
ECE 374 B Quiz 3 - Questions Fall 2025

Problem type 1:

L1, L2, ... are all regular languages representable by the DFAs M1 = (Q1,Σ,δ1, s1, A1), M2 =
(Q2,Σ,δ2, s2, A2), etc.

Give the formal description of the NFA (N ′) that describes the language below that is the
composite of one or more of the above regular languages.

(See variants below)

We want to see the definition in terms of: Q′ =, δ′ =, s′ =, A′ = Assume Σ= {0,1}.

a. BYC

L′ = L1 ∪ L2

Solution: Two ways to do this. We can either do this the proper DFA way where:

• Q′ =Q1 ×Q2 = {(q1, q2) | q1 ∈Q1, q2 ∈Q2}
• s′ = (s1, s2)

• δ : Q′ ×Σ→Q where δ′((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

• A′ = {(q1, q2) | q1 ∈ A1 or q2 ∈ A2}

Or since the problem specifically states that we define the NFA we can use epsilon
transitions:

• Q′ =Q1 ∪Q2 ∪
�

s′
	

• s′ = s′

• δ′ = δ1 ∪δ2 ∪
�

δ′
�

s′,ϵ
�

= {s1, s2}
	

• A′ = A1 ∪ A2

■

b. BYE

L’ = L1

Solution: Since we are given theDFA for the original languages, flipping the accept/reject
states will suffice

• Q′ =Q1

• s′ = s1

• δ′ = δ1

• A′ =Q1\A1

Potential future question: Why can’t we reverse the states on a NFA to get the
complement?

1

ECE 374 B Quiz 3 - Questions Fall 2025

■

c. BYA

L′ = L1 · L2

Solution: Just arrange one DFA after another and use epsilon transitons:

• Q′ =Q1 ∪Q2

• s′ = s1

• δ′ = δ1 ∪δ2 ∪
�

δ′ (qa,ϵ) = {s2}
	

∀qa ∈ A1

• A′ = A2

■

d. BYH

L′ = L1 ∪ {ϵ}

(adding empty string to strings L1 regardless of if it is there (or not))

Solution: A number of solutions but the safest solution is to simply have a new start
state that is a accepting state and the epsilon transition to the rest of the string:

• Q′ =Q1 ∪
�

s′
	

• s′ = s′

• δ′ = δ1 ∪
�

δ′
�

s′,ϵ
�

= s1

	

• A′ = A1 ∪ s′

Potential future question why can’t we simple make s1 a accepting state? ■

e. BYD

L′ = 0 · L1

Add a 0 before every string in L1

Solution:

• Q′ =Q1 ∪
�

s′
	

• s′ = s′

• δ′ = δ1 ∪
�

δ′
�

s′,0
�

= s1

	

• A′ = A1

■

2

ECE 374 B Quiz 3 - Questions Fall 2025

f. BYF

L′ = L1 ∪ {0}

(add the string “0” to strings in L1 regardless of if it is there (or not))

Solution:

• Q′ =Q1 ∪
�

s′, q′1
	

• s′ = s′

• δ′ = δ1 ∪
�

δ′
�

s′,0
�

= q′1, δ′
�

s′,0
�

= s1

	

• A′ = A1 ∪ q′1

Why do you need the extra start state? Suppose L1 is represented by the following DFA:

q0start q1
1

0

0 1

This DFA represents all strings ending in 1. Now if we simply add a single state (q′1) and
transition to it from q0 on character 0, we would accept the string 0, but we would also
accept 00, and 00000, and so on. That’s not what we want. The potential for the start
state to be part of a loop means that we should add a new start state to make sure this
new string accepts the string 0 and doesn’t help accepting any other strings. Hence, the
transformation above prevents this by adding the new start state:

s′start q0 q1

q′1

ϵ

0

1

0

0 1

Huge thanks to CA Shreyansh Agrawal for identifying the bug. I am very blessed to have
an amazing support staff and this is just one of many examples why they’re awesome.

■

3

ECE 374 B Quiz 3 - Questions Fall 2025

g. BYB

L′ = L1 ·0

Add a 0 after every string in L1

Solution:

• Q′ =Q1 ∪
�

q′F
	

• s′ = s1

• δ′ = δ1 ∪
�

δ′
�

q f ,0
�

= q′F
	

∀q f ∈ A1

• A′ = q′F

■

h. BYG

L′ = {0∗a00∗a1 . . .0∗an−10∗|w= a0a1 . . . an−1, w ∈ L1, a0, a1, . . . , an−1 ∈ Σ}

(basically what this is saying is that L′ will accept any string in L1 and that string in L1 can
have any number of 0’s shoved in between each character).

Solution: The hardest part of this question is understanding the language. But the
description starts that this is simply L1 with runs of 0’s shoved between each character.
Once we know that, hopefully we see that the solution is to simply shove a bunch of self
loops in the DFA to allow the acceptance of additional 0’s. So the NFA for L′ becomes:

• Q′ =Q1

• s′ = s1

• δ′ = δ1 ∪
�

δ′ (qa,0) = qa

	

∀qa ∈Q1

• A′ = A1

Note: A earlier version of this problem had a slightly different formal definition that
didn’t match the textual description completely. We edited the formal definition in the
question/solutions documents but when grrading we assumed either definition. ■

4

