
CS/ECE-374-B: Algorithms and Models of Computation, Spring 2024
Midterm exam 2 – March 26, 2024

• You can do hard things! Grades do matter, but not as much as you may think, but then life
is uncertain anyway, so what?

• Don’t cheat. The consequence of cheating is far greater than the reward. Just try your
best and you’ll be fine.

• Please read the entire exam before writing anything. There are 6 problems and most
have multiple parts.

• This is a closed-book exam. At the end of the exam, you’ll find a multi-page cheat sheet.
Do not tear out the cheat sheet! No outside material is allowed on this exam.

• You should write your answers legibly and in the space given for the question. Overly
verbose answers will be penalized.

• Scratch paper is available on the back of the exam. Do not tear out the scratch paper! It
messes with the auto-scanner.

• You have 75 minutes (1.25 hours) for the exam. Manage your time well. Do not spend
too much time on questions you do not understand and focus on answering as much as you
can!

• We know that this exam is shorter in length compared to the first one. Make sure you use
the time well to think, be precise, and show as much work as possible.

Name:

NetID:

Date:

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 1 [10 points]

For each of the following statements, answer if it is True or False. Use the table at the bottom
to mark your choices.

i. Recursion is a special case of reduction that includes reducing the problem into smaller
instances of itself.

ii. Merging two sorted arrays each of size n into a single sorted array requires a minimum
O(n log n) time.

iii. If topological sort exists for a graph then that graph has a cycle.

iv. If for some two nodes, the pre-post numbering intervals in DFS are disjoint then it means
that the graph is disconnected.

v. Checking if a sequence is increasing or not can be achieved in a minimum of O(n) time.

vi. The node with maximum post numbering in DFS is in a sink strongly connected component
of the original graph.

vii. Every directed acyclic graph has either a source or a sink but not both.

viii. The asymptotic runtime of Merge Sort depends on the number of splits one makes of the
original array.

ix. If a graph has a cycle then there is a back-edge in its DFS.

x. Decreasingly sorted pre-numberings in DFS give a topological sort of the given directed
acyclic graph.

Table 1.

Statement Your choice
i. True

ii. False

iii. False

iv. False

v. True

vi. False

vii. False

viii. False

ix. True

x. False

1

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 2 [15 points]

Solve the following recurrence relations exactly, i.e, obtain a closed form formula for f (n) without
order terms/bounds.

Useful formula:
∑n

k=0 ark = a(1−rn+1)
1−r .

a. f (n) = f (n− 1) + n2n, n> 0 and f (0) = 3.

Solution: You can iteratively replace f (·) on the right using the given recursive equation
until you get to the base case. At that point use, the geometric series formula. Note that you
need to take care of a telescopic sum before using the geometric series formula.
f (n) = f (n− 1) + n2n

f (n) = f (n− 2) + (n− 1)2n−1 + n2n

f (n) = f (0) + 1.2+ 2.22 + ...+ n2n

f (n) = f (0) + S(n)

S(n) =
∑n

k=1 k2k = 1.2+ 2.22 + ...+ n2n –let this be equation A
2S(n) = 1.22 + 2.23 + ...+ (n− 1)2n + n2n+1 –let this be equation B
B − A= S(n) = (−1).(2+ 22 + 23 + ...+ 2n) + n2n+1

(2+ 22 + 23 + ...+ 2n) = 2(2n−1)
2−1 = 2n+1 − 2

Substituting this in equation for S(n)
S(n) = n2n+1 − 2n+1 + 2= 2n+1(n− 1) + 2
Therefore:
f (n) = f (0) + S(n)
Given f (0) = 3
f (n) = 3+ 2n+1(n− 1) + 2

Answer: f (n) = 2n+1(n− 1) + 5
■

b. f (n) = 2 f (n− 1) + 1, n> 1 and f (1) = 1.

Solution: You can iteratively replace f (·) on the right using the given recursive equation until
you get to the base case. At that point use, the geometric series formula. f (n) = 2 f (n−1)+1
f (n) = 4 f (n− 2) + 2+ 1
f (n) = 8 f (n− 3) + 4+ 2+ 1
f (n) = 2n−1 f (n− (n− 1)) + 2n−2 + ...+ 4+ 2+ 1
f (n) = 2n−1 f (1) + 2n−2 + ...+ 4+ 2+ 1
Given f (1) = 1
f (n) = 2n−1 + 2n−2 + ...+ 4+ 2+ 1
f (n) = 20 + 21 + 22 + 2n−2 + 2n−1

Using formula
∑n

k=0 ark = a(1−rn+1)
1−r

where a = 1 and r = 2

2

CS/ECE 374-B Midterm exam 2 Spring 2024

f (n) = 1(1−2(n−1)+1)
1−2

Answer: f (n) = 2n − 1
■

c. f (n) = 2 f (n
2) + n, n> 1 and f (1) = 1.

Solution: You can iteratively replace f (·) on the right using the given recursive equation until
you get to the base case. At that point use, the geometric series formula. f (n) = 2 f (n

2) + n
f (n) = 2(2 f (n

4) +
n
2) + n

f (n) = 4 f (n
4) + n+ n

At every iteration, the value of n gets halved, so
f (n) = nf (n

n) + n log2 n
f (n) = nf (1) + n log2 n
Given f (1) = 1

Answer: f (n) = n(1+ log2 n)
■

3

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 3 [20 points]

The longest palindromic subsequence (LPS) of a sequence is defined as a subsequence of maximum
length that is also a palindrome. For example, given the sequence BANANA, an LPS is ANANA and
has length 5.

Write a dynamic programming algorithm to obtain the length of an LPS of a given sequence by
providing the following.

• Recurrence and short English description (in terms of the parameters):

Solution: Refer to Lab 10. Alternate solution: LPS = LCS(sequence, reverse-sequence).
Also read this. The recurrence is given as follows.

LPS(i, j) =

0 if i > j

1 if i = j

max

¨

LPS(i + 1, j)
LPS(i, j − 1)

if i < j and A[i] ̸= A[j]

2+ LPS(i + 1, j − 1) if i < j and A[i] = A[j]

LPS(i, j) is the length of the longest palindromic subsequence of A[i .. j]. ■

• Memoization data structure and evaluation order:

Solution: We could use a 2-dimensional n× n array for memorization. We evaluate in
decreasing i, increasing j order. ■

• Return value:

Solution: LPS[1, n] ■

• Time Complexity:

Solution: O(n2), because we must fill out O(n2) cells and filling out each cell takes
O(1). ■

4

https://www.techiedelight.com/longest-palindromic-subsequence-using-dynamic-programming/

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 4 [20 points]

Consider the graph in Figure 2.

1

4 2

3

9 10

5

8

6

7

Figure 1. Graph.

Perform DFS starting from vertex 1 while breaking ties in the numeric order, i.e., the node with a
smaller numeric label is visited first in tying situations, and answer the following.

a. What is the DFS traversal order, i.e., the order in which you visit different vertices?

Solution: It’s the pre-ordering of traversal: 1, 2, 3, 9, 10, 5, 6, 7, 8, 4. ■

b. What are the DFS pre- and post-numberings of different vertices?

Solution: See Figure 2 for the ‘[pre-number, post-number]’ for each node.

Solution: Refer to Lecture 15 and 16 notes, scribbles, and videos. ■

Table 2.

Node 1 2 3 4 5 6 7 8 9 10

Pre numbering 1 2 3 18 9 10 12 13 4 6
Post numbering 20 17 8 19 16 11 15 14 5 7

c. Draw the DFS spanning tree.

Solution: See Figure 3.

5

CS/ECE 374-B Midterm exam 2 Spring 2024

1[1,20]

4 [18,19] 2 [2,17]

3 [3,8]

9 [4,5] 10 [6,7]

5 [9,16]

8 [13,14]

6 [10,11]

7 [12,15]

Figure 2. Graph with DFS pre and post-numberings.

1

4 2

3

9 10

5

8

6

7

Figure 3. DFS Spanning Tree.

6

CS/ECE 374-B Midterm exam 2 Spring 2024

■

d. Classify the non-tree edges into forward, backward, and cross edges. You may draw these
non-tree edges in the DFS spanning tree using different edge styles, colors, etc.

Solution: Cross edge: 4→ 3. Forward edges: 2→ 8, 2→ 7, and 5→ 8.
■

e. Using DFS or otherwise, obtain a topological sort of the given graph.

Solution: The topological order is 1, (2, 4), (3, 5), (9, 10, 6, 7), 8. The answer is not unique
as the nodes in the same parentheses may exchange order. ■

7

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 5 [20 points]

a. Consider the following recursive equation.

A(u, v) =
min(u,v)
∑

i=1

u A(u+ v − i, i − 1), A(0, v) = v, and A(u, 0) = u.

Analyze the runtime of the memoized implementation of the above recursion to compute
A(n, n). Show your work.

Solution: Refer to Lecture 13 Pre-lecture brain teaser.

There are O(n2) subproblems given two input parameters, i.e., u and v, and each
subproblem takes O(n) to solve due to the summation. Therefore, it takes O(n2) ·O(n) =

O(n3) time to compute A(n, n).

■

b. What is the relation between edit distance and longest common subsequence? Explain in
detail.

Solution: Refer to Lecture 13 Slide 31 titled Longest common subsequence is just edit distance
for the two sequences. Also, refer to the relation between edit distance and alignment in the
same lecture.

• The longest-increasing subsequence problem asks for the length of the longest-increasing
subsequence in an unordered sequence, where the sequence is assumed to be given as
an array.

• The edit distance problem asks how many edits we need to make to a sequence for it to
become another one.

• Both are alignment problems. The costs can be written differently for each of the
problems. To solve LCS using the concept of ED, we need to make two modifications.

– For letters that are different in the two strings, change the cost of replacing a
character with the correct character to∞. Since we are minimizing the ED, it is
never viable at all times to replace the letters if they are different.

– For letters that are the same, the cost of replacing them is 1.
– The cost of insertion and deletion are still 1.

• Satisfying the above modifications to ED, LCS and ED are complements, and the relation
between them is LCS(A, B) = len(A) + len(B) - ED(A, B).

■

c. Analyze the runtime of the median-of-median algorithm with the group size as 3 instead of
the usual 5.

Solution: Refer to Lecture 11 Pre-lecture brain teaser. Let b be the MoM where we use
length 3 lists. Half of the lists have 2 values less than b, except for the list where b is the
median, which only has 1 value less than b. This means the number of elements less than b is

8

CS/ECE 374-B Midterm exam 2 Spring 2024

≥ n/3. This means |Aless| and |Aless| ≤ 2n/3. This means T (n) ≤ T (n/3) + T (2n/3) +O(n).
n/3+2n/3= n so the work done at each level of the recursion tree is the same at O(n). There
are log(n) levels of the recursion tree so the runtime is O(n log(n)). ■

d. Provide a logarithmic time algorithm to count the number of instances of a given number in a
sorted list.

Solution: We can slightly modify binary search to find the leftmost array element that
contains x (the left-bound of the array block):

FindLeftBound(A[1 .. n], x , i):
if A[1] = x

return i
else

if A[n/2]≥ x
return FindLeftBound(A[1, ..., n/2], x , i)

else
return FindLeftBound(A[n/2+ 1, ..., n], x , i + n/2)

i is a variable to keep track of the original position of the sub-array being currently evaluated.
We do the same to find the right bound and subtract the two values from one another to
find the number of instances of x as we are using modified binary search twice, we have log
runtime. ■

9

CS/ECE 374-B Midterm exam 2 Spring 2024

Problem 6 [15 points]

Consider the problem of multiplying n, m-digit numbers, m ≥ n. One simple strategy to solve
this problem is to use Karatsuba’s algorithm n− 1 times, i.e., multiply the first number with the
second number, then their product with the third number, and so on. Answer the following.

a. Analyze the runtime of the above simple strategy.

Solution: When multiplying 2 “m-digit” numbers, the upper bound on product size is
2m= O(m).
Example: 99 (2 digits) × 999 (3 digits) = 98901 (5 digits).

Take array A= [a1, a2, a3, ..., an−1, an]. The product size of different prefixes is:

(a) [a1, a2]→ product size ≈ 2m

(b) [a1, a2, a3]→ product size ≈ 3m

(c) [a1, a2, a3, a4]→ product size ≈ 4m

(d) [a1, a2, ..., an]→ product size ≈ nm

Therefore, the running time is

n
∑

k=1

(km)log 3 = (m)log3 + (2m)log3 + (3m)log3 + ...+ (nm)log 3

≤ O(n)×O((nm)log 3)
�

(km)log 3 ≤ O((nm)log3∀k
�

≤ O(n(nm)log 3)

■

b. Provide a more time-efficient divide-and-conquer recursive algorithm to solve the given
problem.

Solution: The input is A[1 .. n], a list of m-digit numbers:

FastProd(A[1 .. n]): 〈〈T (n)〉〉
if n= 1

return A[1]
p1← FastProd(A[1 .. n/2]) 〈〈T (n/2)〉〉
p2← FastProd(A[n/2+ 1 .. n]) 〈〈T (n/2)〉〉
〈〈Running time of Karatsuba on 2 k-digit numbers is O(klog3)〉〉
〈〈Max size p1, p2 is nm/2〉〉
return Karatsuba(p1, p2) 〈〈So, O((nm)log3)〉〉

■

c. Analyze the runtime of your algorithm.

Solution: We model this recurrence as a recursion tree.
Recurrence relation: T (n) = 2T

� n
2

�

+O
�

(nm)log3
�

10

CS/ECE 374-B Midterm exam 2 Spring 2024

(nm)log3

�n
2

m
�log3 �n

2
m
�log3

�n
4

m
�log3 �n

4
m
�log 3 �n

4
m
�log 3 �n

4
m
�log 3

The amount of work at each level decreases due to the logarithm therefore dominated by the

root, so the recurrence is O((nm)log 3) . ■

11

CS/ECE 374-B Midterm exam 2 Spring 2024

This page is for additional scratch work!

12

ECE 374 B Algorithms: Cheatsheet

1 Recursion

Simple recursion

De�nitions

• Reduction: solve one problem using the solution to another.

• Recursion: a special case of reduction - reduce problem to a
smaller instance of itself (self-reduction).

– Problem instance of size n is reduced to one or more in-
stances of size n− 1 or less.

– For termination, problem instances of small size are solved
by some other method as base cases

Arguably the most famous example of recursion. The goal is to
move n disks one at a time from the �rst peg to the last peg.

Pseudocode: Tower of Hanoi

Hanoi (n, src, dest, tmp):
if (n > 0) then

Hanoi (n− 1, src, tmp, dest)
Move disk n from src to dest
Hanoi (n− 1, tmp, dest, src)

Tower
of Hanoi

Recurrences
Suppose you have a recurrence of the form T (n) = rT (n/c) + f(n).

The master theorem gives a good asymptotic estimate of the recurrence. If
the work at each level is:

Decreasing: rf(n/c) = κf(n) where κ < 1 T (n) = O(f(n))
Equal: rf(n/c) = f(n) T (n) = O(f(n) · logcn)

Increasing: rf(n/c) = Kf(n) whereK > 1 T (n) = O(nlogcr)

Some useful identities:

• Sum of integers:
∑n

k=1 k =
n(n+1)

2

• Geometric series closed-form formula:
∑n

k=0 ar
k = 1−rn+1

1−r

• Logarithmic identities: log(ab) = log a + log b, log(a/b) = log a −
log b, alogc b = blogc a (a, b, c > 1).

Backtracking

Backtracking is the algorithm paradigm involving guessing the solution to a
single step in somemulti-step process and recursing backwards if it doesn’t
lead to a solution. For instance, consider the longest increasing subse-
quence (LIS) problem. You can either check all possible subsequences:

Pseudocode: LIS - Naive enumeration

algLISNaive(A[1..n]):
maxmax = 0
for each subsequenceB ofA do

ifB is increasing and |B| > max then
max = |B|

returnmax

On the other hand, we don’t need to generate every subsequence;

we only need to generate the subsequences that are increasing:
Pseudocode: LIS - Backtracking

LIS_smaller(A[1..n], x):
if n = 0 then return 0
max = LIS_smaller(A[1..n− 1], x)
ifA[n] < x then

max = max {max, 1 + LIS_smaller(A[1..(n− 1)], A[n])}
returnmax

Divide and conquer

Divide and conquer is an algorithm paradigm involving the decomposition
of a problem into the same subproblem, solving them separately and
combining their results to get a solution for the original problem.

Sorting
algo-
rithms

Algorithm Runtime Space

Mergesort O(n logn)
O(n logn)
O(n) (if optimized)

Quicksort O(n2)
O(n logn) if using MoM

O(n)

We can divide and conquer multiplication like so:

bc = 10
n
bLcL + 10

n/2
(bLcR + bRcL) + bRcR.

We can rewrite the equation as:

bc = b(x)c(x) = (bLx+ bR)(cLx+ cR) = (bLcL)x
2

+ ((bL + bR)(cL + cR)− bLcL − bRcR) x

+ bRcR,

Its running time isO(nlog2 3) = O(n1.585).

Karatsuba’s
algorithm

Linear time selection
The median of medians (MoM) algorithms give a element that is larger than
3
10 ’s and smaller than 7

10 ’s of the array elements. This is used in the linear
time selection algorithm to �nd element of rank k.

Pseudocode: Quickselect with median of medians

Median-of-medians (A, i):
sublists = [A[j:j+5] for j← 0, 5, . . . , len(A)]
medians = [sorted (sublist)[len (sublist)/2]

for sublist ∈ sublists]

// Base case
if len (A)≤ 5 return sorted (a)[i]

// Find median of medians
if len (medians)≤ 5

pivot = sorted (medians)[len (medians)/2]
else

pivot =Median-of-medians (medians, len/2)

// Partitioning step
low = [j for j ∈ A if j < pivot]
high = [j for j ∈ A if j > pivot]

k = len (low)
if i < k

return Median-of-medians (low, i)
else if i > k

return Median-of-medians (low, i-k-1)
else
return pivot

Dynamic programming

Dynamic programming (DP) is the algorithm paradigm involving the computation of a recursive backtracking algorithm iteratively to avoid the recomputation of
any particular subproblem.

Longest increasing subsequence

The longest increasing subsequence problem asks for the
length of a longest increasing subsequence in a unordered
sequence, where the sequence is assumed to be given as an
array. The recurrence can be written as:

LIS(i, j) =

0 if i = 0

LIS(i− 1, j) if A[i] ≥ A[j]

max

{
LIS(i− 1, j)

1 + LIS(i− 1, i)
else

Pseudocode: LIS - DP

LIS-Iterative(A[1..n]):
A[n+ 1] =∞
for j ← 0 to n

if A[i] ≤ A[j] then LIS[0][j] = 1

for i← 1 to n− 1 do
for j ← i to n− 1 do

if A[i] ≥ A[j]
LIS[i, j] = LIS[i− 1, j]

else
LIS[i, j] = max

{
LIS[i− 1, j],

1 + LIS[i− 1, i]
}

return LIS[n, n+ 1]

Edit distance

The edit distance problem asks how many edits we need to
make to a sequence for it to become another one. The recur-
rence is given as:

Opt(i, j) = min

αxiyj +Opt(i− 1, j − 1),

δ +Opt(i− 1, j),

δ +Opt(i, j − 1)

Base cases: Opt(i, 0) = δ · i and Opt(0, j) = δ · j
Pseudocode: Edit distance - DP

EDIST (A[1..m], B[1..n])
for i← 1 tom doM [i, 0] = iδ
for j ← 1 to n doM [0, j] = jδ

for i = 1 tom do
for j = 1 to n do

M [i][j] = min

COST
[
A[i]

][
B[j]

]

+M [i− 1][j − 1],

δ +M [i− 1][j],

δ +M [i][j − 1]

2 Graph algorithms

Graph basics

A graph is de�ned by a tuple G = (V,E) and we typically de�ne n = |V | andm = |E|. We de�ne (u, v) as the edge from u to v. Graphs can be represented
as adjacency lists, or adjacency matrices though the former is more commonly used.

• path: sequence of distinct vertices v1, v2, . . . , vk such that vivi+1 ∈ E for 1 ≤ i ≤ k − 1. The length of the path is k − 1 (the number of edges in the path).
Note: a single vertex u is a path of length 0.

• cycle: sequence of distinct vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k − 1 and (vk, v1) ∈ E. A single vertex is not a cycle according to
this de�nition.
Caveat: Sometimes people use the term cycle to also allow vertices to be repeated; we will use the term tour.

• A vertex u is connected to v if there is a path from u to v.

• The connected component of u, con(u), is the set of all vertices connected to u.

• A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u. Let rch(u) be the set of all vertices reachable from u.

Directed acyclic graphs

Directed acyclic graphs (dags) have an intrinsic ordering of the vertices that
enables dynamic programming algorithms to be used on them.
A topological ordering of a dagG = (V,E) is an ordering≺ on V such that
if (u, v) ∈ E then u ≺ v.

Pseudocode: Kahn’s algorithm

Kahn(G(V,E),u):
toposort←empty list
for v ∈ V :

in(v)← |{u | u→ v ∈ E}|
while v ∈ V that has in(v) = 0:

Add v to end of toposort
Remove v from V
for v in u→ v ∈ E:

in(v)← in(v)− 1
return toposort

Running time: O(n+m)

• A dag may have multiple topological sorts.

• A topological sort can be computed by DFS, in particular by listing the
vertices in decreasing post-visit order.

DFS and BFS
Pseudocode: Explore (DFS/BFS)

Explore(G,u):
for i← 1 to n:

Visited[i]← False
Add u to ToExplore and to S
Visited[u]← True
Make tree T with root as u
while B is non-empty do

Remove node x from B
for each edge (x, y) inAdj(x) do

if Visited[y] = False
Visited[y]← True
Add y to B, S, T (with x as parent)

Note:

• If B is a queue, Explore becomes BFS.
• If B is a stack, Explore becomes DFS.

Pre/post
num-
bering

Pre and post numbering aids in analyzing the graph structure. By
looking at the numbering we can tell if a edge (u, v) is a:

• Forward edge: pre(u) < pre(v) < post(v) < post(u)

• Backward edge: pre(v) < pre(u) < post(u) < post(v)

• Cross edge: pre(u) < post(u) < pre(v) < post(v)

Strongly connected components

• Given G, u is strongly
connected to v if v ∈
rch(u) and u ∈ rch(v).

• A maximal group of
vertices that are all
strongly connected to
one nother is called a
strong component.

G:

ab c

de f

g h

GSCC

b, e, f a, c, d

g h

Pseudocode: Metagraph - linear time

Metagraph(G(V,E)):
Compute rev(G) by brute force
ordering← reverse postordering of V in rev(G)

by DFS(rev(G), s) for any vertex s
Mark all nodes as unvisited
for each u in ordering do

if u is not visited and u ∈ V then
Su ← nodes reachable by u by DFS(G, u)
Output Su as a strong connected component
G(V,E)← G− Su

Shortest paths

Dijkstra’s algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative weight edges.

Pseudocode: Dijkstra

for v ∈ V do
d(v)←∞

X ← ∅
d(s, s)← 0
for i← 1 to n do
v ← arg minu∈V−X d(u)
X = X ∪ {v}
for u in Adj(v) do
d(u)← min {(d(u), d(v) + `(v, u))}

return d

Running time:O(m+nlogn) (if using a Fibonacci heap as thepriority queue)

Bellman-Ford algorithm:
Find minimum distance from vertex s to all other vertices in graphs without
negative cycles. It is a DP algorithm with the following recurrence:

d(v, k) =

0 if v = s and k = 0

∞ if v 6= s and k = 0

min

{
minuv∈E {d(u, k − 1) + `(u, v)}
d(v, k − 1)

else

Base cases: d(s, 0) = 0 and d(v, 0) =∞ for all v 6= s.
Pseudocode: Bellman-Ford

for each v ∈ V do
d(v)←∞

d(s)← 0

for k ← 1 to n− 1 do
for each v ∈ V do

for each edge (u, v) ∈ in(v) do
d(v)← min{d(v), d(u) + `(u, v)}

return d

Running time: O(nm)

Floyd-Warshall algorithm:
Find minimum distance from every vertex to every vertex in a graph without
negative cycles. It is a DP algorithm with the following recurrence:

d(i, j, k) =

0 if i = j

∞ if (i, j) /∈ E and k = 0

min

{
d(i, j, k − 1)

d(i, k, k − 1) + d(k, j, k − 1)
else

Then d(i, j, n − 1) will give the shortest-path distance from i to j .
Pseudocode: Floyd-Warshall

Metagraph(G(V,E)):
for i ∈ V do

for j ∈ V do
d(i, j, 0)← `(i, j)

(* `(i, j)←∞ if (i, j) /∈ E, 0 if i = j *)

for k ← 0 to n− 1 do
for i ∈ V do

for j ∈ V do

d(i, j, k)← min

{
d(i, j, k − 1),

d(i, k, k − 1) + d(k, j, k − 1)

for v ∈ V do
if d(i, i, n− 1) < 0 then

return "∃ negative cycle inG"

return d(·, ·, n− 1)

Running time: Θ(n3)

