Problem type 1:

Let's say we have the following known problem and an unknown problem *X*. Assume you were able to prove the reduction below. Does that mean *X* may be decidable or undecidable or both? (no explanation necessary, just write decidable, undecidable, or both).

(See variants below)

a. BYD/BYG

Problem: $A_{TM}(\langle M, w \rangle)$ - the problem of determining if a turing machine M will accept string w

Reduction: $A_{TM} \Longrightarrow X$

Solution: Undecidable.

b. BYA/BYE

Problem: $A_{TM}(\langle M, w \rangle)$ - the problem of determining if a turing machine M will accept string ...

Reduction: $X \Longrightarrow A_{TM}$

Solution: Both.

c. BYB/BYH

SAT: $(SAT(\phi))$

- Input: A conjunctive normal formula ϕ
- Output: True if there exists a truth assignment that let's ϕ evaluate to True, False otherwise

Reduction: $X \Longrightarrow SAT$

Solution: Decidable.

d. BYC/BYF

SAT: $(SAT(\phi))$

- INPUT: A conjunctive normal formula ϕ
- Output: True if there exists a truth assignment that let's ϕ evaluate to True, False otherwise

Reduction: $SAT \Longrightarrow X$

Solution: Both.