CS/ECE-374-B: Algorithms and Models of Computation, Spring 2024 Midterm exam 1 - February 15, 2024

- You can do hard things! Grades do matter, but not as much as you may think, but then life is uncertain anyway, so what.
- Don't cheat. The consequence for cheating is far greater than the reward. Just try your best and you'll be fine.
- Please read the entire exam before writing anything. There are 8 problems and most have multiple parts.
- This is a closed-book exam. At the end of the exam, you'll find a multi-page cheat sheet. Do not tear out the cheat sheet! No outside material is allowed on this exam.
- You should write your answers legibly and in the space given for the question. Overly verbose answers will be penalized.
- Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It messes with the auto-scanner.
- You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend too much time on questions you do not understand and focus on answering as much as you can!

Name: \qquad
NetID: \qquad

Date: \qquad

Problem I [20 points]

a. Write the recursive definition for the following language.
$L_{a}=\left\{w\left|w \in\{0,1\}^{*},|w|=2 n\right.\right.$ for some $n \geq 0$, and $w=w^{R}$ where w^{R} is the reverse of $\left.w.\right\}$

Solution: L_{a} represents the language of all even-length binary palindromes. The recursive definition is given as follows.

- $w=\epsilon$, or
- $w=a x a$ for some $a \in\{0,1\}$ and $x \in L_{a}$.
b. Write regular expressions for the following languages.
i. $L_{b i}=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ does not contain the subsequence 00. $\}$

Solution: $L_{b i}$ represents the language of all binary strings with number of zeros less than or equal to 1 . The regular expression is given as follows.

$$
\epsilon+1^{*}+1^{*} 01^{*}
$$

ii. $L_{b i i}=\left\{w \mid w \in\{0,1\}^{*}, w\right.$ contains 00 and 11 as subsequences. $\}$

Solution: Let S be the set of all strings of length 4 that have the desired property. That is, we have the following.

$$
S=\{0011,0101,0110,1001,1100,1010\}
$$

There are $\binom{4}{2}=6$, such strings, and they all belong to our language. For a string s, let $f(s)$ be the regular expression of inserting $(0+1)^{*}$ between any two characters of s, and also in the beginning of s and the end of s. For example, we have $f(01)=(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}$. The desired expression is

$$
\sum_{s \in S} f(s)
$$

Problem 2 [Io points]

Consider the state diagram given in Figure I .

Figure 1.
a. Write the corresponding nondeterministic finite automaton in a formal manner.

Solution: For the given state diagram, the corresponding finite automaton in a formal manner is as follows.

- $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$.
- $\Sigma=\{0,1\}$.
- δ is given as follows.

δ	0	1	ϵ
q_{1}	$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{2}\right\}$	ϕ
q_{2}	$\left\{q_{3}\right\}$	ϕ	$\left\{q_{3}\right\}$
q_{3}	ϕ	$\left\{q_{4}\right\}$	ϕ
q_{4}	$\left\{q_{4}\right\}$	$\left\{q_{4}\right\}$	ϕ

- $q_{0}=q_{1}$.
- $F=\left\{q_{4}\right\}$.
b. What ALL sequences of states does the above machine go through on inputs 010 and 010110 ? Note that there may be multiple sequences of states for the same input. Does the machine accept these inputs? Hint. Draw the computation tree for each input.

Solution: The required sequences of states for 010 and 010110 are given in the computation trees in Figures 2 and 3, respectively. Furthermore, based on those trees, we conclude that the machine does not accept 010 and accepts 010110.

Figure 2. Computation tree for 010.

Figure 3. Computation tree for 010110.

Problem 3 [20 points]

a. Convert the NFA given in Figure 4 to an equivalent DFA.
[io]

Figure 4.

Solution: The formal representation of the above NFA upon conversion (using the incremental method) to a DFA is as follows.
(a) $Q=\left\{\left\{q_{0}\right\},\left\{q_{0}, q_{1}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$.
(b) $\Sigma=\{0,1\}$.
(c) $\delta: Q \times \Sigma \rightarrow Q$ is the transition function given as follows.

δ	0	1
$\left\{q_{0}\right\}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$
$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$
$\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}, q_{2}\right\}$

(d) $q_{0}=\left\{q_{0}\right\}$.
(e) $F=\left\{\left\{q_{0}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$.
b. For $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, convert the regular expression $(\mathrm{a}+\mathrm{b})^{*}$ aba to an equivalent NFA. [Io]

Solution: The step-by-step construction of an equivalent NFA is shown in Figure 5. Interpret \cup as + .
$\mathrm{a} \quad \rightarrow \bigcirc \xrightarrow{\mathrm{a}}$
b

$a \cup b$

aba

Figure 5. Regular expression to NFA.

Problem 4 [io points]

Given a regular language L over $\{0,1\}^{*}$, prove that the language $L^{\prime}:=\{x y \mid x 1 y \in L\}$ is regular. [io]

Solution: Intuitively, L^{\prime} is the set of all strings that can be obtained from strings in L by deleting exactly one 1 . For example, if $L=\{101101,00, \varepsilon\}$, then $L^{\prime}=\{01101,10101,10110\}$.

Let $M=(Q, s, A, \delta)$ be a DFA that accepts L. We construct an NFA $M^{\prime}=\left(Q^{\prime}, s^{\prime}, A^{\prime}, \delta^{\prime}\right)$ with ε-transitions that accepts L^{\prime} as follows.

Intuitively, M^{\prime} simulates M, but inserts a single 1 into M 's input string at a nondeterministically chosen location.

- The state (q, before) means (the simulation of) M is in state q and M^{\prime} has not yet inserted a 1.
- The state (q,after) means (the simulation of) M is in state q and M^{\prime} has already inserted a 1.

$$
\begin{aligned}
Q^{\prime}: & =Q \times\{\text { before, after }\} \\
s^{\prime} & :=(s, \text { before }) \\
A^{\prime}: & =\{(q, \text { after }) \mid q \in A\} \\
\delta^{\prime}((q, \text { before }), \varepsilon) & =\{(\delta(q, 1), \text { after })\} \\
\delta^{\prime}((q, \text { after }), \varepsilon) & =\varnothing \\
\delta^{\prime}((q, \text { before }), a) & =\{(\delta(q, a), \text { before })\} \\
\delta^{\prime}((q, \text { after }), a) & =\{(\delta(q, a), \text { after })\}
\end{aligned}
$$

Problem 5 [I5 points]

Consider the PDA, P given in Figure 6.

Figure 6.
a. Does the above PDA accept the following strings?
i. 1010
ii. 0101
iii. 1001
iv. 1011

Solution: The solution is given as follows.
i. No.
ii. No.
iii. Yes.
iv. Yes.
b. Describe $L(P)$ in one sentence.

Solution: All binary strings of length greater than 1 that start with 1 and end with 1.
c. Give a context free grammar that generates $L(P)$.

Solution: The context free $G=(V, T, P, S)$ that generates $L(P)$ is given as follows.

- $V=\{\mathrm{S}, \mathrm{A}\}$
- $T=\{0,1\}$
- $P: \mathrm{S} \rightarrow 1 \mathrm{~A} 1, \mathrm{~A} \rightarrow \epsilon|\mathrm{OA}| 1 \mathrm{~A}$
- $S=\mathrm{S}$
d. Which one of the following statements is true?
i. $L(P)$ is context sensitive but not regular.
ii. $L(P)$ is not context sensitive but regular.
iii. $L(P)$ is both context sensitive and regular.
iv. $L(P)$ is neither context sensitive nor regular.

Prove the statement you chose.

Solution: The true statement is iii, i.e., $L(P)$ is both context sensitive and regular. The regular expression $1(0+1)^{*} 1$ generates $L(P)$. Hence, $L(P)$ is regular, and hence, context-sensitive.

Problem 6 [io points]

Consider a context free grammar $G=(V, T, P, S)$, where

- $V=\{\mathrm{B}, \mathrm{E}\}$
- $T=\{\mathrm{a}, \mathrm{b}\}$
- $P=\{\mathrm{B} \rightarrow \mathrm{a}|\mathrm{aEb} ; \mathrm{E} \rightarrow \epsilon| \mathrm{Ea}\}$
- $S=\mathrm{B}$

Construct a PDA that recognizes $L(G)$.
Solution: The PDA that recognizes $L(G)$ is given in Figure 7.

Figure 7. CFG to PDA.

Problem 7 [5 points]

Let L_{1}, \ldots, L_{n} be some regular languages and L_{k} be a non-regular language such that

$$
L_{k}=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n} \oplus L_{u}, \oplus \in\{\cup, \cap, \cdot\}
$$

for some L_{u} then (formally) prove that L_{u} is non-regular.
Solution: By way of contradiction, assume that L_{u} is regular. Hence, $L_{k}=L_{1} \oplus L_{2} \oplus \cdots \oplus$ $L_{n} \oplus L_{u}, \oplus \in\{\cup, \cap, \cdot\}$ is regular as regular languages are closed under union, intersection, and concatenation. But, L_{k} is given to be non-regular. Hence, a contradiction. This implies that L_{u} is regular.

Problem 8 [io points]

For each of the following languages defined over $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, prove if it is regular or not. Furthermore, prove if it is context free or not.
a. $L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mid 0 \leq n \leq 3\right\}$

Solution: The solution is given as follows.

- L_{1} is a finite language. As every finite language is regular, L_{1} is regular.
- As every regular language is also context free, L_{1} is context free.
b. $L_{2}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mathrm{c}^{n} \mid m, n \geq 0\right\}$

Solution: The solution is given as follows.

- Consider the fooling set: $\left\{a^{i}: i \geq 0\right\}$. Note that, for $i \neq j, m \geq 0, a^{i} b^{m} c^{i} \in L_{2}$ but $\mathbf{a}^{j} \mathbf{b}^{m} \mathbf{c}^{i} \notin L_{2}$. Hence, L_{2} is non-regular.
- Consider the following context free grammar $G=(V, T, P, S)$, where
- $V=\{\mathrm{S}, \mathrm{X}\}$
- $T=\{\mathrm{a}, \mathrm{b}\}$
- $P=\{\mathrm{S} \rightarrow \mathrm{aSc}|\mathrm{X}| \epsilon ; \mathrm{X} \rightarrow \mathrm{bX} \mid \epsilon\}$
$-S=\mathrm{S}$
G generates L_{2}. Hence, L_{2} is context free.
c. $L_{3}=\left\{\mathrm{a}^{n} \mathrm{~b}^{m} \mid n>m\right.$ or $\left.m>n\right\}$

Solution: The solution is given as follows.

- Consider the fooling set: $\left\{a^{i}: i \geq 0\right\}$. Note that, for $i \neq j, a^{i} b^{i} \notin L_{3}$ but $a^{j} \mathbf{b}^{i} \in L_{3}$. Hence, L_{3} is non-regular.
- Consider the following context free grammar $G=(V, T, P, S)$, where
- $V=\{\mathrm{S}, \mathrm{X}, \mathrm{Y}\}$
- $T=\{\mathrm{a}, \mathrm{b}\}$
- $P=\{\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{X}| \mathrm{Y} ; \mathrm{X} \rightarrow \mathrm{aX}|\mathrm{a} ; \mathrm{Y} \rightarrow \mathrm{bY}| \mathrm{b}\}$
- $S=\mathrm{S}$
G generates L_{3}. Hence, L_{3} is context free.

This page is for additional scratch work!

ECE 374 B Language Theory: Cheatsheet

1 Languages and strings

Languages

- An alphabet Σ is a finite set of symbols.


```
    - A language is L is a set of strings over some alphabet.
```

All languages represent mathematical problems.
Example: multiplication of two integers:

$$
L_{M U L T 2}=\left\{\begin{array}{ccc}
1 \times 1 \mid 1, & 1 \times 2 \mid 2, & 1 \times 3 \mid 3, \ldots \tag{1}\\
2 \times 1 \mid 2, & 2 \times 2 \mid 4, & 2 \times 3 \mid 6, \ldots \\
\vdots & \vdots & \vdots \\
n \times 1 \mid n, & n \times 2 \mid 2 n, & n \times 3 \mid 3 n, \ldots
\end{array}\right\}
$$

For languages A, B the concatenation of A, B is $A B=$ $\{x y \mid x \in A, y \in B\}$.

- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \backslash B$ (also written as $A-B$).
Language operations

For language $A \subseteq \Sigma^{*}$ the complement of A is $\bar{A}=\Sigma^{*} \backslash A$. Σ^{n} is the set of all strings of length n.

- $\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}$ is the set of all strings over Σ.
- $\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}$ is the set of non-empty strings over Σ.

Strings

- The length of a string w (denoted by $|w|$) is the number of symbols in w.
- For integer $n \geq 0, \Sigma^{n}$ is set of all strings over Σ of length n. Σ^{*} is the set of all strings over Σ.
Σ^{*} is the set of all strings of all lengths including empty string.
- ε is a string containing no symbols.
- \varnothing is the empty set. It contains no strings.

If x and y are strings then $x y$ denotes their concatenation. Recursively:

- $x y=y$ if $x=\varepsilon$
- $x y=a(w y)$ if $x=a w$
vis substring of $w \Longleftrightarrow$ there exist strings x, y such that $w=x v y$.
- If $x=\varepsilon$ then v is a prefix of w
- If $y=\varepsilon$ then v is a suffix of w
- A subsequence of a string $w=w_{1} w_{2} \ldots w_{n}$ is either a subsequence of $w_{2} \ldots w_{n}$ or w_{1} followed by a subsequence of $w_{2} \ldots w_{n}$.
If w is a string then w^{n} is defined inductively as follows: $w^{n}=\varepsilon$ if $n=0$ or $w^{n}=w w^{n-1}$ if $n>0$

2 Overview of language complexity

Overview			
Grammar	Languages	Production Rules	Automaton

Meaning of symbols:

- a - terminal
- A, B - variables
- α, β, γ - strings in $\{a \cup A\}^{*}$ where α, β are maybe empty, γ is never empty
a
${ }^{a}$ Table borrowed from Wikipedia: https://en.wikipedia.org/wiki/Chomsky_hierarchy

3 Regular languages

Regular language - overview

A language is regular if and only if it can be obtained from finite languages by applying

- union,
- concatenation or
- Kleene star
finitely many times. All regular languages are representable by regular grammars, DFAs, NFAs and regular expressions.

Regular expressions

Useful shorthand to denotes a language

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- \varnothing the language \varnothing
- ε denotes the language $\{\varepsilon\}$
- a denote the language $\{a\}$

Inductive cases: If \mathbf{r}_{1} and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages L_{1} and L_{2} respectively (i.e., $L\left(\mathbf{r}_{1}\right)=L_{1}$ and $L\left(\mathbf{r}_{2}\right)=L_{2}$) then.

- $\mathbf{r}_{1}+\mathbf{r}_{\mathbf{2}}$ denotes the language $L_{1} \cup L_{2}$
- $\mathbf{r}_{1} \cdot \mathbf{r}_{2}$ denotes the language $L_{1} L_{2}$
- \mathbf{r}_{1}^{*} denotes the language L_{1}^{*}

Examples:

- 0^{*} - the set of all strings of 0 s , including the empty string
- $(00000)^{*}$ - set of all strings of 0 s with length a multiple of 5
- $(0+1)^{*}$ - set of all binary strings

Nondeterministic finite automata

NFAs are similar to DFAs, but may have more than one transition destination for a given state/character pair.

An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by an NFA N is denoted $L(N)$ and defined as $L(N)=\{w \mid N$ accepts $w\}$.

A nondeterministic finite automaton (NFA) $N=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q)
- s and Σ are the same as in DFAs

Example:

$$
\cdot Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}
$$

$$
\Sigma \Sigma=\{0,1\}
$$

$$
\text { - } A=\left\{q_{3}\right\}
$$

For NFA $N=(Q, \Sigma, \delta, s, A)$ and $q \in Q$, the ε-reach (q) is the set of all states that q can reach using only ε-transitions
Inductive definition of $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\varepsilon$-reach (q)
- if $w=a$ for $a \in \Sigma, \quad \delta^{*}(q, a)=\varepsilon \operatorname{reach}\left(\bigcup_{p \in \varepsilon-\operatorname{reach}(q)} \delta(p, a)\right)$
- if $w=a x$ for $a \in \Sigma, x \in \Sigma^{*}: \quad \delta^{*}(q, w)=$ $\operatorname{erreach}^{\left(U_{p \in \epsilon-\text { reach }(q)}\right)}{\left.\left(\cup_{r \in \delta^{*}(p, a)} \delta^{*}(r, x)\right)\right)}$

Regular closure

Regular languages are closed under union, intersection, complement, dif-

 ference, reversal, Kleene star, concatenation, etc
Deterministic finite automata

DFAs are finite state machines that can be represented as a directed graph or in terms of a tuple.

The language accepted (or recognized) by a DFA M is denoted by $L(M)$ and defined as $L(M)=\{w \mid M$ accepts $w\}$

A deterministic finite automaton (DFA) $M=(Q, \Sigma, s, A, \delta)$ is a five tuple where

- Q is a finite set whose elements are called states
- Σ is a finite set called the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $s \in Q$ is the start state
- $A \subseteq Q$ is the set of accepting/final states

Example:

$$
\cdot Q=\left\{q_{0}, q_{1}\right\}
$$

- $\Sigma=\{0,1\}$

$$
\begin{aligned}
& \text {. } \delta: \begin{array}{l|ll}
& 0 & 1 \\
\hline q_{0} & q_{1} & q_{0} \\
q_{1} & q_{0} & q_{1} \\
\text { • } s=q_{0} \\
\text { - } A=\left\{q_{0}\right\}
\end{array}
\end{aligned}
$$

Every string has a unique walk along a DFA. We define the extended transition function as $\delta^{*}: Q \times \Sigma^{*} \rightarrow Q$ defined inductively as follows:

- $\delta^{*}(q, w)=q$ if $w=\varepsilon$
- $\delta^{*}(q, w)=\delta^{*}(\delta(q, a), x)$ if $w=a x$.

Can create a larger DFA from multiple smaller DFAs. Suppose

- $L\left(M_{0}\right)=\{w$ has an even number of 0 s $\}$ (pictured above) and
- $L\left(M_{1}\right)=\{w$ has an even number of 1 s$\}$
$L\left(M_{C}\right)=\{w$ has even number of 0 s and 1 s$\}$

Regular language equivalences

A regular language can be represented by a regular expression, regular grammar, DFA and NFA.

Arden's rule: If $R=Q+R P$ then $R=Q P^{*}$

Fooling sets

$$
\begin{aligned}
& \text { Some languages are not regular (Ex. } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\} \text {). } \\
& \text { Two states } p, q \in Q \text { are distinguish- } \\
& \text { able if there exists a string } w \in \Sigma^{*} \text {. } \\
& \text { such that } \\
& \qquad \begin{array}{l}
\text { Two states } p, q \in Q \text { are equivalent if } \\
\text { for all strings } w \in \Sigma^{*} \text {, we have that }
\end{array} \\
& \qquad \delta^{*}(p, w) \in A \text { and } \delta^{*}(q, w) \notin A . \\
& \text { or } \\
& \delta^{*}(p, w) \notin A \text { and } \delta^{*}(q, w) \in A \Longleftrightarrow \delta^{*}(q, w) \in A . \\
& \text { For a language } L \text { over } \Sigma \text { a set of strings } F \text { (could be infinite) is a fooling set or } \\
& \text { distinguishing set for } L \text { if every two distinct strings } x, y \in F \text { are distinguish- } \\
& \text { able. }
\end{aligned}
$$

4 Context－free languages

Context－free languages

A language is context－free if it can be generated by a context－free grammar． A context－free grammar is a quadruple $G=(V, T, P, S)$
－V is a finite set of nonterminal（variable）symbols
－T is a finite set of terminal symbols（alphabet）
－P is a finite set of productions，each of the form $A \rightarrow \alpha$ where $A \in V$ and α is a string in $(V \cup T)^{*}$ Formally，$P \subseteq V \times(V \cup T)^{*}$ ．
－$S \in V$ is the start symbol
Example：$L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is described by $G=(V, T, P, S)$ where V, T, P and S are defined as follows：
－$V=\{S\}$
－$T=\{0,1\}$
－$P=\{S \rightarrow \varepsilon|0 S 0| 1 S 1\}$
（abbreviation for $S \rightarrow \varepsilon, S \rightarrow 0 S 0, S \rightarrow 1 S 1$ ）
－$S=S$

Pushdown automata

A pushdown automaton is an NFA with a stack．
The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is recognized by the pushdown au－ tomaton：

A nondeterministic pushdown automaton（PDA）$P=(Q, \Sigma, \Gamma, \delta, s, A)$ is a six tuple where
－Q is a finite set whose elements are called states
－Σ is a finite set called the input alphabet
－Γ is a finite set called the stack alphabet
－$\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q \times(\Gamma \cup\{\varepsilon\}))$ is the transition function
－s is the start state
－A is the set of accepting states
In the graphical representation of a PDA，transitions are typically written as〈input read〉，〈stack pop〉 \rightarrow 〈stack push \rangle ．

A CFG can be converted to a pushdown automaton．

The PDA to the right recog－ nizes the language described by the following grammar：
$S \rightarrow 0 S|1| \varepsilon$

Context－free closure

Context－free languages are closed under union，concatenation，and Kleene star．
They are not closed under intersection or complement．

