ECE 374 B Quiz 10 - Questions Fall 2025

Problem type 1:

Last quiz you were asked to provide the recur-
rence that describes one of the backtracking
problems from Labs 11/12. I will give you the re-
currence to that problem below. Now I want to

know the evaluation order of the recurrence. A[n][n] = <Base Cases>
Specifically I want three things: for <loop1 conditions>
> Fill in if needed
* The number of for loops needed to evaluate for <loop2 conditions >
the recurrence. > Fill in if needed

for <loop3 conditions>
> Fill in if needed
Compute
* The return value (which value/part of the return ## > Fill in
array do we return)

e The order of each of those for loops (1 — n,
n—1,i—n,etc.)

Not looking for full pseudocode. Just a basic
idea of how to memorize the recurrence.

(See variants below)

a. BYA & BYH

Given an array A[1 .. n] of integers, compute the length of a longest alternating subsequence:
Let LAS™ (i, j) denote the length of the longest alternating subsequence of A[i..n] whose first
element (if any) is larger than A[j] and whose second element (if any) is smaller than its first.

0 ifi>n
LAS*(i,j) =< LAST(i+1,)) ifi <nandA[i] <A[j]
max {LAS™(i +1,7),1+LAS™(i+1,i)} otherwise

0 ifi>n
LAS (i, /)= { IAS~(i +1,) if i <nand A[i] > A[j]
max {LAS_(i +1,j),1+LAST(i+1, i)} otherwise

b. BYC & BYE

Given an array A[1..n] of integers, compute the length of a longest decreasing subsequence.
Let LDS(i, j) denote the length of the longest decreasing subsequence of A[i..n] where every
element is smaller than A[j].

0 ifi>n
LDS(i,j) = { LDS(i+1,) ifi <nand A[j] <A[i]
max {LDS(i +1,j),1+LDS(i +1,i)} otherwise

ECE 374 B Quiz 10 - Questions Fall 2025

c. BYD & BYG

Given an array A[1..n], compute the length of a longest palindrome subsequence of A. Let
LPS(i, j) denote the length of the longest palindrome subsequence of A[i .. j].

(0 ifi>j
1 ifi=j
max{ LPS(i+1,)) } if i < j and A[i] #A[j]
LPS(i,j) = 1§ LPS(i,j—1)
24LPS(i+1,j—1)
max LPS(i+1,7) otherwise
\ LPS(i,j—1)

d. BYB & BYF

Given an array A[1..n] of integers, compute the length of a longest convex subsequence of A.
Let LCS(i, j) denote the length of the longest convex subsequence of A[i..n] whose first two
elements are A[i] and A[j].

LCS(i,j) =1+ max{LCS(j,k)|j < k <nand A[i]+A[k] > 2A[j]}

