_u(M, w)$ which accepts if $M(w)$ accepts, and rejects if $M(w)$ rejects?

Let’s start with the encoding of w (let’s say $w = 001100$):
$$\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]$$
Ok so now we’ve encoded the Turing machine \((M)\) into a string, how do we make a machine \(M_u(M, w)\) which accepts if \(M(w)\) accepts, and rejects if \(M(w)\) rejects?

Let’s start with the encoding of \(w\) (let’s say \(w = 001100\)):
\[
\langle 001100 \rangle = [001 \cdot 001 \cdot 010 \cdot 010 \cdot 001 \cdot 001]
\]

Now let’s add spaces next to each character so we can mark where \(M\)’s head is:
\[
[[000 \cdot 001][000 \cdot 001][000 \cdot 010][000 \cdot 010][000 \cdot 001][000 \cdot 001]]
\]
Encoding states

Padding used to mark state.

In the beginning, $q = \langle \text{start} \rangle = 001$ so our machine tapes initial string is:

$$[[001 \cdot 001][000 \cdot 001][000 \cdot 010][000 \cdot 010][000 \cdot 001][000 \cdot 001]]$$

Similarly intermediate configuration

$M = \langle \text{state, tape string, head position} \rangle = (\text{seek1, }$0x1x0, $3)$

would be marked as:

$$[[000 \cdot 011][000 \cdot 001][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]]$$

\[
\text{Next machine configuration}
\]
The universal Turing machine
Now that we are able to encode Turing machines, we want to construct a Turing machine such that:

\[L(M_u) = \{ \langle M \rangle \# w | M \text{ accepts } w \} \]

\(M_u \) is a stored-program computer. It reads \(\langle M \rangle \) and executes it on data \(w \).

\(M_u \) simulates the run of \(M \) on \(w \).
Encodings

M: Turing machine

$\langle M \rangle$: a string uniquely describing M (i.e., it is a number.

w: An input string.

$\langle M, w \rangle$: A unique string encoding both M and input w.

$$L(M_u) = \{ \langle M, w \rangle \ M \text{ is a TM and } M \text{ accepts } w \}.$$
We assume without a loss of generality that our universal turing machine (M_u) has two tapes and two heads:

- **Input tape:** which stores the encoding of

 \[\langle M \rangle = \langle \text{state, tape input, head position} \rangle \]

- **Machine tape:** Encoding tape which stores M’s encoding

General Idea: For any given configuration of M, our M_u will.

- Starting from leftmost of input tape, scan tape for first state which is not \langle reject \rangle
- M_u scans machine tape for the transition function that matches the substring found in the input tape.
- Based on transition function, M_u writes the right half of this transition function into the current input tape cell.
- Based on head direction of the transition function, M_u moves the current state left or right.
Simulation example I

Let’s start with the configuration: $M = (\text{seek}1, \text{x}1\text{x}0, 3)$:

- **Input-Tape =**

  ```
  [ [000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
  △
  ```

- **Machine-Tape = $\delta^M =$**

  ```
  [ [001 · 001|010 · 011 · 1][001 · 100|101 · 011 · 1][010 · 001| ...
  △
  ```

First M_u searchers for none reject state:

- **Input-Tape =**

  ```
  [ [000 · 011][000 · 011][000 · 100][010 · 010][000 · 100][000 · 001]]
  △
  ```

- **Machine-Tape = $\delta^M =$**

  ```
  [ [001 · 001|010 · 011 · 1][001 · 100|101 · 011 · 1][010 · 001| ...
  △
  ```
Simulation example II

• Input-Tape =
 \[
 [[000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]]
 \]

• Machine-Tape = \(\delta^M = \)
 \[
 [[001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001| ...]
 \]

Then \(M_u \) searches for transition whose left side matches the input cell:

• Input-Tape =
 \[
 [[000 \cdot 011][000 \cdot 011][000 \cdot 100][010 \cdot 010][000 \cdot 100][000 \cdot 001]]
 \]

• Machine-Tape = \(\delta^M = \)
 \[
 ...100 \cdot 1][010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1][...]
 \]
Simulation example III

- Input-Tape =
 \[
 \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 0 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

- Machine-Tape = \(\delta^M = \]
 \[
 \begin{bmatrix}
 100 & 1 \\
 010 & 010 \\
 011 & 100 & 1 \\
 011 & 010 \\
 011 & 010 & 1 \\
 \end{bmatrix}
 \]

Then \(M_u \) copies the right side of the transition function into the input tape:

- Input-Tape =
 \[
 \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 0 & 1 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]

- Machine-Tape = \(\delta^M = \]
 \[
 \begin{bmatrix}
 100 & 1 \\
 010 & 010 \\
 011 & 100 & 1 \\
 011 & 010 \\
 011 & 010 & 1 \\
 \end{bmatrix}
 \]
Simulation example IV

- Input-Tape =
 \[
 \begin{array}{cccc}
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 \end{array}
 \]

- Machine-Tape = $\delta^M = \ldots 100 \cdot 1 | 010 \cdot 010 | 011 \cdot 100 \cdot 1 | 011 \cdot 010 | 011 \cdot 010 \cdot 1 \ldots$

Then M_u move the state of the configuration according to the transition function:

- Input-Tape =
 \[
 \begin{array}{cccc}
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
 \end{array}
 \]

- Machine-Tape = $\delta^M = \ldots 100 \cdot 1 | 010 \cdot 010 | 011 \cdot 100 \cdot 1 | 011 \cdot 010 | 011 \cdot 010 \cdot 1 \ldots$
Simulation example V

- Input-Tape =
 \[[[[000 \cdot 011][000 \cdot 011][000 \cdot 100][000 \cdot 100][011 \cdot 100][000 \cdot 001]] \]

- Machine-Tape = \(\delta^M = \)
 \[\ldots [010 \cdot 010|011 \cdot 100 \cdot 1][011 \cdot 010|011 \cdot 010 \cdot 1] \ldots \]

Then we reset:

- Input-Tape =
 \[[[[000 \cdot 011][000 \cdot 011][000 \cdot 100][000 \cdot 100][011 \cdot 100][000 \cdot 001]] \]

- Machine-Tape = \(\delta^M = \)
 \[[[001 \cdot 001|010 \cdot 011 \cdot 1][001 \cdot 100|101 \cdot 011 \cdot 1][010 \cdot 001] \ldots \]
What does this show?

• Every TM is encoded by a unique element of \(N \) (where \(N \) is a natural number)

• **Convention:** elements of \(N \) that do not correspond to any TM encoding represent the “null TM” that accepts nothing.

• Thus, every TM is a number, and vice versa

• Let \(<M> \) mean the number that encodes \(M \). Conversely, let \(M_n \) be the TM with encoding \(n \).

Big Idea: Every TM can be represent by a number (strings of 0’s and 1’s) and there exists a universal TM, \(M_u \), that can simulate any other TM.