Problem type 1:

Briefly describe a reduction that shows the following:

(See variants below)

Assume $P \neq NP$

a. BYD/BYG

3Color: (3Color(G))

- INPUT: A undirected graph *G*
- OUTPUT: True if the vertices in *G* can be marked with **3** colors such that no adjacent vertices share the same color, False otherwise

4Color: (4Color(G'))

- INPUT: A undirected graph *G'*
- OUTPUT: True if the vertices in G' can be marked with 4 colors such that no adjacent vertices share the same color, False otherwise

Reduction: 3Color $\leq_P 4$ Color

b. BYA/BYH

SAT: $(SAT(\phi))$

- Input: A conjunctive normal formula ϕ
- Output: True if there exists a truth assignment that let's ϕ evaluate to True, False otherwise

AlmostSAT: (AlmostSAT(ϕ'))

- INPUT: A conjunctive normal formula ϕ'
- Output: True if there exists a truth assignment that satisfies **all but one** clauses in ϕ' , False otherwise

Reduction: SAT \leq_P AlmostSAT

c. BYC/BYE

Hamiltonian Path: (HamPath(G))

- INPUT: A undirected graph G
- OUTPUT: True if there exists a simple path that visits all vertices exactly once, False otherwise

Almost Hamiltonian Path: (AlmostHamPath(G'))

• INPUT: A undirected graph G

• OUTPUT: True if there exists a simple path that visits **all but one** vertices exactly once, False otherwise

Reduction: HamPath \leq_p AlmostHamPath

d. BYB/BYF

Undirected Hamiltonian Path: (UndirHamPath(G))

• INPUT: A undirected graph G

• OUTPUT: True if there exists a simple path that visits all vertices exactly once, False otherwise

Directed Hamiltonian Path: (DirHamPath(G'))

• INPUT: A directed graph G'

• OUTPUT: True if there exists a simple path that visits all vertices exactly once, False otherwise

Reduction: UndirHamPath \leq_p DirHamPath