Problem type 1:

You are given a known problem and unknown problem X. You can show the reduction listed below.

(See variants below)

Out of the following complexity classes:

P NP NP-hard NP-complete ExpTime

what classes **may** X belong to? In 1-2 sentences, explain why you made your particular selection(s). Assume $P \neq NP$.

a. BYF

LIS: Given a sequence A and an integer k, return True if the longest increasing subsequence is more than k in length. False otherwise.

Reduction: LIS $\leq_P X$

b. BYA

LIS: Given a sequence A and an integer k, return True if the longest increasing subsequence is more than k in length. False otherwise.

Reduction: $X \leq_p LIS$

c. BYD

SAT: Given a conjunctive normal formula, determine if there is a truth assignment that makes the formula evaluate to true.

Reduction: SAT $\leq_p X$

d. BYC

SAT: Given a conjunctive normal formula, determine if there is a truth assignment that makes the formula evaluate to true.

Reduction: $X \leq_P SAT$

Problem type 2:

You are given a known problem and unknown problem X. You can show the reduction listed below.

(See variants below)

Out of the following complexity classes:

P NP NP-hard NP-complete ExpTime

what classes **must** X belong to? In 1-2 sentences, explain why you made your particular selection(s). Assume $P \neq NP$.

a. BYE

ECE 374 B

LIS: Given a sequence A and an integer k, return True if the longest increasing subsequence is more than k in length. False otherwise.

Reduction: LIS $\leq_P X$

b. BYG

LIS: Given a sequence A and an integer k, return True if the longest increasing subsequence is more than k in length. False otherwise.

Reduction: $X \leq_P LIS$

c. BYH

SAT: Given a conjunctive normal formula, determine if there is a truth assignment that makes the formula evaluate to true.

Reduction: SAT $\leq_p X$

d. BYB

SAT: Given a conjunctive normal formula, determine if there is a truth assignment that makes the formula evaluate to true.

Reduction: $X \leq_P SAT$