
ECE 374 B Quiz 16 - Questions Fall 2025

Problem type 1:
Let’s say we have the following two problems:

(See variants below)

As you can see, they are both the same problem but one is a decision version of the problem and the other
is a optimization version of the same problem. We have a block-box algorithm that solves the decision version in
polynomial time. Using this black box program, describe an algorithm that solves the optimization version of this
problem.Does this algorithm demonstrate ProblemOPT =⇒ ProblemDEC , or ProblemDEC =⇒ ProblemOPT? (select
one and draw a box around it on your test sheet).

a. BYB/BYE

Independent Set Decision: (IndSetDec(G, k))

• Input: A undirected graph G and integer k

• Output: True if G has a independent set of size ≥ k, False otherwise

Independent Set Optimization: (IndSetOpt(G, k))

• Input: A undirected graph G

• Output: The size of the largest independent set in G

Solution: Simply iterate on k from n down to 1.
IndSetOpt(G)

for k = |V | to 1
if IndSetDec(G, k)

return k

This reduction shows IndSetOpt =⇒ IndSetDec ■

b. BYA/BYH

Clique Decision: (CliqueDec(G, k))

• Input: A undirected graph G and integer k

• Output: True if G has a clique of size ≥ k, False otherwise

Clique Optimization: (CliqueOpt(G, k))

• Input: A undirected graph G

• Output: The size of the largest clique in G

Solution: Simply iterate on k from n down to 1.
CliqueOpt(G)

for k = |V | to 1
if CliqueDec(G, k)

return k

This reduction shows CliqueOpt =⇒ CliqueDec ■

1

ECE 374 B Quiz 16 - Questions Fall 2025

c. BYC/BYF

Traveling Salesman Decision: (TSDec(G, k))

• Input: A undirected weighted, all-positive graph G and integer k

• Output: True if there exists a path that visits every vertex exactly once, ends at the
vertex it started at and costs ≤ k. False otherwise

Traveling Salesman Optimization: (TSOpt(G, k))

• Input: A undirected weighted, all-positive graph G

• Output: The weight of the minimum cycle in G that visits every vertex exactly once. (-1
if one doesn’t exist)

Solution: Simply iterate on all possible weights of the TSP tour. The max possible tour
weight would be approximately the maximum edge weight multiplied by n−1 (since the
tour must have n edges).
TSOpt(G)

for k = 0 to |V | − 1× ℓ(E)
if TSDec(G, k)

return k
return -1

This reduction shows TSOpt =⇒ TSDec. ■

d. BYD/BYG

kColor Decision: (kColorDec(G, k))

• Input: A undirected graph G and integer k

• Output: True the vertices in G can be colored with k colors such that no two adjacent
vertices share the same color, False otherwise

kColor Optimization: (kColorOpt(G, k))

• Input: A undirected graph G

• Output: The minimum number of colors needed to color the vertices in G such that no
two adjacent vertices share the same color.

Solution: We can assume that the maximum number of colors we’d need is n. So, simply
iterate on k from n down to 1.
kColorOpt(G)

for k = 1 to |V |
if kColorDec(G, k)

return k

This reduction shows kColorOpt =⇒ kColorDec ■

2

