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Problem 1 [20 points]

a. Write the recursive definition for the following language. [6]

La =
�

w | w ∈ {0,1}∗, |w|= 2n for some n≥ 0, and w= wR where wR is the reverse of w.
	

Solution: La represents the language of all even-length binary palindromes. The
recursive definition is given as follows.

• w= ε, or

• w= axa for some a ∈ {0, 1} and x ∈ La.

■

b. Write regular expressions for the following languages. [7+7]

i. Lbi = {w | w ∈ {0, 1}∗, w does not contain the subsequence 00.}

Solution: Lbi represents the language of all binary strings with number of zeros
less than or equal to 1. The regular expression is given as follows.

ε+ 1∗ + 1∗01∗

■

ii. Lbii = {w | w ∈ {0,1}∗, w contains 00 and 11 as subsequences.}

Solution: Let S be the set of all strings of length 4 that have the desired property.
That is, we have the following.

S =
¦

0011,0101,0110,1001,1100,1010
©

.

There are
�4

2

�

= 6, such strings, and they all belong to our language. For a string s,
let f (s) be the regular expression of inserting (0+ 1)∗ between any two characters
of s, and also in the beginning of s and the end of s. For example, we have
f (01) = (0+ 1)∗0(0+ 1)∗1(0+ 1)∗. The desired expression is

∑

s∈S

f (s).

■
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Problem 2 [10 points]

Consider the state diagram given in Figure 1 .

q1start q2 q3 q4

0, 1

1 0,ε 1

0,1

Figure 1.

a. Write the corresponding nondeterministic finite automaton in a formal manner. [5]

Solution: For the given state diagram, the corresponding finite automaton in a formal
manner is as follows.

• Q = {q1, q2, q3, q4}.
• Σ= {0,1}.
• δ is given as follows.

δ 0 1 ε

q1 {q1} {q1, q2} φ

q2 {q3} φ {q3}
q3 φ {q4} φ

q4 {q4} {q4} φ

• q0 = q1.

• F = {q4}.

■

b. What ALL sequences of states does the above machine go through on inputs 010 and 010110?
Note that there may be multiple sequences of states for the same input. Does the machine
accept these inputs? Hint. Draw the computation tree for each input. [5]

Solution: The required sequences of states for 010 and 010110 are given in the com-
putation trees in Figures 2 and 3, respectively. Furthermore, based on those trees, we
conclude that the machine does not accept 010 and accepts 010110. ■
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q1start

q1

q1

q2

q3

q1

q2

0

1 1

ε

0

0

Figure 2. Computation tree for 010.
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Figure 3. Computation tree for 010110.
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Problem 3 [20 points]

a. Convert the NFA given in Figure 4 to an equivalent DFA. [10]

q0start q1 q2

0, 1

1 0,1

Figure 4.

Solution: The formal representation of the above NFA upon conversion (using the
incremental method) to a DFA is as follows.

(a) Q = {{q0}, {q0, q1}, {q0, q2}, {q0, q1, q2}}.
(b) Σ= {0,1}.
(c) δ : Q×Σ→Q is the transition function given as follows.

δ 0 1

{q0} {q0} {q0, q1}
{q0, q1} {q0, q2} {q0, q1, q2}
{q0, q2} {q0} {q0, q1}
{q0, q1, q2} {q0, q2} {q0, q1, q2}

(d) q0 = {q0}.
(e) F = {{q0, q2}, {q0, q1, q2}}.

■

b. For Σ= {a,b}, convert the regular expression (a+ b)∗aba to an equivalent NFA. [10]

Solution: The step-by-step construction of an equivalent NFA is shown in Figure 5.
Interpret ∪ as +. ■
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Figure 5. Regular expression to NFA.
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Problem 4 [10 points]

Given a regular language L over {0,1}∗, prove that the language L′ := {x y | x1y ∈ L} is regular.
[10]

Solution: Intuitively, L′ is the set of all strings that can be obtained from strings in L by
deleting exactly one 1. For example, if L = {101101,00,ϵ}, then L′ = {01101,10101,10110}.

Let M = (Q, s, A,δ) be a DFA that accepts L. We construct an NFA M ′ = (Q′, s′, A′,δ′)
with ϵ-transitions that accepts L′ as follows.

Intuitively, M ′ simulates M , but inserts a single 1 into M ’s input string at a nondetermin-
istically chosen location.

• The state (q,before) means (the simulation of) M is in state q and M ′ has not yet
inserted a 1.

• The state (q,after) means (the simulation of) M is in state q and M ′ has already
inserted a 1.

Q′ :=Q× {before,after}
s′ := (s,before)

A′ :=
�

(q,after)
�

� q ∈ A
	

δ′((q,before),ϵ) =
�

(δ(q,1),after)
	

δ′((q,after),ϵ) =∅

δ′((q,before), a) =
�

(δ(q, a),before)
	

δ′((q,after), a) =
�

(δ(q, a),after)
	

■
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Problem 5 [15 points]

Consider the PDA, P given in Figure 6.

q0start q1 q2

q3

1,ε→ $ 0,ε→ ε; 1,ε→ ε
0,ε→ ε; 1,ε→ ε

1, $→ ε 1,$→ ε

Figure 6.

a. Does the above PDA accept the following strings? [4]

i. 1010

ii. 0101

iii. 1001

iv. 1011

Solution: The solution is given as follows.

i. No.

ii. No.

iii. Yes.

iv. Yes.

■

b. Describe L(P) in one sentence. [3]

Solution: All binary strings of length greater than 1 that start with 1 and end with 1. ■
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c. Give a context free grammar that generates L(P). [4]

Solution: The context free G = (V, T, P, S) that generates L(P) is given as follows.

• V = {S,A}
• T = {0, 1}
• P : S→ 1A1, A→ ε | 0A | 1A
• S = S

■

d. Which one of the following statements is true? [4]

i. L(P) is context sensitive but not regular.

ii. L(P) is not context sensitive but regular.

iii. L(P) is both context sensitive and regular.

iv. L(P) is neither context sensitive nor regular.

Prove the statement you chose.

Solution: The true statement is iii, i.e., L(P) is both context sensitive and regular.
The regular expression 1(0+ 1)∗1 generates L(P). Hence, L(P) is regular, and hence,
context-sensitive. ■
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Problem 6 [10 points]

Consider a context free grammar G = (V, T, P, S), where

• V = {B,E}

• T = {a,b}

• P = {B→ a | aEb; E→ ε |Ea}

• S = B

Construct a PDA that recognizes L(G). [10]

Solution: The PDA that recognizes L(G) is given in Figure 7. ■

qsstart

q2

ql

qa

qp11
qp12

qp21

ϵ,ϵ→ $

ϵ,ϵ→ B

ϵ,B→ a

ϵ,E→ ϵ
a,a→ ϵ
b,b→ ϵ

ϵ, $→ ϵ

ϵ,
B
→
b

ϵ,ϵ→ E

ϵ,ϵ
→ a

ϵ,E→
a

ϵ,ϵ→
E

Figure 7. CFG to PDA.
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Problem 7 [5 points]

Let L1, . . . , Ln be some regular languages and Lk be a non-regular language such that

Lk = L1 ⊕ L2 ⊕ · · · ⊕ Ln ⊕ Lu, ⊕ ∈ {∪,∩, ·},

for some Lu then (formally) prove that Lu is non-regular.

Solution: By way of contradiction, assume that Lu is regular. Hence, Lk = L1 ⊕ L2 ⊕ · · · ⊕
Ln ⊕ Lu, ⊕ ∈ {∪,∩, ·} is regular as regular languages are closed under union, intersection,
and concatenation. But, Lk is given to be non-regular. Hence, a contradiction. This implies
that Lu is regular. ■
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Problem 8 [10 points]

For each of the following languages defined over Σ = {a,b,c}, prove if it is regular or not.
Furthermore, prove if it is context free or not.

a. L1 = {anbn | 0≤ n≤ 3} [2]

Solution: The solution is given as follows.

• L1 is a finite language. As every finite language is regular, L1 is regular.

• As every regular language is also context free, L1 is context free.

■

b. L2 = {anbmcn | m, n≥ 0} [4]

Solution: The solution is given as follows.

• Consider the fooling set: {ai : i ≥ 0}. Note that, for i ̸= j, m ≥ 0, aibmci ∈ L2 but
a jbmci /∈ L2. Hence, L2 is non-regular.

• Consider the following context free grammar G = (V, T, P, S), where

– V = {S,X}
– T = {a,b}
– P = {S→ aSc | X | ε; X→ bX | ε}
– S = S

G generates L2. Hence, L2 is context free.

■

c. L3 = {anbm | n> m or m> n} [4]

Solution: The solution is given as follows.

• Consider the fooling set: {ai : i ≥ 0}. Note that, for i ̸= j, aibi /∈ L3 but a jbi ∈ L3.
Hence, L3 is non-regular.

• Consider the following context free grammar G = (V, T, P, S), where

– V = {S,X,Y}
– T = {a,b}
– P = {S→ aSb | X | Y; X→ aX | a; Y→ bY | b}
– S = S

G generates L3. Hence, L3 is context free.

■
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This page is for additional scratch work!
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ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

De�nitions

• An alphabet Σ is a �nite set of symbols.

• A string in Σ∗ is a �nite sequence of symbols in Σ.

• A language is L is a set of strings over some alphabet.

All languages represent mathematical problems.
Example: multiplication of two integers:

LMULT2 =





1× 1|1, 1× 2|2, 1× 3|3, . . .
2× 1|2, 2× 2|4, 2× 3|6, . . .

...
...

...
n× 1|n, n× 2|2n, n× 3|3n, . . .





(1)

Language
operations

• For languages A,B the concatenation of A,B is AB =
{xy | x ∈ A, y ∈ B}.

• For languages A,B, their union is A ∪ B, intersection is
A ∩ B, and di�erence isA \ B (also written asA− B).

• For languageA ⊆ Σ∗ the complement ofA is Ā = Σ∗ \A.
• Σn is the set of all strings of length n.

• Σ∗ = ∪n≥0Σn is the set of all strings over Σ.

• Σ+ = ∪n≥1Σn is the set of non-empty strings over Σ.

Strings

De�nitions

• The length of a stringw (denoted by |w|) is the number of sym-
bols in w.

• For integer n ≥ 0, Σn is set of all strings over Σ of length n.
Σ∗ is the set of all strings over Σ.

• Σ∗ is the set of all strings of all lengths including empty string.

• ε is a string containing no symbols.

• ∅ is the empty set. It contains no strings.

• If x and y are strings then xy denotes their concatena-
tion. Recursively:

– xy = y if x = ε

– xy = a(wy) if x = aw

• v is substring of w ⇐⇒ there exist strings x, y such
that w = xvy.

– If x = ε then v is a pre�x of w

– If y = ε then v is a su�x of w

• A subsequence of a string w = w1w2 . . . wn is either
a subsequence of w2 . . . wn or w1 followed by a sub-
sequence of w2 . . . wn .

• Ifw is a string thenwn is de�ned inductively as follows:
wn = ε if n = 0 or wn = wwn−1 if n > 0

String
operations

2 Overview of language complexity

Overview

regular

context-free

context-sensitive

recursively enumerable

Grammar Languages Production Rules Automaton Examples

Type-0 recursively enumerable
γ → α
(no constraints) Turing machine L = {w|w is a TM which halts}

Type-1 context-sensitive αAβ → αγβ
linear bounded
nondeterministic
Turing machine

L = {anbncn|n > 0}

Type-2 context-free A→ α
nondeterministic
pushdown automata L = {anbn|n > 0}

Type-3 regular A→ aB �nite state machine L = {an|n > 0}

Meaning of symbols:
• a - terminal
• A,B - variables
• α, β, γ - strings in {a ∪ A}∗ where α, β are maybe empty, γ is never empty

a

aTable borrowed fromWikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy



3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from �nite languages
by applying

• union,

• concatenation or

• Kleene star

�nitely many times. All regular languages are representable by regular
grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language.
A regular expression r over an alphabet Σ is one of the following:
Base cases:

• ∅ the language∅
• ε denotes the language {ε}
• a denote the language {a}

Inductive cases: If r1 and r2 are regular expressions denoting languages
L1 and L2 respectively (i.e.,L(r1) = L1 and L(r2) = L2) then,

• r1 + r2 denotes the language L1 ∪ L2

• r1·r2 denotes the language L1L2

• r∗1 denotes the language L∗1

Examples:

• 0∗ - the set of all strings of 0s, including the empty string

• (00000)∗ - set of all strings of 0s with length a multiple of 5

• (0 + 1)∗ - set of all binary strings

Nondeterministic �nite automata
NFAs are similar to DFAs, but may have more than one transition destination
for a given state/character pair.

An NFAN accepts a string w i� some accepting state is reached byN from
the start state on input w.

The language accepted (or recognized) by an NFA N is denoted L(N) and
de�ned as L(N) = {w | N accepts w}.

A nondeterministic �nite automaton (NFA) N = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q×Σ∪{ε} → P(Q) is the transition function (hereP(Q) is the power
set ofQ)

• s and Σ are the same as in DFAs

Example:

q0start q1 q2 q3

0,1

1 0

ε

1

0,1

• Q = {q0, q1, q2, q3}
• Σ = {0, 1}

• δ :

ε 0 1
q0 {q0} {q0} {q0, q1}
q1 {q1, q2} {q2} ∅
q2 {q2} ∅ {q3}
q3 {q3} {q3} {q3}

• s = q0

• A = {q3}

For NFA N = (Q,Σ, δ, s, A) and q ∈ Q, the ε-reach(q) is the set of all
states that q can reach using only ε-transitions.
Inductive de�nition of δ∗ : Q× Σ∗ → P(Q):

• if w = ε, δ∗(q, w) = ε-reach(q)

• if w = a for a ∈ Σ, δ∗(q, a) = εreach
(⋃

p∈ε-reach(q) δ(p, a)
)

• if w = ax for a ∈ Σ, x ∈ Σ∗ : δ∗(q, w) =

εreach
(⋃

p∈ε-reach(q)

(⋃
r∈δ∗(p,a) δ

∗(r, x)
))

Regular closure

Regular languages are closed under union, intersection, complement, dif-
ference, reversal, Kleene star, concatenation, etc.

Deterministic �nite automata
DFAs are �nite state machines that can be represented as a directed graph
or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by L(M)
and de�ned as L(M) = {w |M accepts w}.

A deterministic �nite automaton (DFA) M = (Q,Σ, s, A, δ) is a �ve tuple
where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• δ : Q× Σ→ Q is the transition function

• s ∈ Q is the start state

• A ⊆ Q is the set of accepting/�nal states

Example:

q0start q1

1
0

1

0

• Q = {q0, q1}
• Σ = {0, 1}

• δ :
0 1

q0 q1 q0
q1 q0 q1

• s = q0

• A = {q0}

Every string has a unique walk along a DFA. We de�ne the extended transi-
tion function as δ∗ : Q× Σ∗ → Q de�ned inductively as follows:

• δ∗(q, w) = q if w = ε

• δ∗(q, w) = δ∗(δ(q, a), x) if w = ax.

Can create a larger DFA from multiple smaller DFAs. Suppose

• L(M0) = {w has an even number of 0s} (pictured above) and

• L(M1) = {w has an even number of 1s}.
L(MC) = {w has even number of 0s and 1s}

q(0,0)start

q(0,1)

q(1,0)

q(1,1)

11

0

0

0

0

11

Suppose M0 = (Q0,Σ, s0, A0, δ0) and
M1 = (Q1,Σ, s1, A1, δ1). Then

• Q = Q0×Q1 = {(q0, q1) | q0 ∈ Q0, q1 ∈
Q1}

• s = (s0, s1)

• δ : Q × Σ → Q, where δ((q0, q1), a) =
(δ0(q0, a), δ1(q1, a))

• A = {(q0, q1) | q0 ∈ A0 and q1 ∈ A1}

Regular language equivalences

A regular language can be represented by a regular expression, regular
grammar, DFA and NFA.

regular
expressions

DFAsNFAs

→
NFA→

D
FA

algebraic m
ethod

subset construction

st
at
e
re

m
ov
al

Th
om
ps
on
’s
alg
o

Thompson’s algorithm:

L = Ls ∪ Lt L = L∗s

L = Ls · Lt

Arden’s rule: IfR = Q+ RP thenR = QP∗ .

Fooling sets

Some languages are not regular (Ex. L = {0n1n | n ≥ 0}).
Two states p, q ∈ Q are distinguish-
able if there exists a string w ∈ Σ∗ ,
such that

δ
∗
(p, w) ∈ A and δ∗(q, w) /∈ A.

or

δ
∗
(p, w) /∈ A and δ∗(q, w) ∈ A.

Two states p, q ∈ Q are equivalent if
for all strings w ∈ Σ∗ , we have that

δ
∗
(p, w) ∈ A ⇐⇒ δ

∗
(q, w) ∈ A.

For a languageL overΣ a set of stringsF (could be in�nite) is a fooling set or
distinguishing set for L if every two distinct strings x, y ∈ F are distinguish-
able.



4 Context-free languages

Context-free languages

A language is context-free if it can be generated by a context-free grammar.
A context-free grammar is a quadrupleG = (V, T, P, S)

• V is a �nite set of nonterminal (variable) symbols

• T is a �nite set of terminal symbols (alphabet)

• P is a �nite set of productions, each of the formA→ αwhereA ∈ V and
α is a string in (V ∪ T )∗ Formally, P ⊆ V × (V ∪ T )∗ .

• S ∈ V is the start symbol

Example: L = {wwR|w ∈ {0, 1}∗} is described by G = (V, T, P, S)
where V, T, P and S are de�ned as follows:

• V = {S}
• T = {0, 1}
• P = {S → ε | 0S0 | 1S1}
(abbreviation for S → ε, S → 0S0, S → 1S1)

• S = S

Pushdown automata
A pushdown automaton is an NFA with a stack.

The language L = {0n1n | n ≥ 0} is recognized by the pushdown au-
tomaton:

A nondeterministic pushdown automaton (PDA)P = (Q,Σ,Γ, δ, s, A) is a six
tuple where

• Q is a �nite set whose elements are called states

• Σ is a �nite set called the input alphabet

• Γ is a �nite set called the stack alphabet

• δ : Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) → P(Q × (Γ ∪ {ε})) is the transition
function

• s is the start state

• A is the set of accepting states

In the graphical representation of a PDA, transitions are typically written as
〈input read〉, 〈stack pop〉 → 〈stack push〉.
A CFG can be converted to a pushdown automaton.

The PDA to the right recog-
nizes the language described
by the following grammar:

S → 0S|1|ε

qsstart

q2

ql

qa

qp21

ε, ε→ $

ε, ε→ S

ε, S → 1
ε, S → ε
0, 0→ ε
1, 1→ ε

ε, $→ ε

ε, S → S

ε, ε→ 0

Context-free closure
Context-free languages are closed under union, concatenation, and Kleene
star.

They are not closed under intersection or complement.


