ECE 374 B Quiz 16 - Questions Fall 2025

Problem type 1:

Let’s say we have the following two problems:

(See variants below)

As you can see, they are both the same problem but one is a decision version of the problem and the other
is a optimization version of the same problem. We have a block-box algorithm that solves the decision version in
polynomial time. Using this black box program, describe an algorithm that solves the optimization version of this

prObB(I)%s this algorithm demonstrate ProblemOPT = ProblemDEC, or ProblemDEC = ProblemOPT? (select

one and draw a box around it on your test sheet).

a. BYB/BYE
Independent Set Decision: (IndSetDec(G, k))

e INpPUT: A undirected graph G and integer k

e Ourtput: True if G has a independent set of size > k, False otherwise
Independent Set Optimization: (IndSetOpt(G, k))

* INPUT: A undirected graph G

* OuTpuT: The size of the largest independent set in G

Solution: Simply iterate on k from n down to 1.
IndSetOpt(G)
fork=1|V|to1l
if IndSetDec(G, k)
return k

This reduction shows INDSETOPT —> INDSETDEC [|

b. BYA/BYH
Clique Decision: (CliqueDec(G, k))

e INPUT: A undirected graph G and integer k

e Ourtput: True if G has a clique of size > k, False otherwise
Clique Optimization: (CliqueOpt(G, k))

e INpPUT: A undirected graph G

* OutpuT: The size of the largest clique in G

Solution: Simply iterate on k from n down to 1.
CliqueOpt(G)
fork=1|V|to1l
if CliqueDec(G, k)
return k

This reduction shows CLIQUEOPT —> CLIQUEDEC []

Quiz 16 - Questions Fall 2025

ECE 374 B

c. BYC/BYF
Traveling Salesman Decision: (TSDec(G, k))

e InpUT: A undirected weighted, all-positive graph G and integer k
* OuTtruT: True if there exists a path that visits every vertex exactly once, ends at the
vertex it started at and costs < k. False otherwise

Traveling Salesman Optimization: (TSOpt(G, k))

e INPUT: A undirected weighted, all-positive graph G
* QutpuT: The weight of the minimum cycle in G that visits every vertex exactly once. (-1

if one doesn’t exist)

Solution: Simply iterate on all possible weights of the TSP tour. The max possible tour
weight would be approximately the maximum edge weight multiplied by n—1 (since the

tour must have n edges).

TSOpt(G)
fork=0to |V|—1x{(E)
if TSDec(G, k)
return k

return -1

This reduction shows TSOpT —> TSDEC.

d. BYD/BYG
kColor Decision: (kColorDec(G, k))

e INpPUT: A undirected graph G and integer k
* OurtpuT: True the vertices in G can be colored with k colors such that no two adjacent

vertices share the same color, False otherwise
kColor Optimization: (kColorOpt(G, k))

e INPUT: A undirected graph G
e QutpuT: The minimum number of colors needed to color the vertices in G such that no

two adjacent vertices share the same color.

Solution: We can assume that the maximum number of colors we’d need is n. So, simply
iterate on k from n down to 1.

kColorOpt(G)
fork=1to |V|
if kColorDec(G, k)
return k

This reduction shows KCoLorROPT —> KCOLORDEC

